Search tips
Search criteria

Results 1-25 (1226162)

Clipboard (0)

Related Articles

1.  Pentoxifylline sensitizes human cervical tumor cells to cisplatin-induced apoptosis by suppressing NF-kappa B and decreased cell senescence 
BMC Cancer  2011;11:483.
Worldwide, cervical cancer is the second most common causes of cancer in women and represents an important mortality rate. Cisplatin (CIS) is a very important antitumoral agent and can lead tumor cells toward two important cellular states: apoptosis and senescence. In some types of cancers pentoxifylline (PTX) sensitizes these cells to the toxic action of chemotherapeutics drugs such as adriamycin, inducing apoptosis. In the present work, we studied in vitro whether PTX alone or in combination with CIS induces apoptosis and/or senescence in cervix cancer HeLa and SiHa cell lines infected with HPV types 16 and 18, respectively, as well as in immortalized keratinocytyes HaCaT cells.
HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, CIS or both. The cellular toxicity and survival fraction of PTX and CIS were determinate by WST-1 and clonogenic assays respectively. Apoptosis, caspase activation and phosphorylation of ERK1/2, p38, p65 (NF-κB), Bcl-2 and Bcl-XL anti-apoptotic proteins were determinated by flow cytometry. Senescence by microscopy. Phosphorylation of IκBα and IκB total were measured by ELISA. Pro-apoptotic, anti-apoptotic and senescence genes, as well as HPV-E6/7 mRNA expression, were detected by RT-PCR.
Our results show that after 24 hours of incubation PTX per se is toxic for cancer cells affecting cell viability and inducing apoptosis. The toxicity in HaCaT cells was minimal. CIS induces apoptosis in HeLa and SiHa cells and its effect was significantly increases when the cells were treated with PTX + CIS. In all studies there was a direct correlation with levels of caspases (-3, -6, -7, -9 and -8) activity and apoptosis. CIS induces important levels of senescence and phosphorylation of ERK1/2, p38, p65/RELA, and IκBα, and decreased the expression of anti-apoptotic protein Bcl-XL. Surprisingly these levels were significantly reduced by PTX in tumor cells, and at the same time, increases the expression of pro-apoptotic genes.
PTX sensitizes cervical cancer cells to CIS-induced apoptosis and decreases the CIS-induced senescence in these cells via inhibition of NF-κB signaling pathway; diminishes expression of antiapoptotic proteins and the activation of caspases.
PMCID: PMC3229613  PMID: 22074157
2.  P16INK4A is required for cisplatin resistance in cervical carcinoma SiHa cells 
Oncology Letters  2014;9(3):1104-1108.
Cervical cancer is the third most commonly diagnosed cancer worldwide and the fourth leading cause of cancer-related mortality in females worldwide, accounting for 10–15% of cancer-related mortalities. Cytological screening and DNA testing for high-risk human papillomavirus (HPV) types have markedly decreased the rates of cervical cancer in developed countries, however, for vulnerable populations without access to health care, cervical cancer remains a considerable problem. Chemotherapeutic agents such as cisplatin (DDP) are considered as first-line treatment for cervical carcinoma. Although initially patients often exhibit high responsiveness, the majority eventually develop DDP resistance. However, the mechanisms underlying this process remain unclear. Furthermore, patients with metastatic cancer and those exhibiting persistent or recurrent disease after platinum-based chemoradiotherapy have limited options and thus, non-platinum combination chemotherapy has been proposed as a strategy to circumvent platinum resistance, however, novel therapeutic strategies are required. In the present study, P16 expression was analyzed by quantitative-polymerase chain reaction and western blot analysis in SiHa and SiHa-DDP cells and the interaction between P16 and CDK4 was detected via co-immunoprecipitation. In addition, the proliferation and apoptosis rates of P16 knockdown SiHa-DDP cells were measured by MTT assay and Annexin V flow cytometry and the subsequent changes in cyclin D1 and pRb expression were analyzed by western blot analysis. In this study, a high level of P16INK4A expression and its enhanced interaction with cyclin-dependent kinase-4 in cervical carcinoma DDP-resistance cells (SiHa-DDP) was identified, which was associated with the inactivation of phosphorylated retinoblastoma protein (pRb). Knockdown of P16INK4A significantly induced cellular growth, when compared with the control cells, via the upregulation of pRb, and also promoted apoptosis following treatment with DDP. The results of this study indicated, for the first time, that P16INK4A is required for DDP resistance in cervical carcinoma SiHa cells and, thus, these results may lead to the development of novel strategies for the treatment of chemoresistant cervical carcinoma.
PMCID: PMC4315085  PMID: 25663864
P16INK4A; cervical carcinoma; cisplatin resistance; SiHa-cisplatin; cell cycle
3.  Potential implications of GRP58 expression and susceptibility of cervical cancer to cisplatin and thymoquinone-based therapy 
OncoTargets and therapy  2014;7:1375-1387.
A new therapeutic approach of looking at the expression of glucose-regulated protein (GRP) 58 as an indication of cisplatin sensitivity may eradicate fruitless treatment and side effects in patients with cervical cancer. Thymoquinone, the bioactive compound in Nigella sativa, has been reported to have an antiproliferative effect on cervical cancer cells. This study compared the cytotoxic effects of cisplatin, a drug commonly used in the treatment of cervical cancer, and thymoquinone in cervical cancer (HeLa and SiHa) cell lines by 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and measured GRP58 expression in the cells by quantitative real-time polymerase chain reaction and Western blotting. Cisplatin had higher antiproliferative activity towards the cervical cancer cell lines than thymoquinone in a dose-dependent and time-dependent manner. However, cisplatin was more toxic to normal 3T3 and Vero cell lines than thymoquinone. The half maximal inhibitory concentration (IC50) of cisplatin in HeLa and SiHa cells at 72 hours was 13.3±2.52 μM and 19.5±2.12 μM, respectively. Meanwhile, the IC50 of thymoquinone in HeLa and SiHa cells was 29.57±5.81 μM and 23.41±1.51 μM, respectively (P<0.05). A significant correlation was found between the cytotoxicity of cisplatin and expression of GRP58, but this relationship was not significant for thymoquinone. Therefore, the response of cervical cancer cells to cisplatin can be predicted on the basis of GRP58 expression.
PMCID: PMC4132255  PMID: 25143744
glucose-regulated protein 58; cervical cancer; cisplatin; thymoquinone
4.  Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer 
Molecular Cancer  2010;9:167.
A substantial number of microRNAs (miRNAs) is subject to epigenetic silencing in cancer. Although epigenetic silencing of tumour suppressor genes is an important feature of cervical cancer, little is known about epigenetic silencing of miRNAs. Since DNA methylation-based silencing of hsa-miR-124 occurs in various human cancers, we studied the frequency and functional effects of hsa-miR-124 methylation in cervical carcinogenesis.
Quantitative MSP analysis of all 3 loci encoding the mature hsa-miR-124 (hsa-miR-124-1/-2/-3) showed methylation in cervical cancer cell lines SiHa, CaSki and HeLa as well as in late passages of human papillomavirus (HPV) type 16 or 18 immortalised keratinocytes. Treatment of SiHa cells with a demethylating agent reduced hsa-miR-124 methylation levels and induced hsa-miR-124 expression. In HPV-immortalised keratinocytes increased methylation levels were related to reduced hsa-miR-124 expression and higher mRNA expression of IGFBP7, a potential hsa-miR-124 target gene. Ectopic hsa-miR-124 expression in SiHa and CaSki cells decreased proliferation rates and migratory capacity. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 139 cervical tissue specimens showed an increasing methylation frequency from 0% in normal tissues up to 93% in cervical carcinomas. Increased methylation levels of hsa-miR-124-1 and hsa-miR-124-2 were significantly correlated with reduced hsa-miR-124 expression in cervical tissue specimens. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 43 cervical scrapes of high-risk HPV positive women was predictive of underlying high-grade lesions.
DNA methylation-based silencing of hsa-miR-124 is functionally involved in cervical carcinogenesis and may provide a valuable marker for improved detection of cervical cancer and its high-grade precursor lesions.
PMCID: PMC2917428  PMID: 20579385
5.  Prediction of cervical intraepithelial neoplasia grade 2+ (CIN2+) using HPV DNA testing after a diagnosis of atypical squamous cell of undetermined significance (ASC-US) in Catalonia, Spain 
A protocol for cervical cancer screening among sexually active women 25 to 65 years of age was introduced in 2006 in Catalonia, Spain to increase coverage and to recommend a 3-year-interval between screening cytology. In addition, Human Papillomavirus (HPV) was offered as a triage test for women with a diagnosis of atypical squamous cells of undetermined significance (ASC-US). HPV testing was recommended within 3 months of ASC-US diagnosis. According to protocol, HPV negative women were referred to regular screening including a cytological exam every 3 years while HPV positive women were referred to colposcopy and closer follow-up. We evaluated the implementation of the protocol and the prediction of HPV testing as a triage tool for cervical intraepithelial lesions grade two or worse (CIN2+) in women with a cytological diagnosis of ASC-US.
During 2007-08 a total of 611 women from five reference laboratories in Catalonia with a novel diagnosis of ASC-US were referred for high risk HPV (hrHPV) triage using high risk Hybrid Capture version 2. Using routine record linkage data, women were followed for 3 years to evaluate hrHPV testing efficacy for predicting CIN2+ cases. Logistic regression analysis was used to estimate the odds ratio for CIN2 +.
Among the 611 women diagnosed with ASC-US, 493 (80.7%) had at least one follow-up visit during the study period. hrHPV was detected in 48.3% of the women at study entry (mean age 35.2 years). hrHPV positivity decreased with increasing age from 72.6% among women younger than 25 years to 31.6% in women older than 54 years (p < 0.01).
At the end of the 3 years follow-up period, 37 women with a diagnosis of CIN2+ (18 CIN2, 16 CIN3, 2 cancers, and 1 with high squamous intraepithelial lesions -HSIL) were identified and all but one had a hrHPV positive test at study entry. Sensitivity to detect CIN2+ of hrHPV was 97.2% (95%confidence interval (CI) = 85.5-99.9) and specificity was 68.3% (95%CI = 63.1-73.2). The odds ratio for CIN2+ was 45.3 (95% CI: 6.2-333.0), when among ASC-US hrHPV positive women were compared to ASC-US hrHPV negative women.
Triage of ASC-US with hrHPV testing showed a high sensitivity for the detection of CIN2+ and a high negative predictive value after 3 years of follow-up. The results of this study are in line with the current guidelines for triage of women with ASC-US in the target age range of 25-65. Non adherence to guidelines will lead to unnecessary medical interventions. Further investigation is needed to improve specificity of ASC-US triage.
PMCID: PMC3332282  PMID: 22280073
Human papillomavirus (HPV); Diagnosis of atypical squamous cell of undetermined significance (ASC-US); Triage; cervical cancer screening; hrHC2 testing
6.  Down-regulation of argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular carcinoma cell lines: implications for PEGylated arginine deiminase combination therapy 
BMC Cancer  2014;14(1):621.
Many advanced human tumors, including hepatocellular carcinomas (HCC) are auxotrophic for arginine due to down-regulation of argininosuccinate synthetase (ASS1), the rate-limiting enzyme in arginine synthesis. The arginine-lowering agent PEGylated arginine deiminase (ADI-PEG 20) has shown efficacy as a monotherapy in clinical trials for treating arginine-auxotrophic tumors and is currently being evaluated in combination with cisplatin in other cancer types. Epigenetic silencing via methylation of the ASS1 promoter has been previously demonstrated in other cancer types, and a reciprocal relationship between ASS1 expression and cisplatin resistance has also been observed in ovarian cancer. However, the mechanism of ASS1 down-regulation, as well as the correlation with cisplatin resistance has not been explored in HCC. The present study investigates ADI-PEG 20 and cisplatin sensitivities in relation to ASS1 expression in HCC. In addition, we show how this biomarker is regulated by cisplatin alone and in combination with ADI-PEG 20.
ASS1 protein expression in both untreated and drug treated human HCC cell lines was assessed by western blot. The correlation between ASS1 protein levels, ADI-PEG 20 sensitivity and cisplatin resistance in these cell lines was established using a luminescence-based cell viability assay. Epigenetic regulation of ASS1 was analyzed by bisulfite conversion and methylation-specific PCR.
A good correlation between absence of ASS1 protein expression, ASS1 promoter methylation, sensitivity to ADI-PEG 20 and resistance to cisplatin in HCC cell lines was observed. In addition, cisplatin treatment down-regulated ASS1 protein expression in select HCC cell lines. While, at clinically relevant concentrations, the combination of ADI-PEG 20 and cisplatin restored ASS1 protein levels in most of the cell lines studied.
ASS1 silencing in HCC cell lines is associated with simultaneous cisplatin resistance and ADI-PEG 20 sensitivity which suggests a promising combination therapeutic strategy for the management of HCC.
PMCID: PMC4153943  PMID: 25164070
Arginine; Argininosuccinate synthetase; Arginine deiminase; Cisplatin; Hepatocellular carcinoma; Combination therapy
7.  Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells 
Molecular Cancer  2011;10:39.
Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated.
We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3.
These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6 and E7 expression. Inhibition of AP-1 activity by berberine may be one of the mechanisms responsible for the anti-HPV effect of berberine. We propose that berberine is a potentially promising compound for the treatment of cervical cancer infected with HPV.
PMCID: PMC3098825  PMID: 21496227
8.  The Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation 
PLoS Pathogens  2011;7(9):e1002256.
Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human carcinogenesis.
Author Summary
High-risk human papillomavirus infection can cause cancer of the uterine cervix. The viral proteins leading to transformation of the infected keratinocytes are the E6 and E7 oncogenes which interact with and induce degradation of the cell cycle regulators p53 and pRB. In cervical carcinoma cells, repression of E6/E7 stabilizes the p53 transcription factor leading to activation of a large group of cellular p53 target genes. Here we show that repression of E6/E7 also induces transcriptional activation of an additional large set of genes involved in cell adhesion including previously described p63 target genes. Indeed, we further demonstrated that these p63 target genes are activated by TAp63β and not by p53 or by the ΔNp63α or β isoforms, even though these transcription factors are also expressed in these cells. In cervical carcinoma cells, E6 expression therefore leads to TAp63β degradation thereby allowing anchorage independent growth. Our work describes a new E6-dependent transformation pathway in HPV-associated carcinogenesis. TAp63β inhibition may also represent a common pathway to activate anchorage independent growth in cancers.
PMCID: PMC3182928  PMID: 21980285
9.  PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro 
Molecular Cancer  2011;10:71.
High-risk human papillomavirus (hrHPV) infections are causally related to cervical cancer development. The additional (epi)genetic alterations driving malignant transformation of hrHPV-infected cells however, are not yet fully elucidated. In this study we experimentally assessed the role of the PI3-kinase pathway and its regulator PIK3CA, which is frequently altered in cervical cancer, in HPV-induced transformation.
Cervical carcinomas and ectocervical controls were assessed for PIK3CA mRNA and protein expression by quantitative RT-PCR and immunohistochemical staining, respectively. A longitudinal in vitro model system of hrHPV-transfected keratinocytes, representing the immortal and anchorage independent phenotype, was assayed for PI3-kinase activation and function using chemical pathway inhibition i.e. LY294002 treatment, and PIK3CA RNA interference. Phenotypes examined included cellular viability, migration, anchorage independent growth and differentiation. mRNA expression of hTERT and HPV16 E6E7 were studied using quantitative RT-PCR and Northern blotting.
Cervical carcinomas showed significant overexpression of PIK3CA compared to controls. During HPV-induced transformation in vitro, expression of the catalytic subunit PIK3CA as well as activation of downstream effector PKB/AKT progressively increased in parallel. Inhibition of PI3-kinase signalling in HPV16-transfected keratinocytes by chemical interference or siRNA-mediated silencing of PIK3CA resulted in a decreased phosphorylation of PKB/AKT. Moreover, blockage of PI3-kinase resulted in reduced cellular viability, migration, and anchorage independent growth. These properties were accompanied with a downregulation of HPV16E7 and hTERT mRNA expression. In organotypic raft cultures of HPV16- and HPV18-immortalized cells, phosphorylated PKB/AKT was primarily seen in differentiated cells staining positive for cytokeratin 10 (CK10). Upon PI3-kinase signalling inhibition, there was a severe impairment in epithelial tissue development as well as a dramatic reduction in p-PKB/AKT and CK10.
The present data indicate that activation of the PI3-kinase/PKB/AKT pathway through PIK3CA regulates various transformed phenotypes as well as growth and differentiation of HPV-immortalized cells and may therefore play a pivotal role in HPV-induced carcinogenesis.
PMCID: PMC3130697  PMID: 21663621
10.  High Concordance of Results of Testing for Human Papillomavirus in Cervicovaginal Samples Collected by Two Methods, with Comparison of a Novel Self-Sampling Device to a Conventional Endocervical Brush 
Journal of Clinical Microbiology  2006;44(7):2518-2523.
A user-friendly self-sampling method for collecting representative cervical cell material would lower the threshold for women to respond to the invitation for cervical screening. In the present article, we introduce such a device; we have evaluated its sensitivity and specificity to detect high-grade cervical intraepithelial neoplasia (CIN), via high-risk human papillomavirus (hrHPV) detection and liquid-based cytology (LBC), compared to endocervical brush samples obtained by gynecologists. Women who had a cervical smear reading of moderate dyskaryosis or worse or a repeat equivocal Pap smear result in the cervical screening program (n = 64) and healthy volunteers (n = 32) took a self-obtained sample at home prior to their visit to the gynecological outpatient department. At the outpatient department, an endocervical brush smear was taken, followed by colposcopy and biopsy whenever applicable. Both self-obtained samples and endocervical brush samples were immediately collected in Surepath preservation solution and used for LBC and hrHPV testing (by general primer-mediated GP5+/6+ PCR). hrHPV test results showed a good concordance between the two sample types (87%; κ = 0.71), with sensitivities for prevalent high-grade CIN that did not differ significantly (92% and 95%; P = 1.0). The hrHPV test on self-obtained samples proved to be at least as sensitive for high-grade CIN as cytology on endocervical brush samples (34/37 versus 31/37; P = 0.5). LBC showed a poor concordance between self-obtained and endocervical brush samples (60%; κ = 0.27). In conclusion, self-obtained samples taken by this novel device are highly representative of the hrHPV status of the cervix. In combination with hrHPV testing, the use of this device may have implications for increasing the attendance rate for cervical screening programs.
PMCID: PMC1489519  PMID: 16825374
11.  Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells 
Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of combination of saikosaponins with chemotherapeutic drugs has never been addressed. Thus, we investigated whether these two saikosaponins have chemosensitization effect on cisplatin-induced cancer cell cytotoxicity.
Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.
Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation. The dead cells showed typical apoptotic morphologies. Both early apoptotic and late apoptotic cells detected by flow cytometry were increased in saikosaponins and cisplatin cotreated cells, accompanied by activation of the caspase pathway. The pan-caspase inhibitor z-VAD and ROS scanvengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) dramatically suppressed the potentiated cytotoxicity achieved by combination of saikosaponin-a or -d and cisplatin.
These results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy.
PMCID: PMC3006358  PMID: 21143894
12.  Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene 
PLoS Pathogens  2014;10(3):e1003957.
The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.
Author Summary
Specific types of human papillomaviruses (HPVs) are closely linked to the development of malignant tumors, such as cervical cancer. Virtually all cervical cancers contain HPV DNA and the tumorigenic growth behavior of cervical cancer cells is dependent on the activity of two viral oncogenes, called E6 and E7. It is important to study the activities by which the HPV oncogenes can support the growth of tumor cells. This should allow new insights into the molecular mechanisms of virus-induced carcinogenesis and could also be useful for developing novel approaches for cancer therapy. We here show that the HPV oncogenes stimulate and maintain expression of the cellular LEDGF gene in HPV-positive cancer cells. Consistently, pre-malignant and malignant lesions of the cervix exhibit significantly increased LEDGF protein levels. LEDGF is crucial for the protection of tumor cells against various forms of cellular stress, including DNA damage. LEDGF stimulation by the viral oncogenes could be a critical survival mechanism by which HPVs support the growth of cervical cancer cells and provide resistance towards chemo- and radiotherapy in the clinic.
PMCID: PMC3946365  PMID: 24604027
13.  Factors Affecting the Prevalence of Strongly and Weakly Carcinogenic and Lower-Risk Human Papillomaviruses in Anal Specimens in a Cohort of Men Who Have Sex with Men (MSM) 
PLoS ONE  2013;8(11):e79492.
MSM are at higher risk for invasive anal cancer. Twelve human papillomaviruses (HPVs) cause cervical cancer in women (Group 1 high-risk HPVs (hrHPVs)) and 13 HPVs are probable/possible causes (Group 2 hrHPVs) of cervical malignancy. HPVs rarely associated with malignancy are classified as lower-risk HPVs (lrHPVs).
Materials and Methods
Dacron-swab anal-cytology specimens were collected from and data complete for 97% (1262/1296) of Multicenter AIDS Cohort Study (MACS) men tested for HPVs using the Linear Array assay. Multivariate Poisson regression analyses estimated adjusted prevalence ratios for Group 1/2 hrHPVs and lrHPVs, controlling for the effects of age, race, ethnicity, sexual partnerships, smoking; HIV-infection characteristics, treatment, and immune status among HIV-infected men.
HIV-infected men showed 35–90% higher prevalence of Group 1/2 hrHPVs and lrHPVs than HIV-uninfected men, and higher prevalence of multi-Type, and multiple risk-group infections. CD4+ T-cell count was inversely associated with HPV Group 2 prevalence (p<0.0001). The number of receptive anal intercourse (RAI) partners reported in the 24 months preceding HPV testing predicted higher prevalence of Group 1/2 hrHPVs. Men reporting ≥30 lifetime male sex partners before their first MACS visit and men reporting ≥1 RAI partners during the 24 months before HPV testing showed 17–24% and 13–17% higher prevalence of lrHPVs (p-values ≤0.05). Men reporting smoking between MACS visit 1 and 24 months before HPV testing showed 1.2-fold higher prevalence of Group 2 hrHPVs (p = 0.03). Both complete adherence to CART (p = 0.02) and HIV load <50 copies/mL (p = 0.04) were protective for Group 1 hrHPVs among HIV-infected men.
HIV-infected men more often show multi-type and multi-group HPV infections HIV-uninfected men. Long-term mutual monogamy and smoking cessation, generally, and CART-adherence that promotes (HIV) viremia control and prevents immunosuppression, specifically among HIV-infected MSM, are important prevention strategies for HPV infections that are relevant to anal cancer.
PMCID: PMC3835810  PMID: 24278140
14.  A Promising DNA Methylation Signature for the Triage of High-Risk Human Papillomavirus DNA-Positive Women 
PLoS ONE  2014;9(3):e91905.
High-risk human papillomavirus (hrHPV)-DNA testing is frequently performed parallel to cytology for the detection of high-grade dysplasia and cervical cancer particularly in women above 30 years of age. Although highly sensitive, hrHPV testing cannot distinguish between HPV-positive women with or without clinically relevant lesions. However, in principle discrimination is possible on the basis of DNA methylation markers.
In order to identify novel DNA regions which allow an effective triage of hrHPV-positive cases, hypermethylated DNA enriched from cervical cancers was compared with that from cervical scrapes of HPV16-positive cases with no evidence for disease by CpG island microarray hybridization. The most promising marker regions were validated by quantitative methylation-specific PCR (qMSP) using DNA from archived cervical tissues and cervical scrapes. The performance of these markers was then determined in an independent set of 217 hrHPV-positive cervical scrapes from outpatients with histopathological verification.
A methylation signature comprising the 5′ regions of the genes DLX1, ITGA4, RXFP3, SOX17 and ZNF671 specific for CIN3 and cervical cancer (termed CIN3+) was identified and validated. A high detection rate of CIN3+ was obtained if at least 2 of the 5 markers were methylated. In the subsequent cross-sectional study all cervical carcinomas (n = 19) and 56% (13/23) of CIN3 were identified by this algorithm. Only 10% (11/105) of hrHPV-positive women without histological evidence of cervical disease were scored positive by the methylation assay. Of note is that the detection rate of CIN3 differed between age groups. Eight of nine CIN3 were detected among women ≥30 years of age but only five of fourteen among <30 year old group (p = 0.03). The specificity for CIN3+ in the older age group was 76.6% (95% CI 65.6–85.5%). Clinical validation studies are required to determine the usefulness of these novel markers for triage after primary hrHPV testing in a cervical cancer screening setting.
PMCID: PMC3960142  PMID: 24647315
15.  Decitabine Rescues Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma 
PLoS ONE  2014;9(11):e112880.
Cisplatin resistance in head and neck squamous cell carcinoma (HNSCC) reduces survival. In this study we hypothesized that methylation of key genes mediates cisplatin resistance. We determined whether a demethylating drug, decitabine, could augment the anti-proliferative and apoptotic effects of cisplatin on SCC-25/CP, a cisplatin-resistant tongue SCC cell line. We showed that decitabine treatment restored cisplatin sensitivity in SCC-25/CP and significantly reduced the cisplatin dose required to induce apoptosis. We then created a xenograft model with SCC-25/CP and determined that decitabine and cisplatin combination treatment resulted in significantly reduced tumor growth and mechanical allodynia compared to control. To establish a gene classifier we quantified methylation in cancer tissue of cisplatin-sensitive and cisplatin-resistant HNSCC patients. Cisplatin-sensitive and cisplatin-resistant patient tumors had distinct methylation profiles. When we quantified methylation and expression of genes in the classifier in HNSCC cells in vitro, we showed that decitabine treatment of cisplatin-resistant HNSCC cells reversed methylation and gene expression toward a cisplatin-sensitive profile. The study provides direct evidence that decitabine restores cisplatin sensitivity in in vitro and in vivo models of HNSCC. Combination treatment of cisplatin and decitabine significantly reduces HNSCC growth and HNSCC pain. Furthermore, gene methylation could be used as a biomarker of cisplatin-resistance.
PMCID: PMC4229295  PMID: 25391133
16.  Reduced expression of autophagy markers correlates with high-risk human papillomavirus infection in human cervical squamous cell carcinoma 
Oncology Letters  2014;8(4):1492-1498.
Infection by an oncogenic human papillomavirus (HPV), in particular HPV16 and 18, is a high risk factor for developing cervical cancer; however, viral infection alone is not sufficient for cancer progression. Autophagy is hypothesized to be an important process during carcinogenesis. The aim of the present study was to investigate the association between autophagy and high-risk HPV (hrHPV) infection in human cervical squamous cell carcinomas (SCCs), and to analyze the clinical significance of this association. Quantum dot (QD)-based immunofluorescence histochemistry was used to detect the expression of autophagy markers, Beclin-1 and microtubule-associated proteins 1A/1B light chain 3B (LC3B) proteins, in 104 cases of cervical cancer (including 80 SCCs and 24 adenocarcinomas) and 20 normal cervical tissues. hrHPV (HPV16/18) infection was detected by QDs based fluorescence in situ hybridization in cervical cancers. The results revealed that the expression levels of Beclin-1 and LC3B were significantly lower in cervical cancer cells when compared with those of normal cervical squamous epithelial cells, and were found to negatively correlate with hrHPV infection. The expression levels of Beclin-1 and LC3B were not associated with age, tumor grade, tumor stage, tumor node metastasis stage or lymph node metastasis. However, a positive correlation was identified between Beclin-1 and LC3B protein expression. In addition, the absence of autophagy in combination with hrHPV infection may accelerate the progression of cervical SCC. In conclusion, decreased expression of Beclin-1 and LC3B may be important in cervical carcinogenesis. The hrHPV-host cell interaction may inhibit autophagy, which may aid virus duplication and infection, as well as cervical cancer development.
PMCID: PMC4156245  PMID: 25202355
autophagy; cervical cancer; beclin-1; light chain 3B; human papilloma virus; quantum dots
17.  Baseline prevalence and type distribution of human papillomavirus in healthy Chinese women aged 18–25 years enrolled in a clinical trial 
Baseline human papillomavirus (HPV) prevalence and type distribution were evaluated in young Chinese women enrolled in a clinical trial of an HPV vaccine ( registration NCT00779766). Cervical specimens and blood samples were collected at baseline from women aged 18–25 years (n = 6,051) from four sites across Jiangsu province. Cervical specimens were tested for HPV DNA by SPF10 PCR-DEIA-LiPA25 version 1, and HPV-16/18 type-specific polymerase chain reaction. Anti-HPV-16 and anti-HPV-18 antibody titres were quantified by enzyme-linked immunosorbent assay. At baseline, 15.3% of women were DNA positive for any of 14 HPV high-risk (hr) types (HPV-16/18/31/33/35/39/45/51/52/56/58/59/66/68). The most commonly detected hrHPV types in cervical specimens were HPV-52 (4.0%) and HPV-16 (3.7%). High-risk HPV DNA-positivity increased with severity of cytological abnormalities: 39.3% in atypical squamous cells of undetermined significance, 85.0% in low-grade squamous intraepithelial lesions and 97.8% in high-grade squamous intraepithelial lesions (HSIL). The hrHPV types most frequently detected in HSIL were HPV-16 (63.0%), HPV-18 (17.4%), HPV-52 (17.4%), HPV-58 (15.2%) and HPV-33 (15.2%). The hrHPV types most frequently detected in cervical intraepithelial neoplasia 2+ were HPV-16 (66.1%), HPV-33 (16.1%), HPV-52 (16.1%), HPV-58 (14.5%) and HPV-51 (11.3%). Multiple hrHPV infections were reported for 24.4% of hrHPV DNA positive women. Regardless of baseline HPV DNA status, 30.5% and 16.0% of subjects were initially seropositive for anti-HPV-16 and anti-HPV-18, respectively. In conclusion, the high baseline seropositivity rate and intermediate prevalence of cervical hrHPV types in Chinese women aged 18–25 years underlines the importance of early HPV vaccination in this population.
What's new?
In China, cervical cancer is the second most frequent cancer among women aged 15–44 years. The authors collected baseline data on prevalence and type distribution of human papillomavirus (HPV) from more than 6,000 healthy Chinese women aged 18–25 years participating in a large vaccine efficacy trial. Regardless of cytology, 15.3% of women were positive for high-risk HPV types, with HPV-52 (4.0%), HPV-16 (3.7%), HPV-51 (1.7%) and HPV-58 (1.5%) being the most frequently detected. This high baseline prevalence of high-risk HPV types underscores the importance of early vaccination among Chinese women.
PMCID: PMC4277334  PMID: 24740547
human papillomavirus; China; women; prevalence; type distribution
18.  Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin 
Molecular Cancer  2012;11:26.
Platinum compounds such as cisplatin and carboplatin are DNA crosslinking agents widely used for cancer chemotherapy. However, the effectiveness of platinum compounds is often tempered by the acquisition of cellular drug resistance. Until now, no pharmacological approach has successfully overcome cisplatin resistance in cancer treatment. Since the Fanconi anemia (FA) pathway is a DNA damage response pathway required for cellular resistance to DNA interstrand crosslinking agents, identification of small molecules that inhibit the FA pathway may reveal classes of chemicals that sensitize cancer cells to cisplatin.
Through a cell-based screening assay of over 16,000 chemicals, we identified 26 small molecules that inhibit ionizing radiation and cisplatin-induced FANCD2 foci formation, a marker of FA pathway activity, in multiple human cell lines. Most of these small molecules also compromised ionizing radiation-induced RAD51 foci formation and homologous recombination repair, indicating that they are not selective toward the regulation of FANCD2. These compounds include known inhibitors of the proteasome, cathepsin B, lysosome, CHK1, HSP90, CDK and PKC, and several uncharacterized chemicals including a novel proteasome inhibitor (Chembridge compound 5929407).
Isobologram analyses demonstrated that half of the identified molecules sensitized ovarian cancer cells to cisplatin. Among them, 9 demonstrated increased efficiency toward FA pathway-proficient, cisplatin-resistant ovarian cancer cells. Six small molecules, including bortezomib (proteasome inhibitor), CA-074-Me (cathepsin B inhibitor) and 17-AAG (HSP90 inhibitor), synergized with cisplatin specifically in FA-proficient ovarian cancer cells (2008 + FANCF), but not in FA-deficient isogenic cells (2008). In addition, geldanamycin (HSP90 inhibitor) and two CHK1 inhibitors (UCN-01 and SB218078) exhibited a significantly stronger synergism with cisplatin in FA-proficient cells when compared to FA-deficient cells, suggesting a contribution of their FA pathway inhibitory activity to cisplatin sensitization.
Our findings suggest that, despite their lack of specificity, pharmaceutical inhibition of the FA pathway by bortezomib, CA-074-Me, CHK1 inhibitors or HSP90 inhibitors may be a promising strategy to sensitize cisplatin-resistant, FA pathway-proficient tumor cells to cisplatin. In addition, we identified four new small molecules which synergize with cisplatin. Further development of their analogs and evaluation of their combination with cisplatin may lead to the development of efficient cancer treatments.
PMCID: PMC3478989  PMID: 22537224
Fanconi anemia; Drug resistance; Cisplatin; Small molecule; Homologous recombination
19.  TXNL1-XRCC1 pathway regulates cisplatin-induced cell death and contributes to resistance in human gastric cancer 
Xu, W | Wang, S | Chen, Q | Zhang, Y | Ni, P | Wu, X | Zhang, J | Qiang, F | Li, A | Røe, O D | Xu, S | Wang, M | Zhang, R | Zhou, J
Cell Death & Disease  2014;5(2):e1055-.
Cisplatin is a cytotoxic platinum compound that triggers DNA crosslinking induced cell death, and is one of the reference drugs used in the treatment of several types of human cancers including gastric cancer. However, intrinsic or acquired drug resistance to cisplatin is very common, and leading to treatment failure. We have recently shown that reduced expression of base excision repair protein XRCC1 (X-ray repair cross complementing group1) in gastric cancerous tissues correlates with a significant survival benefit from adjuvant first-line platinum-based chemotherapy. In this study, we demonstrated the role of XRCC1 in repair of cisplatin-induced DNA lesions and acquired cisplatin resistance in gastric cancer by using cisplatin-sensitive gastric cancer cell lines BGC823 and the cisplatin-resistant gastric cancer cell lines BGC823/cis-diamminedichloridoplatinum(II) (DDP). Our results indicated that the protein expression of XRCC1 was significantly increased in cisplatin-resistant cells and independently contributed to cisplatin resistance. Irinotecan, another chemotherapeutic agent to induce DNA damaging used to treat patients with advanced gastric cancer that progressed on cisplatin, was found to inhibit the expression of XRCC1 effectively, and leading to an increase in the sensitivity of resistant cells to cisplatin. Our proteomic studies further identified a cofactor of 26S proteasome, the thioredoxin-like protein 1 (TXNL1) that downregulated XRCC1 in BGC823/DDP cells via the ubiquitin-proteasome pathway. In conclusion, the TXNL1-XRCC1 is a novel regulatory pathway that has an independent role in cisplatin resistance, indicating a putative drug target for reversing cisplatin resistance in gastric cancer.
PMCID: PMC3944244  PMID: 24525731
cisplatin; gastric cancer; drug resistance; XRCC1; TXNL1
20.  A Population-Based Evaluation of a Publicly Funded, School-Based HPV Vaccine Program in British Columbia, Canada: Parental Factors Associated with HPV Vaccine Receipt 
PLoS Medicine  2010;7(5):e1000270.
Analysis of a telephone survey by Gina Ogilvie and colleagues identifies the parental factors associated with HPV vaccine uptake in a school-based program in Canada.
Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada.
Methods and Findings
All parents of girls enrolled in grade 6 during the academic year of September 2008–June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s) against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1–67.1) of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1–89.7) consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1–87.9) consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%), advice from a physician (8.7%), and concerns about daughter's health (8.4%). The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%), preference to wait until the daughter is older (15.6%), and not enough information to make an informed decision (12.6%). In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having a daughter receive the HPV vaccine in a publicly funded school-based HPV vaccine program. By contrast, having a family with two parents, having three or more children, and having more education was associated with a decreased likelihood of having a daughter receive the HPV vaccine.
This study is, to our knowledge, one of the first population-based assessments of factors associated with HPV vaccine uptake in a publicly funded school-based program worldwide. Policy makers need to consider that even with the removal of financial and health care barriers, parents, who are key decision makers in the uptake of this vaccine, are still hesitant to have their daughters receive the HPV vaccine, and strategies to ensure optimal HPV vaccine uptake need to be employed.
Please see later in the article for the Editors' Summary
Editors' Summary
About 10% of cancers in women occur in the cervix, the structure that connects the womb to the vagina. Every year, globally, more than a quarter of a million women die because of cervical cancer, which only occurs after the cervix has been infected with a human papillomavirus (HPV) through sexual intercourse. There are many types of HPV, a virus that infects the skin and the mucosa (the moist membranes that line various parts of the body, including the cervix). Although most people become infected with HPV at some time in their life, most never know they are infected. However, some HPV types cause harmless warts on the skin or around the genital area and several—in particular, HPV 16 and HPV 18, so-called high-risk HPVs—can cause cervical cancer. HPV infections are usually cleared by the immune system, but about 10% of women infected with a high-risk HPV develop a long-term infection that puts them at risk of developing cervical cancer.
Why Was This Study Done?
Screening programs have greatly reduced cervical cancer deaths in developed countries in recent decades by detecting the cancer early when it can be treated; but it would be better to prevent cervical cancer ever developing. Because HPV is necessary for the development of cervical cancer, vaccination of girls against HPV infection before the onset of sexual activity might be one way to do this. Scientists recently developed a vaccine that prevents infection with HPV 16 and HPV 18 (and with two HPVs that cause genital warts) and that should, therefore, reduce the incidence of cervical cancer. Publicly funded HPV vaccination programs are now planned or underway in several countries; but before girls can receive the HPV vaccine, parental consent is usually needed, so it is important to know what influences parental decisions about HPV vaccination. In this study, the researchers undertake a telephone survey to determine the uptake of the HPV vaccine by 11-year-old girls (grade 6) in British Columbia, Canada, and to determine the parental factors associated with vaccine uptake; British Columbia started a voluntary school-based HPV vaccine program in September 2008.
What Did the Researchers Do and Find?
In early 2009, the researchers contacted randomly selected parents of girls enrolled in grade 6 during the 2008–2009 academic year and asked them to complete a telephone survey that explored factors associated with HPV vaccine uptake. 65.1% of the 2,025 parents who completed the survey had consented to their daughter receiving the first dose of HPV vaccine. By contrast, more than 85% of the parents had consented to hepatitis B and meningitis C vaccination of their daughters. Nearly half of the parents surveyed said their main reason for consenting to HPV vaccination was the effectiveness of the vaccine. Conversely, nearly a third of the parents said concern about the vaccine's safety was their main reason for not consenting to vaccination and one in eight said they had been given insufficient information to make an informed decision. In a statistical analysis of the survey data, the researchers found that a positive parental attitude towards vaccination, a parental belief that HPV vaccination had limited impact on sexual practices, and completed childhood vaccination increased the likelihood of a daughter receiving the HPV vaccine. Having a family with two parents or three or more children and having well-educated parents decreased the likelihood of a daughter receiving the vaccine.
What Do These Findings Mean?
These findings provide one of the first population-based assessments of the factors that affect HPV vaccine uptake in a setting where there are no financial or health care barriers to vaccination. By identifying the factors associated with parental reluctance to agree to HPV vaccination for their daughters, these findings should help public-health officials design strategies to ensure optimal HPV vaccine uptake, although further studies are needed to discover why, for example, parents with more education are less likely to agree to vaccination than parents with less education. Importantly, the findings of this study, which are likely to be generalizable to other high-income countries, indicate that there is a continued need to ensure that the public receives credible, clear information about both the benefits and long-term safety of HPV vaccination.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Cancer Institute provides information about cervical cancer for patients and for health professionals, including information on HPV vaccines (in English and Spanish)
The US Centers for Disease Control and Prevention also has information about cervical cancer and about HPV
The UK National Health Service Choices website has pages on cervical cancer and on HPV vaccination
More information about cervical cancer and HPV vaccination is available from the Macmillan cancer charity
ImmunizeBC provides general information about vaccination and information about HPV vaccination in British Columbia
MedlinePlus provides links to additional resources about cervical cancer (in English and Spanish)
PMCID: PMC2864299  PMID: 20454567
21.  E6AP-Dependent Degradation of DLG4/PSD95 by High-Risk Human Papillomavirus Type 18 E6 Protein▿  
Journal of Virology  2006;81(3):1379-1389.
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers.
PMCID: PMC1797514  PMID: 17121805
22.  Activation of the Retinoblastoma Tumor Suppressor Mediates Cell Cycle Inhibition and Cell Death in Specific Cervical Cancer Cell Lines 
Molecular carcinogenesis  2009;48(1):45-55.
High-risk human papilloma virus (HPV) encodes two oncoproteins, E6 and E7, which are vital to viral replication and contribute to the development of cervical cancer. HPV16 E7 can target over 20 cellular proteins, but is best known for inactivating the retinoblastoma (RB) tumor suppressor. RB functions by restraining cells from entering S-phase of the cell cycle, thus preventing aberrant proliferation. While it is well established that HPV16 E7 facilitates the degradation of the RB protein, the ability of the RB pathway to overcome E7 action is less well understood. In this study the RB-pathway was activated via the overexpression of the p16ink4a tumor suppressor or ectopic expression of an active allele of RB (PSM-RB). While p16ink4a had no influence on cell cycle progression, PSM-RB expression was sufficient to induce a cell cycle arrest in both SiHa and HeLa cells, HPV positive cervical cancer cell lines. Strikingly, this arrest led to the down-regulation of E2F target gene expression, which was antagonized via enhanced HPV-E7 expression. Since down-modulation of E7 function is associated with chronic growth arrest and senescence, the effect of PSM-RB on proliferation and survival was evaluated. Surprisingly, sustained PSM-RB expression impeded the proliferation of SiHa cells, resulting in both cell cycle inhibition and cell death. From these studies we conclude that active RB expression can sensitize specific cervical cancer cells to cell cycle inhibition and cell death. Thus, targeted therapies involving activation of RB function may be effective in inducing cell death in cervical cancer.
PMCID: PMC2978426  PMID: 18506774
HPV; RB; E7; apoptosis; cervical cancer
23.  Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane 
Journal of Oncology  2013;2013:872957.
Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin gallate, EGCG) and cruciferous vegetables (sulforaphane, SFN) is inversely associated with occurrence of ovarian cancer and has anticancer effects through targeting multiple molecules in cancer cells. However, the effects of EGCG and SFN combinational treatment on ovarian cancer cells and on efficacy of cisplatin to these cells are unknown. In this study, EGCG or SFN was used to treat both cisplatin-sensitive (A2780) and cisplatin-resistant (A2780/CP20) ovarian cancer cells alone or in combination with cisplatin. We found that EGCG and SFN combinational treatment can reduce cell viability of both ovarian cancer cell lines time- and dose-dependently. Furthermore, EGCG and SFN combinational treatment can enhance cisplatin-induced apoptosis and G2/M phase arrest, thereby enhancing the efficacy of cisplatin on both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. EGCG and SFN combinational treatment upregulated p21 expression induced by cisplatin in cisplatin-sensitive ovarian cancer cells, while p27 expression was not regulated by these treatments. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer.
PMCID: PMC3588178  PMID: 23476648
24.  Sex-Specific Immunization for Sexually Transmitted Infections Such as Human Papillomavirus: Insights from Mathematical Models 
PLoS Medicine  2011;8(12):e1001147.
Johannes Bogaards and colleagues use mathematical models to investigate whether vaccinating females only, males only, or both sexes is the best way to achieve the most effective reduction in the population prevalence of sexually-transmitted infections
Sex-specific differences regarding the transmissibility and the course of infection are the rule rather than the exception in the epidemiology of sexually transmitted infections (STIs). Human papillomavirus (HPV) provides an example: disease outcomes differ between men and women, as does the potential for transmission to the opposite sex. HPV vaccination of preadolescent girls was recently introduced in many countries, and inclusion of boys in the vaccination programs is being discussed. Here, we address the question of whether vaccinating females only, males only, or both sexes is the most effective strategy to reduce the population prevalence of an STI like HPV.
Methods and Findings
We use a range of two-sex transmission models with varying detail to identify general criteria for allocating a prophylactic vaccine between both sexes. The most effective reduction in the population prevalence of infection is always achieved by single-sex vaccination; vaccinating the sex with the highest prevaccine prevalence is the preferred strategy in most circumstances. Exceptions arise only when the higher prevaccine prevalence is due to a substantially lower rate of natural immunity, or when natural immunity is lifelong, and a prolonged duration of infectiousness coincides with increased transmissibility. Predictions from simple models were confirmed in simulations based on an elaborate HPV transmission model. Our analysis suggests that relatively inefficient genital transmission from males to females might render male vaccination more effective in reducing overall infection levels. However, most existing HPV vaccination programs have achieved sufficient coverage to continue with female-only vaccination.
Increasing vaccine uptake among preadolescent girls is more effective in reducing HPV infection than including boys in existing vaccination programs. As a rule, directing prophylactic immunization at the sex with the highest prevaccine prevalence results in the largest reduction of the population prevalence.
Please see later in the article for the Editors' Summary
Editors' Summary
About 10% of cancers in women occur in the cervix, the structure that connects the womb to the vagina. Every year, more than a quarter of a million women (85% of them in developing countries) die because of cervical cancer, which only occurs after the cervix has been infected with a human papillomavirus (HPV) through sexual intercourse (HPV is one of more than thirty sexually transmissable organisms that, globally, cause many millions of sexually transmitted infections every year). There are many types of HPV, a virus that infects the skin and the mucosa (the moist membranes that line various parts of the body, including the cervix). Most people become infected with HPV at some time during their life, but most never know they have been infected. Some HPV types cause harmless warts on the skin or around the genital area, and several—in particular HPV16 and HPV18, so-called high-risk HPVs—can cause cervical cancer (and some other cancers, including anal, penile, head, and neck cancers). HPV infections are usually cleared by the immune system, but about 10% of women infected with a high-risk HPV develop a long-term infection that puts them at risk of developing cervical cancer.
Why Was This Study Done?
Screening programs have greatly reduced cervical cancer deaths in developed countries by detecting the cancer early, when it can be treated. However, it would be better to prevent cervical cancer ever developing. Moreover, most women in developing countries do not have access to screening. Because infection with specific HPV types can cause the development of some types of cervical cancer, vaccination of girls against HPV before the onset of sexual activity might be one way to prevent cervical cancer. Scientists recently developed a vaccine that prevents infection with HPV16 and HPV18, and HPV vaccination programs have been introduced in several countries. These programs are currently directed only at girls because HPV-related illness and death are higher among women than men, but should boys also be included in HPV vaccination programs? Men would benefit directly from immunization against HPV-related diseases, but, in addition, vaccination of boys might help to reduce the circulation of HPV in the population, thereby indirectly improving the protection of women through so-called “herd immunity.” In this study, the researchers used mathematical models to investigate whether vaccinating girls only, boys only, or both sexes is the most effective way to reduce the population prevalence of HPV infection (the proportion of the population infected with HPV).
What Did the Researchers Do and Find?
The researchers first used a range of standard two-sex mathematical models of infection and transmission in heterosexual populations to identify general criteria for allocating an HPV vaccine between the sexes. They found that the most effective reduction in the population prevalence of HPV infection was always achieved by single-sex vaccination and that, in most situations, the preferred strategy was to vaccinate the sex with the highest prevaccine prevalence of HPV infection. The researchers confirmed these predictions using a more elaborate HPV transmission model that incorporated differences among individuals in age and level of sexual activity. Importantly, this second analysis also suggested that for existing girl-only vaccination programs, increasing coverage of vaccination among girls would bolster herd immunity more effectively than switching to a policy of vaccinating both sexes.
What Do These Findings Mean?
The findings of this study suggest that increasing vaccine uptake among preadolescent girls is a more effective way to reduce HPV infection than including boys in existing vaccination programs. They also suggest that directing HPV vaccination at the sex with the highest prevaccine prevalence of infection will reduce the population prevalence of HPV most effectively. Although the accuracy of these findings is dependent on the assumptions included in the mathematical transmission models used by the researchers, these findings support a policy of increasing female HPV vaccine coverage as far as possible, within the limits set by vaccine acceptance and economic constraints. More generally, these findings suggest that single-sex preventative interventions might be the best way to reduce heterosexual transmission of other sexually transmitted infections and that targeting the sex with the highest prevalence of infection might achieve the most effective reduction in the population prevalence of these common diseases.
Additional Information
Please access these websites via the online version of this summary at
The US National Cancer Institute provides information about cervical cancer for patients and for health professionals, including information on HPV vaccines (in English and Spanish)
The US Centers for Disease Control and Prevention also has information about cervical cancer and HPV
The UK National Health Service Choices website has pages on cervical cancer and HPV vaccination (available in several languages and including a short video of girls talking about HPV vaccination)
The PREHDICT project investigates health-economic modeling of prevention strategies for HPV-related diseases in European countries; information about this project is available from the European Cervical Cancer Association
More information about cervical cancer and HPV vaccination is available from Macmillan Cancer Support
Personal stories about cervical cancer are available through the charity Healthtalkonline
MedlinePlus provides links to additional resources about cervical cancer and other sexually transmitted infections (in English and Spanish)
PMCID: PMC3243713  PMID: 22205887
25.  Role of EGFR degradation in cisplatin-induced cytotoxicity in head and neck cancer 
Cancer research  2010;70(7):2862-2869.
Cisplatin and its analogues are the most commonly used agents in the treatment of head and neck squamous cell carcinoma (HNSCC). In this study, we investigated a possible role of epidermal growth factor receptor (EGFR), phosphorylation and degradation in cisplatin-induced cytotoxicity. Cisplatin treatment led to an increase in initial EGFR phosphorylation at the Y1045, the binding site of ubiquitin ligase, Casitas B-lineage lymphoma (c-Cbl), followed by ubiquitination in the relatively cisplatin-sensitive cell lines. However, cisplatin-resistant cell lines underwent minimal EGFR phosphorylation at the Y1045 site and minimal ubiquitination. We found that EGFR degradation in response to cisplatin was highly correlated with cytotoxicity in seven head and neck cancer cell lines. Pretreatment with epidermal growth factor (EGF), enhanced cisplatin-induced EGFR degradation and cytotoxicity, whereas erlotinib pretreatment blocked EGFR phosphorylation, degradation, and cisplatin-induced cytotoxicity. Expression of a mutant Y1045F EGFR, which is relatively resistant to c-Cbl mediated degradation, in Chinese hamster ovary cells and the UMSCC11B human head and neck cancer cell line protected EGFR from cisplatin-induced degradation and enhanced cell survival compared to WT-EGFR. Transfection of WT-c-Cbl enhanced EGFR degradation and cisplatin-induced cytotoxicity compared to control vector. These results demonstrate that cisplatin-induced EGFR phosphorylation and subsequent ubiquitination and degradation is an important determinant of cisplatin sensitivity. Our findings suggest that treatment with an EGFR inhibitor before cisplatin would be antagonistic, as EGFR inhibition would protect EGFR from cisplatin-mediated phosphorylation and subsequent ubiquitination and degradation, which may explain the negative results of several recent clinical trials. Furthermore, they suggest that EGFR degradation is worth exploring as an early biomarker of response and as a target to improve outcome.
PMCID: PMC2848889  PMID: 20215522

Results 1-25 (1226162)