PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (679765)

Clipboard (0)
None

Related Articles

1.  Sequence determinants for the tandem recognition of UGU and CUG rich RNA elements by the two N—terminal RRMs of CELF1 
Nucleic Acids Research  2011;39(19):8638-8650.
CUGBP, Elav-like family member 1 (CELF1) is an RNA binding protein with important roles in the regulation of splicing, mRNA decay and translation. CELF1 contains three RNA recognition motifs (RRMs). We used gel retardation, gel filtration, isothermal titration calorimetry and NMR titration studies to investigate the recognition of RNA by the first two RRMs of CELF1. NMR shows that RRM1 is promiscuous in binding to both UGU and CUG repeat sequences with comparable chemical shift perturbations. In contrast, RRM2 shows greater selectivity for UGUU rather than CUG motifs. A construct (T187) containing both binding domains (RRM1 and RRM2) was systematically studied for interaction with tandem UGU RNA binding sites with different length linker sequences UGU(U)xUGU where x = 1–7. A single U spacer results in interactions only with RRM1, demonstrating both steric constraints in accommodating both RRMs simultaneously at adjacent sites, and also subtle differences in binding affinities between RRMs. However, high affinity co-operative binding (Kd ~ 0.4 µM) is evident for RNA sequences with x = 2–4, but longer spacers (x ≥ 5) lead to a 10-fold reduction in affinity. Our analysis rationalizes the high affinity interaction of T187 with the 11mer GRE consensus regulatory sequence UGUUUGUUUGU and has significant consequences for the prediction of CELF1 binding sites.
doi:10.1093/nar/gkr510
PMCID: PMC3201864  PMID: 21743084
2.  Inactivation of CUG-BP1/CELF1 Causes Growth, Viability, and Spermatogenesis Defects in Mice▿  
Molecular and Cellular Biology  2006;27(3):1146-1157.
CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1−/− mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1−/− males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1−/− males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis.
doi:10.1128/MCB.01009-06
PMCID: PMC1800704  PMID: 17130239
3.  CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay 
Scientific Reports  2012;2:209.
CUGBP1 and MBNL1 are developmentally regulated RNA-binding proteins that are causally associated with myotonic dystrophy type 1. We globally determined the in vivo RNA-binding sites of CUGBP1 and MBNL1. Interestingly, CUGBP1 and MBNL1 are both preferentially bound to 3′ UTRs. Analysis of CUGBP1- and MBNL1-bound 3′ UTRs demonstrated that both factors mediate accelerated mRNA decay and temporal profiles of expression arrays supported this. Role of CUGBP1 on accelerated mRNA decay has been previously reported, but the similar function of MBNL1 has not been reported to date. It is well established that CUGBP1 and MBNL1 regulate alternative splicing. Screening by exon array and validation by RT-PCR revealed position dependence of CUGBP1- and MBNL1-binding sites on the resulting alternative splicing pattern. This study suggests that regulation of CUGBP1 and MBNL1 is essential for accurate control of destabilization of a broad spectrum of mRNAs as well as of alternative splicing events.
doi:10.1038/srep00209
PMCID: PMC3250574  PMID: 22355723
4.  The CUGBP2 Splicing Factor Regulates an Ensemble of Branchpoints from Perimeter Binding Sites with Implications for Autoregulation 
PLoS Genetics  2009;5(8):e1000595.
Alternative pre-mRNA splicing adjusts the transcriptional output of the genome by generating related mRNAs from a single primary transcript, thereby expanding protein diversity. A fundamental unanswered question is how splicing factors achieve specificity in the selection of target substrates despite the recognition of information-poor sequence motifs. The CUGBP2 splicing regulator plays a key role in the brain region-specific silencing of the NI exon of the NMDA R1 receptor. However, the sequence motifs utilized by this factor for specific target exon selection and its role in splicing silencing are not understood. Here, we use chemical modification footprinting to map the contact sites of CUGBP2 to GU-rich motifs closely positioned at the boundaries of the branch sites of the NI exon, and we demonstrate a mechanistic role for this specific arrangement of motifs for the regulation of branchpoint formation. General support for a branch site-perimeter–binding model is indicated by the identification of a group of novel target exons with a similar configuration of motifs that are silenced by CUGBP2. These results reveal an autoregulatory role for CUGBP2 as indicated by its direct interaction with functionally significant RNA motifs surrounding the branch sites upstream of exon 6 of the CUGBP2 transcript itself. The perimeter-binding model explains how CUGBP2 can effectively embrace the branch site region to achieve the specificity needed for the selection of exon targets and the fine-tuning of alternative splicing patterns.
Author Summary
Alternative splicing is a precisely controlled process that determines whether an exon will be included or skipped in the mature mRNA transcript. Factors that control alternative splicing bind to RNA sequence motifs in the exon or flanking introns and guide tissue and developmental specific splicing events. CUGBP2 is a dual functional regulator of alternative splicing that can cause inclusion or skipping of a target exon, depending on the context of its binding motifs. Previously, the mechanisms of regulation by this protein and the positional significance of its target motifs have not been characterized. In this study, the authors dissected the mechanism of exon skipping by CUGBP2 and demonstrate that a specific configuration of motifs at the perimeters of a functional reference point are intimately involved in this event. Furthermore, this mechanism of regulation is shown to have general significance because novel CUGBP2 target exons contain a similar arrangement of motifs. The most interesting of this group is an exon within the CUGBP2 transcript itself. This study underscores the importance of a functional reference point in the specificity of regulation by an alternative splicing factor and reveals a novel autoregulatory role for CUGBP2.
doi:10.1371/journal.pgen.1000595
PMCID: PMC2715136  PMID: 19680430
5.  CUGBP2 directly interacts with U2 17S snRNP components and promotes U2 snRNA binding to cardiac troponin T pre-mRNA 
Nucleic Acids Research  2009;37(13):4275-4286.
CUGBP2 (ETR-3/NAPOR/BRUNOL3) promotes inclusion of cardiac troponin T (cTNT) exon 5 via binding between positions 21 and 74 of the downstream intron. The molecular mechanism by which CUGBP2 activates cTNT exon 5 inclusion is unknown. Our results suggest that CUGBP2 promotes exon inclusion by a novel mechanism in which CUGBP2 directly interacts with components of the activated U2 snRNP and enhances binding of U2 snRNP to the branch site located upstream of the exon. Using an in vitro splicing assay, we show that recombinant CUGBP2 enhances complex A formation of a cTNT pre-mRNA. Enhanced complex A assembly requires both the upstream and downstream introns consistent with dual requirements for the downstream CUGBP2-binding site and an upstream branch site for U2 snRNP binding. We also show that CUGBP2 enhances binding of U2 snRNA to the cTNT pre-mRNA consistent with enhanced complex A assembly. Purification of CUGBP2-interacting proteins using tandem affinity purification leads to the demonstration that the core 17S U2 snRNP components, SF3b145 and SF3b49 bind directly to CUGBP2. We conclude that CUGBP2 activates exon inclusion by forming direct interactions with components of the 17S snRNP complex and recruits and/or stabilizes binding of U2 snRNP.
doi:10.1093/nar/gkp346
PMCID: PMC2715230  PMID: 19443441
6.  ETR-3 and CELF4 protein domains required for RNA binding and splicing activity in vivo 
Nucleic Acids Research  2004;32(3):1232-1241.
Members of the CUG-BP and ETR-3 like factor (CELF) protein family bind within conserved intronic elements (called MSEs) flanking the cardiac troponin T (cTNT) alternative exon 5 and promote exon inclusion in vivo and in vitro. Here we use a comparative deletion analysis of two family members (ETR-3 and CELF4) to identify separate domains required for RNA binding and splicing activity in vivo. CELF proteins contain two adjacent RNA binding domains (RRM1 and RRM2) near the N-terminus and one RRM (RRM3) near the C-terminus, which are separated by a 160–230 residue divergent domain of unknown function. Either RRM1 or RRM2 of CELF4 are necessary and sufficient for binding MSE RNA and RRM2 plus an additional 66 amino acids of the divergent domain are as effective as full-length protein in activating MSE-dependent splicing in vivo. Non-overlapping N- and C-terminal regions of ETR-3 containing either RRM1 and RRM2 or RRM3 plus segments of the adjacent divergent domain activate MSE-dependent exon inclusion demonstrating an unusual functional redundancy of the N- and C-termini of the protein. These results identify specific regions of ETR-3 and CELF4 that are likely targets of protein–protein interactions required for splicing activation.
doi:10.1093/nar/gkh275
PMCID: PMC373409  PMID: 14973222
7.  Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel 
Human Molecular Genetics  2011;21(6):1312-1324.
Myotonic dystrophy type 1 and type 2 (DM1 and DM2) are genetic diseases in which mutant transcripts containing expanded CUG or CCUG repeats cause cellular dysfunction by altering the processing or metabolism of specific mRNAs and miRNAs. The toxic effects of mutant RNA are mediated partly through effects on proteins that regulate alternative splicing. Here we show that alternative splicing of exon 29 (E29) of CaV1.1, a calcium channel that controls skeletal muscle excitation–contraction coupling, is markedly repressed in DM1 and DM2. The extent of E29 skipping correlated with severity of weakness in tibialis anterior muscle of DM1 patients. Two splicing factors previously implicated in DM1, MBNL1 and CUGBP1, participated in the regulation of E29 splicing. In muscle fibers of wild-type mice, the CaV1.1 channel conductance and voltage sensitivity were increased by splice-shifting oligonucleotides that induce E29 skipping. In contrast to human DM1, expression of CUG-expanded RNA caused only a modest increase in E29 skipping in mice. However, forced skipping of E29 in these mice, to levels approaching those observed in human DM1, aggravated the muscle pathology as evidenced by increased central nucleation. Together, these results indicate that DM-associated splicing defects alter CaV1.1 function, with potential for exacerbation of myopathy.
doi:10.1093/hmg/ddr568
PMCID: PMC3284119  PMID: 22140091
8.  Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3 
Nucleic Acids Research  2009;37(15):5151-5166.
The CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-like factors (CELF) family or the Bruno-like family and is involved in the control of splicing, translation and mRNA degradation. Several target RNA sequences of CUG-BP1 have been predicted, such as the CUG triplet repeat, the GU-rich sequences and the AU-rich element of nuclear pre-mRNAs and/or cytoplasmic mRNA. CUG-BP1 has three RNA-recognition motifs (RRMs), among which the third RRM (RRM3) can bind to the target RNAs on its own. In this study, we solved the solution structure of the CUG-BP1 RRM3 by hetero-nuclear NMR spectroscopy. The CUG-BP1 RRM3 exhibited a noncanonical RRM fold, with the four-stranded β-sheet surface tightly associated with the N-terminal extension. Furthermore, we determined the solution structure of the CUG-BP1 RRM3 in the complex with (UG)3 RNA, and discovered that the UGU trinucleotide is specifically recognized through extensive stacking interactions and hydrogen bonds within the pocket formed by the β-sheet surface and the N-terminal extension. This study revealed the unique mechanism that enables the CUG-BP1 RRM3 to discriminate the short RNA segment from other sequences, thus providing the molecular basis for the comprehension of the role of the RRM3s in the CELF/Bruno-like family.
doi:10.1093/nar/gkp546
PMCID: PMC2731918  PMID: 19553194
9.  Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress 
Nucleic Acids Research  2007;35(19):6571-6587.
The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1α), and other RDM1 isoforms. We show that RDM1α undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.
doi:10.1093/nar/gkm753
PMCID: PMC2095821  PMID: 17905820
EF488473-EF488482
10.  Structural Insights into RNA Recognition by the Alternate-splicing Regulator CUG Binding Protein 1 
Structure(London, England:1993)  2010;18(10):1364-1377.
CUG binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We report on crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, while filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation and mRNA decay.
doi:10.1016/j.str.2010.06.018
PMCID: PMC3381513  PMID: 20947024
11.  miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies 
Molecular Biology of the Cell  2012;23(1):151-162.
This study shows that microRNA-503 interacts with the CUG-binding protein 1 (CUGBP1) mRNA and represses its translation by recruiting the CUGBP1 mRNA to processing bodies.
microRNAs (miRNAs) and RNA-binding proteins (RBPs) jointly regulate gene expression at the posttranscriptional level and are involved in many aspects of cellular functions. The RBP CUG-binding protein 1 (CUGBP1) destabilizes and represses the translation of several target mRNAs, but the exact mechanism that regulates CUGBP1 abundance remains elusive. In this paper, we show that miR-503, computationally predicted to associate with three sites of the CUGBP1 mRNA, represses CUGBP1 expression. Overexpression of an miR-503 precursor (pre-miR-503) reduced the de novo synthesis of CUGBP1 protein, whereas inhibiting miR-503 by using an antisense RNA (antagomir) enhanced CUGBP1 biosynthesis and elevated its abundance; neither intervention changed total CUGBP1 mRNA levels. Studies using heterologous reporter constructs revealed a greater repressive effect of miR-503 through the CUGBP1 coding region sites than through the single CUGBP1 3′-untranslated region target site. CUGBP1 mRNA levels in processing bodies (P-bodies) increased in cells transfected with pre-miR-503, while silencing P-body resident proteins Ago2, RCK, or LSm4 decreased miR-503–mediated repression of CUGBP1 expression. Decreasing the levels of cellular polyamines reduced endogenous miR-503 levels and promoted CUGBP1 expression, an effect that was prevented by ectopic miR-503 overexpression. Repression of CUGBP1 by miR-503 in turn altered the expression of CUGBP1 target mRNAs and thus increased the sensitivity of intestinal epithelial cells to apoptosis. These findings identify miR-503 as both a novel regulator of CUGBP1 expression and a modulator of intestinal epithelial homoeostasis.
doi:10.1091/mbc.E11-05-0456
PMCID: PMC3248894  PMID: 22072795
12.  ECTOPIC EXPRESSION OF CYCLIN D3 CORRECTS DIFFERENTIATION OF DM1 MYOBLASTS THROUGH ACTIVATION OF RNA CUG-BINDING PROTEIN, CUGBP1 
Experimental cell research  2008;314(11-12):2266-2278.
Differentiation of myocytes is impaired in patients with mytonic dystrophy type 1, DM1. CUG repeat binding protein, CUGBP1, is a key regulator of translation of proteins that are involved in muscle development and differentiation. In this paper, we present evidence that RNA-binding activity of CUGBP1 and its interactions with initiation translation complex eIF2 are differentially regulated during myogenesis by specific phosphorylation and that this regulation is altered in DM1. In normal myoblasts, Akt kinase phosphorylates CUGBP1 at Ser28 and increases interactions of CUGBP1 with cyclin D1 mRNA. During differentiation, CUGBP1 is phosphorylated by cyclinD3-cdk4/6 at Ser302, which increases CUGBP1 binding with p21 and C/EBPβ mRNAs. While cyclin D3 and cdk4 are elevated in normal myotubes; DM1 differentiating cells do not increase these proteins. In normal myotubes, CUGBP1 interacts with cyclin D3/cdk4/6 and eIF2; however, interactions of CUGBP1 with eIF2 are reduced in DM1 differentiating cells and correlate with impaired muscle differentiation in DM1. Ectopic expression of cyclin D3 in DM1 cells increases the CUGBP1-eIF2 complex, corrects expression of differentiation markers, myogenin and desmin, and enhances fusion of DM1 myoblasts. Thus, normalization of cyclin D3 might be a therapeutic approach to correct differentiation of skeletal muscle in DM1 patients.
doi:10.1016/j.yexcr.2008.04.018
PMCID: PMC2494712  PMID: 18570922
Myotonic Dystrophy 1; CUG repeats; CUGBP1-eIF2 complex; cyclin D3; differentiation
13.  Molecular Basis for Impaired Muscle Differentiation in Myotonic Dystrophy 
Molecular and Cellular Biology  2001;21(20):6927-6938.
Differentiation of skeletal muscle is affected in myotonic dystrophy (DM) patients. Analysis of cultured myoblasts from DM patients shows that DM myoblasts lose the capability to withdraw from the cell cycle during differentiation. Our data demonstrate that the expression and activity of the proteins responsible for cell cycle withdrawal are altered in DM muscle cells. Skeletal muscle cells from DM patients fail to induce cytoplasmic levels of a CUG RNA binding protein, CUGBP1, while normal differentiated cells accumulate CUGBP1 in the cytoplasm. In cells from normal patients, CUGBP1 up-regulates p21 protein during differentiation. Several lines of evidence show that CUGBP1 induces the translation of p21 via binding to a GC-rich sequence located within the 5′ region of p21 mRNA. Failure of DM cells to accumulate CUGBP1 in the cytoplasm leads to a significant reduction of p21 and to alterations of other proteins responsible for the cell cycle withdrawal. The activity of cdk4 declines during differentiation of cells from control patients, while in DM cells cdk4 is highly active during all stages of differentiation. In addition, DM cells do not form Rb/E2F repressor complexes that are abundant in differentiated cells from normal patients. Our data provide evidence for an impaired cell cycle withdrawal in DM muscle cells and suggest that alterations in the activity of CUGBP1 causes disruption of p21-dependent control of cell cycle arrest.
doi:10.1128/MCB.21.20.6927-6938.2001
PMCID: PMC99869  PMID: 11564876
14.  The neurofibromatosis type I pre-mRNA is a novel target of CELF protein-mediated splicing regulation 
Nucleic Acids Research  2009;38(1):253-264.
The CUG-BP and ETR-3 like factors (CELF) are a family of six highly conserved RNA-binding proteins that preferentially bind to UG-rich sequences. One of the key functions of these proteins is to mediate alternative splicing in a number of tissues, including brain, heart and muscle. To fully understand the function of CELF proteins, it is important to identify downstream targets of CELF proteins. In this communication, we report that neurofibromatosis type I (NF1) exon 23a is a novel target of CELF protein-mediated splicing regulation in neuron-like cells. NF1 regulates Ras signaling, and the isoform that excludes exon 23a shows 10 times greater ability to down-regulate Ras signaling than the isoform that includes exon 23a. Five of the six CELF proteins strongly suppress the inclusion of NF1 exon 23a. Over-expression or siRNA knockdown of these proteins in cell transfection experiments altered the levels of NF1 exon 23a inclusion. In vitro binding and splicing analyses demonstrate that CELF proteins block splicing through interfering with binding of U2AF65. These studies, combined with our previous investigations demonstrating a role for Hu proteins and TIA-1/TIAR in controlling NF1 exon 23a inclusion, highlight the complex nature of regulation of this important alternative splicing event.
doi:10.1093/nar/gkp766
PMCID: PMC2800208  PMID: 19854948
15.  Alternative splicing misregulation secondary to skeletal muscle regeneration 
Annals of neurology  2011;69(4):681-690.
Objective
Misregulation of alternative splicing has become a molecular hallmark of myotonic dystrophy type 1 (DM1) in which neonatal splice variants are expressed in adult skeletal muscle. Splicing misregulation is induced by RNA containing expanded CUG repeats expressed from the expanded mutant allele by sequestration of Muscleblind-like 1 (MBNL1) protein within nuclear RNA foci and increased CUGBP, Elav-like family member 1 (CELF1) protein levels. Misregulated splicing has also been identified in other neuromuscular disorders suggesting either that diseases with different molecular causes share a common pathogenic mechanism or that misregulated splicing can also be a common secondary consequence of muscle degeneration and regeneration.
Methods
In this study we examined regulation of alternative splicing in four different mouse models of muscular dystrophy including DM1, limb-girdle muscular dystrophy, congenital merosin-deficient muscular dystrophy, Duchenne muscular dystrophy, and two myotoxin (cardiotoxin and notexin) muscle injury models.
Results
We show that DM1-like alternative splicing misregulation and altered expression of MBNL1 and CELF1 occurs in non-DM1 mouse models of muscular dystrophy and muscle injury, most likely due to recapitulation of neonatal splicing patterns in regenerating fibers. In contrast, CELF1 was elevated in nuclei of mature myofibers of the DM1 model consistent with a primary effect of pathogenic RNA expression.
Interpretation
Splicing misregulation in DM1 is a primary effect of RNA containing expanded CUG repeats. However, we conclude that splicing changes can also be observed secondary to muscle regeneration and this possibility must be taken into account when evaluating cause-effect relationships between misregulated splicing and disease processes.
doi:10.1002/ana.22278
PMCID: PMC3082633  PMID: 21400563
16.  Overexpression of CUGBP1 in Skeletal Muscle from Adult Classic Myotonic Dystrophy Type 1 but Not from Myotonic Dystrophy Type 2 
PLoS ONE  2013;8(12):e83777.
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are progressive multisystemic disorders caused by similar mutations at two different genetic loci. The common key feature of DM pathogenesis is nuclear accumulation of mutant RNA which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of two RNA binding proteins, MBNL1 and CUGBP1. However, DM1 and DM2 show disease-specific features that make them clearly separate diseases suggesting that other cellular and molecular pathways may be involved. In this study we have analysed the histopathological, and biomolecular features of skeletal muscle biopsies from DM1 and DM2 patients in relation to presenting phenotypes to better define the molecular pathogenesis. Particularly, the expression of CUGBP1 protein has been examined to clarify if this factor may act as modifier of disease-specific manifestations in DM. The results indicate that the splicing and muscle pathological alterations observed are related to the clinical phenotype both in DM1 and in DM2 and that CUGBP1 seems to play a role in classic DM1 but not in DM2. In conclusion, our results indicate that multisystemic disease spectrum of DM pathologies may not be explained only by spliceopathy thus confirming that the molecular pathomechanism of DM is more complex than that actually suggested.
doi:10.1371/journal.pone.0083777
PMCID: PMC3869793  PMID: 24376746
17.  Competitive binding of CUGBP1 and HuR to occludin mRNA controls its translation and modulates epithelial barrier function 
Molecular Biology of the Cell  2013;24(2):85-99.
The present study shows that RNA-binding proteins CUGBP1 and HuR jointly regulate the translation of occludin and play a crucial role in the maintenance of tight junction integrity.
RNA-binding proteins CUG-binding protein 1 (CUGBP1) and HuR are highly expressed in epithelial tissues and modulate the stability and translation of target mRNAs. Here we present evidence that CUGBP1 and HuR jointly regulate the translation of occludin and play a crucial role in the maintenance of tight junction (TJ) integrity in the intestinal epithelial cell monolayer. CUGBP1 and HuR competed for association with the same occludin 3′-untranslated region element and regulated occludin translation competitively and in opposite directions. CUGBP1 overexpression decreased HuR binding to occludin mRNA, repressed occludin translation, and compromised the TJ barrier function, whereas HuR overexpression inhibited CUGBP1 association with occludin mRNA and promoted occludin translation, thereby enhancing the barrier integrity. Repression of occludin translation by CUGBP1 was due to the colocalization of CUGBP1 and tagged occludin RNA in processing bodies (P-bodies), and this colocalization was prevented by HuR overexpression. These findings indicate that CUGBP1 represses occludin translation by increasing occludin mRNA recruitment to P-bodies, whereas HuR promotes occludin translation by blocking occludin mRNA translocation to P-bodies via the displacement of CUGBP1.
doi:10.1091/mbc.E12-07-0531
PMCID: PMC3541967  PMID: 23155001
18.  Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities 
Nucleic Acids Research  2005;33(7):2078-2089.
An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related genes, ataxin-2 binding protein 1 (A2BP1)/Fox-1 and Fxh/Rbm9, which encode an identical RRM. Here, we demonstrate that both mouse Fxh and A2BP1 transcripts undergo tissue-specific alternative splicing, generating protein isoforms specific to brain and muscle. These tissue-specific isoforms are characterized for their abilities to regulate neural cell-specific alternative splicing of a cassette exon, N30, in the non-muscle myosin heavy chain II-B pre-mRNA, previously shown to be regulated through an intronic distal downstream enhancer (IDDE). All Fxh and A2BP1 isoforms with the RRM are capable of binding to the IDDE in vitro through the UGCAUG elements. Each isoform, however, shows quantitative differences in splicing activity and nuclear distribution in transfected cells. All Fxh isoforms and a brain isoform of A2BP1 show a predominant nuclear localization. Brain isoforms of both Fxh and A2BP1 promote N30 splicing much more efficiently than do the muscle-specific isoforms. Skeletal muscles express additional isoforms that lack a part of the RRM. These isoforms are incapable of activating neural cell-specific splicing and, moreover, can inhibit UGCAUG-dependent N30 splicing. These findings suggest that tissue-specific isoforms of Fxh and A2BP1 play an important role in determining tissue specificity of UGCAUG-mediated alternative splicing.
doi:10.1093/nar/gki338
PMCID: PMC1075922  PMID: 15824060
19.  Reduced Expression of RNA Binding Protein CELF2, a Putative Tumor Suppressor Gene in Colon Cancer 
Immuno-gastroenterology  2012;1(1):27-33.
Background & Aims
Colon cancer is the third leading cause of cancer death in both men and women in the United States. Every year, 160000 cases of colorectal cancer are diagnosed, and 57000 patients die. CUGBP, Elav-like family member 2 (CELF2) is an RNA binding protein that modulates various posttranscriptional events including RNA splicing, shuttling, editing, stability and translation. Previous studies have demonstrated that CELF2 expression is low in colon cancer cells. Furthermore, ectopic overexpression of CELF2 induces cells to undergo death by mitotic catastrophe. Based on the above observations, we hypothesized that CELF2 expression might be reduced during neoplastic transformation of colon cells.
Methods
Forty human colon cancer tissues along with 10 uninvolved normal colon tissues from cancer patients were utilized for immunohistochemical analysis of CELF2 expression.
Results
We have observed that CELF2 levels are reduced in colon tumor tissues when compared to the normal intestinal tissues. The data set suggests that RNA binding protein CELF2 could be a potential tumor suppressor protein. CELF2 was predominantly nuclear in normal cells, while the cancer tissues had diffused cytoplasmic staining.
Conclusion
CELF2 expression is consistently reduced during neoplastic transformation suggesting that it might play a crucial role in tumor initiation and progression.
doi:10.7178/ig.1.1.7
PMCID: PMC3686119  PMID: 23795348
intestine; tumors; cell death
20.  Multiple RNA binding domains of Bruno confer recognition of diverse binding sites for translational repression 
RNA Biology  2011;8(6):1047-1060.
Bruno protein binds to multiple sites—BREs—in the oskar mRNA 3′ UTR, thereby controlling oskar mRNA translation. Bruno also binds and regulates other mRNAs, although the binding sites have not yet been defined. Bruno has three RRM type RNA binding motifs, two near the amino terminus and an extended RRM at the C terminus. Two domains of Bruno—the first two RRMs (RRM1+2), and the extended RRM (RRM3+)—can each bind with specificity to the oskar mRNA regulatory regions; these and Bruno were used for in vitro selections. Anti-RRM3+ aptamers include long, highly constrained motifs, including one corresponding to the previously identified BRe. Anti-RRM1+2 aptamers lack constrained motifs, but are biased towards classes of short and variable sequences. Bruno itself selects for several motifs, including some of those bound by RRM3+. We propose that the different RNA binding domains allow for combinatorial binding, with extended Bruno binding sites assembled from sequences bound by the individual domains. Examples of such sites were identified in known targets of Bruno, and shown to confer Bruno-dependent translational repression in vivo. Other proteins with multiple RRMs may employ combinatorial binding to achieve high levels of specificity and affinity.
doi:10.4161/rna.8.6.17542
PMCID: PMC3360078  PMID: 21955496
RNA binding; translational regulation; RRM; Bruno; combinatorial binding
21.  GSK3β is a new therapeutic target for myotonic dystrophy type 1 
Rare Diseases  2013;1:e26555.
Myotonic dystrophy type 1 (DM1), an incurable, neuromuscular disease, is caused by the expansion of CTG repeats within the 3′ UTR of DMPK on chromosome 19q. In DM1 patients, mutant DMPK transcripts deregulate RNA metabolism by altering CUG RNA-binding proteins. Several approaches have been proposed for DM1 therapy focused on specific degradation of the mutant CUG repeats or on correction of RNA-binding proteins, affected by CUG repeats. One such protein is CUG RNA-binding protein (CUGBP1). The ability of CUGBP1 to increase or inhibit translation depends on phosphorylation at Ser302, which is mediated by cyclin D3-CDK4. The mutant CUG repeats increase the levels of CUGBP1 protein and inhibit Ser302 phosphorylation, leading to the accumulation of CUGBP1 isoforms that repress translation (i.e., CUGBP1REP). Elevation of CUGBP1REP in DM1 is caused by increased GSK3β kinase, which reduces the cyclin D3-CDK4 pathway and subsequent phosphorylation of CUGBP1 at Ser302. In this review, we discuss our recent discovery showing that correction of GSK3β activity in the DM1 mouse model (i.e., HSALR mice) reduces DM1 muscle pathology. These findings demonstrate that GSK3β is a novel therapeutic target for treating DM1.
doi:10.4161/rdis.26555
PMCID: PMC3927489
CUG repeats; CUGBP1; GSK3β; TDZD-8; lithium; myotonic dystrophy type 1
22.  RBM4 Interacts with an Intronic Element and Stimulates Tau Exon 10 Inclusion* 
The Journal of biological chemistry  2006;281(34):24479-24488.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular mechanisms regulating tau alternative splicing remain to be elucidated. In this study, we have developed an expression cloning strategy to identify splicing factors that stimulate tau exon 10 inclusion. Using this expression cloning approach, we have identified a previously unknown tau exon 10 splicing regulator, RBM4 (RNA binding motif protein 4). In cells transfected with a tau minigene, RBM4 overexpression leads to an increased inclusion of exon 10, whereas RBM4 down-regulation decreases exon 10 inclusion. The activity of RBM4 in stimulating tau exon 10 inclusion is abolished by mutations in its RNA-binding domain. A putative intronic splicing enhancer located in intron 10 of the tau gene is required for the splicing stimulatory activity of RBM4. Immunohistological analyses reveal that RBM4 is expressed in the human brain regions affected in tauopathy, including the hippocampus and frontal cortex. Our study demonstrates that RBM4 is involved in tau exon 10 alternative splicing. Our work also suggests that down-regulating tau exon 10 splicing activators, such as RBM4, may be of therapeutic potential in tauopathies involving excessive tau exon 10 inclusion.
doi:10.1074/jbc.M603971200
PMCID: PMC2072872  PMID: 16777844
23.  Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy 
The Journal of Clinical Investigation  2007;117(10):2802-2811.
Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide expansion in the 3′ untranslated region (3′ UTR) of DM protein kinase (DMPK). The key feature of DM1 pathogenesis is nuclear accumulation of RNA, which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of CUG-binding proteins (CUGBPs). Cardiac involvement occurs in more than 80% of individuals with DM1 and is responsible for up to 30% of disease-related deaths. We have generated an inducible and heart-specific DM1 mouse model expressing expanded CUG RNA in the context of DMPK 3′ UTR that recapitulated pathological and molecular features of DM1 including dilated cardiomyopathy, arrhythmias, systolic and diastolic dysfunction, and misregulated alternative splicing. Combined in situ hybridization and immunofluorescent staining for CUGBP1 and CUGBP2, the 2 CUGBP1 and ETR-3 like factor (CELF) proteins expressed in heart, demonstrated elevated protein levels specifically in nuclei containing foci of CUG repeat RNA. A time-course study demonstrated that colocalization of MBNL1 with RNA foci and increased CUGBP1 occurred within hours of induced expression of CUG repeat RNA and coincided with reversion to embryonic splicing patterns. These results indicate that CUGBP1 upregulation is an early and primary response to expression of CUG repeat RNA.
doi:10.1172/JCI32308
PMCID: PMC1964514  PMID: 17823658
24.  CUG repeat binding protein (CUGBP1) interacts with the 5' region of C/EBPbeta mRNA and regulates translation of C/EBPbeta isoforms. 
Nucleic Acids Research  1999;27(22):4517-4525.
The transcription factor CCAAT/enhancer binding protein beta, C/EBPbeta, plays a significant role in the regulation of hepatocyte growth and differentiation. A single mRNA coding for C/EBPbeta produces several protein isoforms. Two pathways for generation of low molecular weight C/EBPbeta isoforms have been described: specific proteolytic cleavage and initiation of translation from different AUG codons of C/EBPbeta mRNA. A truncated C/EBPbeta isoform, LIP, is induced in rat livers in response to partial hepatectomy (PH) via the alternative translation mechanism. Here we present evidence that CUG repeat binding protein, CUGBP1, interacts with the 5' region of C/EBPbeta mRNA and regulates translation of C/EBPbeta isoforms. Two binding sites for CUGBP1 are located side by side between the first and second AUG codons of C/EBPbeta mRNA. One binding site is observed in an out of frame short open reading frame (sORF) that has been previously shown to regulate initiation of translation from different AUG codons of C/EBPbeta mRNA. Analysis of cytoplasmic and polysomal proteins from rat liver after PH showed that CUGBP1 is associated with polysomes that translate low molecular weight isoforms of C/EBPbeta. The binding activity of CUGBP1 to the 5' region of C/EBPbeta mRNA shows increased association with these polysomal fractions after PH. Addition of CUGBP1 into a cell-free translation system leads to increased translation of low molecular weight isoforms of C/EBPbeta. Our data demonstrate that CUGBP1 protein is an important component for the regulation of initiation from different AUG codons of C/EBPbeta mRNA.
PMCID: PMC148737  PMID: 10536163
25.  CELF proteins regulate CFTR pre-mRNA splicing: essential role of the divergent domain of ETR-3 
Nucleic Acids Research  2010;38(20):7273-7285.
Cystic fibrosis is a prominent genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Among the many disease-causing alterations are pre-mRNA splicing defects that can hamper mandatory exon inclusion. CFTR exon 9 splicing depends in part on a polymorphic UG(m)U(n) sequence at the end of intron 8, which can be bound by TDP-43, leading to partial exon 9 skipping. CELF proteins, like CUG-BP1 and ETR-3, can also bind UG repeats and regulate splicing. We show here that ETR-3, but not CUG-BP1, strongly stimulates exon 9 skipping, although both proteins bind efficiently to the same RNA motif as TDP-43 and with higher affinity. We further show that the skipping of this exon may be due to the functional antagonism between U2AF65 and ETR-3 binding onto the polymorphic U or UG stretch, respectively. Importantly, we demonstrate that the divergent domain of ETR-3 is critical for CFTR exon 9 skipping, as shown by deletion and domain-swapping experiments. We propose a model whereby several RNA-binding events account for the complex regulation of CFTR exon 9 inclusion, with strikingly distinct activities of ETR-3 and CUG-BP1, related to the structure of their divergent domain.
doi:10.1093/nar/gkq573
PMCID: PMC2978352  PMID: 20631008

Results 1-25 (679765)