Search tips
Search criteria

Results 1-25 (624845)

Clipboard (0)

Related Articles

1.  Epitope mapping of type VII collagen. Identification of discrete peptide sequences recognized by sera from patients with acquired epidermolysis bullosa. 
Journal of Clinical Investigation  1993;92(4):1831-1839.
Epidermolysis bullosa acquisita (EBA) is an acquired blistering skin disease characterized by the presence of IgG autoantibodies that recognize type VII (anchoring fibril) collagen. In this study, we have mapped the antigenic epitopes within the type VII collagen alpha chain by Western immunoblotting analysis with sera from 19 patients with EBA, using bacterial collagenase- or pepsin-resistant portions of type VII collagen and a panel of 12 recombinant fusion proteins corresponding to approximately 80% of the primary sequence of the alpha 1 (VII) collagen polypeptide. These studies identified four major immunodominant epitopes localized within the amino-terminal, noncollagenous (NC-1) domain. In addition to EBA, sera from three patients with bullous systemic lupus erythematosus (BSLE) were tested. The pattern of epitopes recognized by these sera were similar to those noted with EBA, suggesting that the same epitopes could serve as autoantigens in both blistering conditions. In contrast, sera from healthy controls or from patients with unrelated blistering skin diseases did not react with type VII collagen epitopes. Collectively, the results indicate that the immunodominant epitopes in EBA and BSLE lie within the noncollagenous regions of type VII collagen. The precise role of the circulating autoantibodies in the pathogenesis of these blistering diseases remains to be elucidated. Conceivably, however, such antibodies could disrupt the assembly of type VII collagen into anchoring fibrils and/or interfere with their interactions with other extracellular matrix molecules within the cutaneous basement membrane zone.
PMCID: PMC288347  PMID: 7691888
2.  Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen. 
Journal of Clinical Investigation  1988;81(3):683-687.
Epidermolysis bullosa acquisita (EBA) is a severe, chronic blistering disease of the skin. EBA patients have circulating and tissue-bound autoantibodies to a large (Mr = 290,000) macromolecule that is localized within the basement membrane zone between the epidermis and dermis of skin, the site of blister formation. The "EBA antigen" is known to be distinct from laminin, heparan sulfate proteoglycan, fibronectin, the bullous pemphigoid antigen, elastin, and collagen types I, II, III, IV, and V. Sera from patients with EBA, two monoclonal antibodies to the EBA antigen, and a monoclonal antibody to the carboxyl terminus of type VII procollagen identically label human amnion and skin by immunofluorescent and immunoelectron microscopy. Western immunoblots of the EBA antigen extracted from skin and of type VII procollagen labeled with the above sera and antibodies are identical. None of the sera or antibodies labels Western blots of pepsinized type VII collagen which is missing the globular amino and carboxyl terminal domains. These data show that the EBA antigen is the carboxyl terminus of type VII procollagen.
PMCID: PMC442515  PMID: 3278005
3.  Epidermolysis Bullosa Acquisita: Autoimmunity to Anchoring Fibril Collagen 
Autoimmunity  2011;45(1):91-101.
Epidermolysis bullosa acquisita (EBA) is a rare and acquired autoimmune subepidermal bullous disease of the skin and mucosa. EBA includes various distinct clinical manifestations resembling Bullous Pemphigus, Brunsting-Perry pemphigoid, or cicatricial pemphigoid. These patients have autoantibodies against type VII collagen, an integral component of anchoring fibrils, which are responsible for attaching the dermis to the epidermis. Destruction or perturbation of the normally functioning anchoring fibrils clinically results in skin fragility, blisters, erosions, scars, milia and nail loss, all features reminiscent of genetic dystrophic epidermolysis bullosa. These anti-type VII collagen antibodies are “pathogenic” because when injected into a mouse, the mouse develops an EBA-like blistering disease. Currently treatment is often unsatisfactory, however some success has been achieved with colchichine, dapsone, photopheresis, plasmaphresis, infliximab, rituximab and IVIG.
PMCID: PMC3411315  PMID: 21955050
4.  Epidermolysis Bullosa Acquitsita 
Clinics in dermatology  2012;30(1):60-69.
EBA is a rare, acquired, chronic subepidermal bullous disease of the skin and mucosa characterized by autoantibodies to type VII collagen structures, a major component of anchoring fibrils, that attach the epidermis onto the dermis. EBA patients have tissue-bound as well as circulating anti-type VII collagen autoantibodies that attack type VII collagen and result in a reduction or perturbation of normally functioning anchoring fibrils. Patients with EBA have skin fragility, blisters, erosions, scars, milia, and nail loss: all features reminiscent of genetic dystrophic epidermolysis bullosa. These anti-type VII collagen antibodies are “pathogenic” because when injected into mice, the mice develop an EBA-like blistering disease. In addition to the classical mechanobullous presentation, EBA also has several other distinct clinical syndromes similar to bullous pemphigoid, Brunsting-Perry pemphigoid, or cicatricial pemphigoid. Although treatment for EBA is often unsatisfactory, some therapeutic success has been achieved with colchicine, dapsone, plasmaphoresis, photopheresis, infliximab, and intravenous immunoglobulin.
PMCID: PMC3234994  PMID: 22137228
5.  Clinical Presentation, Pathogenesis, Diagnosis, and Treatment of Epidermolysis Bullosa Acquisita 
ISRN Dermatology  2013;2013:812029.
Epidermolysis bullosa acquisita (EBA) is a chronic mucocutaneous autoimmune skin blistering disease. The pathogenic relevance of autoantibodies targeting type VII collagen (COL7) has been well-documented. Therefore, EBA is a prototypical autoimmune disease with a well-characterized pathogenic relevance of autoantibody binding to the target antigen. EBA is a rare disease with an incidence of 0.2 new cases per million and per year. The current treatment of EBA relies on general immunosuppressive therapy, which does not lead to remission in all cases. Therefore, there is a high, so far unmet medical need for the development of novel therapeutic options. During the last 10 years, several novel in vitro and in vivo models of EBA have been established. These models demonstrated a critical role of the genetic background, T cells, and cytokines for mediating the loss of tolerance towards COL7. Neutrophils, complement activation, Fc gamma receptor engagement, cytokines, several molecules involved in cell signaling, release of reactive oxygen species, and matrix metalloproteinases are crucial for autoantibody-induced tissue injury in EBA. Based on this growing understanding of the diseases' pathogenesis, several potential novel therapeutic targets have emerged. In this review, the clinical presentation, pathogenesis, diagnosis, and current treatment options for EBA are discussed in detail.
PMCID: PMC3727188  PMID: 23956869
6.  Metabolite analysis distinguishes between mice with epidermolysis bullosa acquisita and healthy mice 
Epidermolysis bullosa acquisita (EBA) is a rare skin blistering disease with a prevalence of 0.2/ million people. EBA is characterized by autoantibodies against type VII collagen. Type VII collagen builds anchoring fibrils that are essential for the dermal-epidermal junction. The pathogenic relevance of antibodies against type VII collagen subdomains has been demonstrated both in vitro and in vivo. Despite the multitude of clinical and immunological data, no information on metabolic changes exists.
We used an animal model of EBA to obtain insights into metabolomic changes during EBA. Sera from mice with immunization-induced EBA and control mice were obtained and metabolites were isolated by filtration. Proton nuclear magnetic resonance (NMR) spectra were recorded and analyzed by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and random forest.
The metabolic pattern of immunized mice and control mice could be clearly distinguished with PCA and PLS-DA. Metabolites that contribute to the discrimination could be identified via random forest. The observed changes in the metabolic pattern of EBA sera, i.e. increased levels of amino acid, point toward an increased energy demand in EBA.
Knowledge about metabolic changes due to EBA could help in future to assess the disease status during treatment. Confirming the metabolic changes in patients needs probably large cohorts.
PMCID: PMC3703300  PMID: 23800341
Metabolism; Epidermolysis bullosa acquisita; 1H-NMR; Type VII collagen
7.  Prevalence of specific anti-skin autoantibodies in a cohort of patients with inherited epidermolysis bullosa 
Inherited epidermolysis bullosa (EB) is a group of skin diseases characterized by blistering of the skin and mucous membranes.
There are four major types of EB (EB simplex, junctional EB, dystrophic EB and Kindler syndrome) caused by different gene mutations. Dystrophic EB is derived from mutations in the type VII collagen gene (COL7A1), encoding a protein which is the predominant component of the anchoring fibrils at the dermal-epidermal junction.
For the first time in literature, we have evaluated the presence of anti-skin autoantibodies in a wider cohort of patients suffering from inherited EB and ascertained whether they may be a marker of disease activity.
Sera from patients with inherited EB, 17 with recessive dystrophic EB (RDEB), 10 with EB simplex (EBS) were analysed. As much as 20 patients with pemphigus vulgaris, 21 patients with bullous pemphigoid and 20 healthy subjects were used as controls.
Anti-skin autoantibodies were tested in all samples with the Indirect Immunofluorescence (IIF) method and the currently available ELISA method in order to detect anti-type VII collagen, anti-BP180 and anti-BP230 autoantibodies.
The mean concentrations of anti-type VII collagen autoantibodies titres, anti-BP180 and anti-BP230 autoantibodies were statistically higher in RDEB patients than in EBS patients.
The sensitivity and specificity of the anti-type VII collagen ELISA test were 88.2% and 96.7%. The Birmingham Epidermolysis Bullosa Severity score, which is used to evaluate the severity of the disease, correlated with anti-skin autoantibodies titres.
The precise pathogenic role of circulating anti-skin autoantibodies in RDEB is unclear. There is a higher prevalence of both anti-type VII collagen and other autoantibodies in patients with RDEB, but their presence can be interpreted as an epiphenomenon.
PMCID: PMC4015699  PMID: 24007552
Inherited epidermolysis bullosa; Dystrophic epidermolysis bullosa; Anti-skin autoantibodies; Type VII collagen; BP180; BP230; ELISA; Birmingham Epidermolysis Bullosa Severity score
8.  Persistent Autoantibody-Production by Intermediates between Short-and Long-Lived Plasma Cells in Inflamed Lymph Nodes of Experimental Epidermolysis Bullosa Acquisita 
PLoS ONE  2013;8(12):e83631.
Autoantibodies are believed to be maintained by either the continuous generation of short-lived plasma cells in secondary lymphoid tissues or by long-lived plasma cells localized in bone marrow and spleen. Here, we show in a mouse model for the autoimmune blistering skin disease epidermolysis bullosa acquisita (EBA) that chronic autoantibody production can also be maintained in inflamed lymph nodes, by plasma cells exhibiting intermediate lifetimes. After EBA induction by immunization with a mCOL7c-GST-fusion protein, antigen-specific plasma cells and CD4 T cells were analyzed. Plasma cells were maintained for months in stable numbers in the draining lymph nodes, but not in spleen and bone marrow. In contrast, localization of mCOL7c-GST -specific CD4 T cells was not restricted to lymph nodes, indicating that availability of T cell help does not limit plasma cell localization to this site. BrdU-incorporation studies indicated that pathogenic mCOL7c- and non-pathogenic GST-specific plasma cells resemble intermediates between short-and long-lived plasma cells with half-lives of about 7 weeks. Immunization with mCOL7c-GST also yielded considerable numbers of plasma cells neither specific for mCOL7c- nor GST. These bystander-activated plasma cells exhibited much shorter half-lives and higher population turnover, suggesting that plasma cell lifetimes were only partly determined by the lymph node environment but also by the mode of activation. These results indicate that inflamed lymph nodes can harbor pathogenic plasma cells exhibiting distinct properties and hence may resemble a so far neglected site for chronic autoantibody production.
PMCID: PMC3873383  PMID: 24386241
9.  Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen 
Journal of Clinical Investigation  2005;115(4):870-878.
Epidermolysis bullosa acquisita (EBA) is a subepidermal blistering disorder associated with tissue-bound and circulating autoantibodies specific to type VII collagen, a major constituent of the dermal-epidermal junction. Previous attempts to transfer the disease by injection of patient autoantibodies into mice have been unsuccessful. To study the pathogenic relevance of antibodies specific to type VII collagen in vivo, we generated and characterized rabbit antibodies specific to a murine form of this antigen and passively transferred them into adult nude, BALB/c, and C57BL/6 mice. Immune rabbit IgG bound to the lamina densa of murine skin and immunoblotted type VII collagen. Mice injected with purified IgG specific to type VII collagen, in contrast to control mice, developed subepidermal skin blisters, reproducing the human disease at the clinical, histological, electron microscopical, and immunopathological levels. Titers of rabbit IgG in the serum of mice correlated with the extent of the disease. F(ab′)2 fragments of rabbit IgG specific to type VII collagen were not pathogenic. When injected into C5-deficient mice, antibodies specific to type VII collagen failed to induce the disease, whereas C5-sufficient mice were susceptible to blister induction. This animal model for EBA should facilitate further dissection of the pathogenesis of this disease and development of new therapeutic strategies.
PMCID: PMC1070403  PMID: 15841176
10.  Specific affinity between fibronectin and the epidermolysis bullosa acquisita antigen. 
Journal of Clinical Investigation  1987;79(6):1826-1830.
Autoantibodies in the skin and sera of patients with epidermolysis bullosa acquisita bind to a large matrix molecule within the lamina densa region of skin basement membrane. At the site of these immune complexes, the epidermis separates from the dermis, which creates a subepidermal blister just below the lamina densa. The target molecule for the autoantibodies is in close apposition to fibronectin, a major extracellular matrix molecule that is abundant in the upper dermis of skin. In this report, we show specific affinity between fibronectin and the 290,000-D chain of the epidermolysis bullosa acquisita antigen, and that this affinity is mediated by the gelatin/collagen-binding domain of fibronectin (Mr = 60,000). Since blistering in epidermolysis bullosa acquisita often occurs in the absence of clinical and histological inflammation, a direct interruption in the fibronectin-epidermolysis bullosa acquisita antigen bond may be involved in the pathogenesis of epidermal-dermal disadherence that occurs in this bullous disease.
PMCID: PMC424526  PMID: 3584471
11.  Premature termination codons on both alleles of the type VII collagen gene (COL7A1) in three brothers with recessive dystrophic epidermolysis bullosa. 
Journal of Clinical Investigation  1995;95(3):1328-1334.
Epidermolysis bullosa (EB) is a group of heritable mechano-bullous skin diseases classified into three major categories on the basis of the level of tissue separation within the dermal-epidermal basement membrane zone. In the most severe, dystrophic (scarring) forms of EB, blisters form below the cutaneous basement membrane at the level of the anchoring fibrils, which are composed of type VII collagen. Ultrastructural observations of altered anchoring fibrils and genetic linkage to the type VII collagen locus (COL7A1) have implicated COL7A1 as the candidate gene in the dystrophic forms of EB. We have recently cloned the entire cDNA and the gene for human COL7A1. In this study, we describe distinct mutations in both COL7A1 alleles in three brothers with severe, mutilating recessive dystrophic EB (the Hallopeau-Siemens type, HS-RDEB). The patients are compound heterozygotes for two different mutations, both of which result in a premature termination codon in COL7A1, and the parents were shown to be clinically heterozygous carries of the respective mutations. Premature termination codons in both alleles of COL7A1 appear to be the underlying cause of severe, recessive dystrophic EB in this family.
PMCID: PMC441472  PMID: 7883979
Indian Journal of Dermatology  2011;56(2):224-227.
Epidermolysis bullosa acquisita (EBA) is a chronic, autoimmune condition involving the skin and mucous membranes. Symptomatic mucosal involvement is rare, but can impact on quality of life, due to esophageal strictures and dysphagia. We report a case involving a 60-year-old male presenting with bullous skin lesions on areas of friction on his hands, feet and mouth. Milia were visible on some healed areas. Biopsy showed a subepidermal vesicle. Direct immunofluorescence showed intense linear junctional IgG and C3 at the dermo-epidermal junction. Serological tests also supported the diagnosis of EBA. Screening tests for underlying malignancies were negative. Despite treatment with systemic steroids, the patient developed increasing dysphagia, requiring further investigation with esophagoscopy and a barium swallow. Confirmation of extensive esophageal stricturing prompted adjustment of medications including an increase in systemic steroids and addition of azathioprine. Currently, the patient's disease remains under control, with improvement in all his symptoms and return of anti-basement membrane antibody levels to normal, whilst he remains on azathioprine 150 mg daily and prednisolone 5 mg daily. This case highlights the fact that the treatment of a given patient with EBA depends on severity of disease and co-morbid symptoms. Newer immunoglobulin and biological therapies have shown promise in treatment resistant disease. Considering that long-term immunosuppressants or biologicals will be required, potential side effects of the drugs should be considered. If further deterioration occurs in this patient, cyclosporin A or intravenous immunoglobulin (IV Ig) will be considered. Vigilance for associated co-morbidities, especially malignancies, should always be maintained.
PMCID: PMC3108531  PMID: 21716557
Epidermolysis bullosa acquisita; vesicles; bullae; dysphagia; esophageal strictures; scarring; milia
13.  Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue 
Journal of Clinical Investigation  2003;111(2):251-255.
Current therapeutic strategies for genetic skin disorders rely on the complex process of grafting genetically engineered tissue to recipient wound beds. Because fibroblasts synthesize and secrete extracellular matrix, we explored their utility in recessive dystrophic epidermolysis bullosa (RDEB), a blistering disease due to defective extracellular type VII collagen. Intradermal injection of RDEB fibroblasts overexpressing type VII collagen into intact RDEB skin stably restored correctly localized type VII collagen expression in vivo and normalized hallmark RDEB disease features, including subepidermal blistering and anchoring fibril defects.
PMCID: PMC151880  PMID: 12531881
14.  Long-Term Type VII Collagen Restoration to Human Epidermolysis Bullosa Skin Tissue 
Human Gene Therapy  2010;21(10):1299-1310.
Epidermolysis bullosa (EB) is a group of monogenic disorders in which skin blisters develop in response to minor injury. In this article, Siprashvili and colleagues demonstrate that retrovirally transduced human keratinocytes can be safely transplanted and correct the clinical phenotype observed in a mouse model of EB.
In spite of advances in the molecular diagnosis of recessive dystrophic epidermolysis bullosa (RDEB), an inherited blistering disease due to a deficiency of type VII collagen at the basement membrane zone (BMZ) of stratified epithelium, current therapy is limited to supportive palliation. Gene delivery has shown promise in short-term experiments; however, its long-term sustainability through multiple turnover cycles in human tissue has awaited confirmation. To characterize approaches for long-term genetic correction, retroviral vectors were constructed containing long terminal repeat-driven full-length and epitope-tagged COL7A1 cDNA and evaluated for durability of type VII collagen expression and function in RDEB skin tissue regenerated on immune-deficient mice. Type VII collagen expression was maintained for 1 year in vivo, or over 12 epidermal turnover cycles, with no abnormalities in skin morphology or self-renewal. Type VII collagen restoration led to correction of RDEB disease features, including reestablishment of anchoring fibrils at the BMZ. This approach confirms durably corrective and noninjurious gene delivery to long-lived epidermal progenitors and provides the foundation for a human clinical trial of ex vivo gene delivery in RDEB.
PMCID: PMC2957245  PMID: 20497034
15.  Dystrophic Epidermolysis Bullosa in Pregnancy: A Case Report of the Autosomal Dominant Subtype and Review of the Literature 
Case Reports in Medicine  2014;2014:242046.
Epidermolysis bullosa (EB) is a group of inherited blistering skin diseases that vary widely in their pathogenesis and severity. There are three main categories of EB: simplex, junctional, and dystrophic. This classification is based on the level of tissue separation within the basement membrane zone and this is attributed to abnormalities of individual or several anchoring proteins that form the interlocking network spanning from the epidermis to the dermis underneath. Dystrophic EB results from mutations in COL7A1 gene coding for type VII collagen leading to blister formation within the dermis. Diagnosis ultimately depends on the patient's specific genetic mutation, but initial diagnosis can be made from careful examination and history taking. We present a pregnant patient known to have autosomal dominant dystrophic EB and discuss the obstetrical and neonatal outcome. The paper also reviews the current English literature on this rare skin disorder.
PMCID: PMC4017779  PMID: 24864146
16.  Use of type VII collagen gene (COL7A1) markers in prenatal diagnosis of recessive dystrophic epidermolysis bullosa. 
Journal of Medical Genetics  1995;32(9):749-750.
Generalised recessive dystrophic epidermolysis bullosa (EB) is a severe inherited disease in which patients suffer from blistering and scarring of the skin and mucous membranes after minor mechanical trauma. Tight genetic linkage has been established to the type VII collagen gene (COL7A1) at 3p21, with no evidence of locus heterogeneity. Several COL7A1 mutations have now been identified in recessive dystrophic EB patients. Prenatal diagnosis has been performed by examination of a fetal skin biopsy taken at about 16 weeks' gestation, and relies on identification of characteristic ultrastructural and immunohistochemical changes. We have now achieved a first trimester prenatal diagnosis using intragenic and flanking COL7A1 markers in a pregnancy at risk for recessive dystrophic EB. Segregation of the informative markers predicted the baby would be an unaffected carrier. The pregnancy continued to term and a healthy baby was born, confirming this result.
PMCID: PMC1051681  PMID: 8544200
17.  Absorption of pathogenic autoantibodies by the extracellular domain of pemphigus vulgaris antigen (Dsg3) produced by baculovirus. 
Pemphigus vulgaris (PV) is an autoimmune blistering disease, in which autoantibodies against PV antigen (PVA or Dsg3) play a pathogenic role in inducing blister formation. Bacterial fusion proteins of PVA failed to absorb pathogenic autoantibodies from PV patients' sera probably because they did not represent the proper conformation. Therefore, a chimeric protein, PVIg, consisting of the whole extracellular domain of PVA and the constant region of human IgG1, was produced in either in COS7 or in insect Sf9 eucaryotic cells. Both PVIg-COS7 and PVIg-Sf9 were recognized by all of the 35 PV sera tested, but not by any of 10 pemphigus foliaceus (PF), 16 Brazilian PF, 10 bullous pemphigoid, or five normal control sera. Incubation of PV patients' sera with PVIg-Sf9 removed heterogeneous autoantibodies and significantly reduced their immunofluorescence titers on normal human epidermis, although PVIg-Sf9 did not affect the titers of PF sera at all. Furthermore, PVIg-Sf9 absorbed pathogenic autoantibodies from patients' sera and prevented gross blister formation in a neonatal mouse model for pemphigus. These results indicate that this baculovirus product has the proper conformation of the authentic PVA and that its conformation is important in pathogenicity of pemphigus.
PMCID: PMC296282  PMID: 8040292
18.  A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy 
The Journal of Clinical Investigation  2008;118(5):1669-1679.
Dystrophic epidermolysis bullosa (DEB) is a severe skin fragility disorder associated with trauma-induced blistering, progressive soft tissue scarring, and increased risk of skin cancer. DEB is caused by mutations in type VII collagen. In this study, we describe the generation of a collagen VII hypomorphic mouse that serves as an immunocompetent animal model for DEB. These mice expressed collagen VII at about 10% of normal levels, and their phenotype closely resembled characteristics of severe human DEB, including mucocutaneous blistering, nail dystrophy, and mitten deformities of the extremities. The oral blistering experienced by these mice resulted in growth retardation, and repeated blistering led to excessive induction of tissue repair, causing TGF-β1–mediated contractile fibrosis generated by myofibroblasts and pseudosyndactyly in the extremities. Intradermal injection of WT fibroblasts resulted in neodeposition of collagen VII and functional restoration of the dermal-epidermal junction. Treated areas were also resistant to induced frictional stress. In contrast, untreated areas of the same mouse showed dermal-epidermal separation following induced stress. These data demonstrate that fibroblast-based treatment can be used to treat DEB in a mouse model and suggest that this approach may be effective in the development of clinical therapeutic regimens for patients with DEB.
PMCID: PMC2276400  PMID: 18382769
19.  Basic fibroblast growth factor: a missing link between collagen VII, increased collagenase, and squamous cell carcinoma in recessive dystrophic epidermolysis bullosa. 
Molecular Medicine  1998;4(3):191-195.
BACKGROUND: Patients with recessive dystrophic epidermolysis bullosa (RDEB) have deficiencies of collagen type VII and have elevated levels of fibroblast collagenase, and a greatly increased risk of cutaneous squamous cell carcinoma. Patients with other genetic blistering disorders do not have elevated collagenase or an increased risk of squamous cell carcinoma, despite chronic wounding. The connection between collagen type VII deficiency, increased collagenase, and squamous cell carcinoma is not understood. MATERIALS AND METHODS: Urine from 81 patients with RDEB (39 patients), junctional epidermolysis bullosa (JEB; 12 patients), and epidermolysis bullosa simplex (EBS; 30 patients), as well as unaffected family members of RDEB patients (33 patients), was tested for the presence of basic fibroblast growth factor (bFGF) using a sensitive radioimmunoassay. These patients included many who were enrolled in the Epidermolysis Bullosa Registry and others who were referred by their physicians. RESULTS: Fifty-one percent of patients with RDEB had elevated levels (> 5000 pg/g) of urinary bFGF. In contrast, none of the patients with JEB had elevated levels of bFGF. Twenty-one percent of clinically unaffected family members had elevated levels of bFGF, and 13% of patients with EBS had elevated levels of bFGF. The frequency of elevated bFGF values among all groups was statistically significant (p = 0.002), and the levels of bFGF in RDEB patients were significantly elevated compared with those of other groups (p < 0.05). CONCLUSIONS: We have found that patients with RDEB have elevated levels of bFGF, which may contribute to increased fibroblast collagenase and the development of squamous cell carcinoma. These results suggest a novel treatment for RDEB, namely, angiogenesis inhibitors, which may antagonize the effects of bFGF in this disorder. There are currently no other means of treatment for this disorder, which has a high morbidity and mortality rate.
PMCID: PMC2230348  PMID: 9562977
20.  Prenatal diagnosis for recessive dystrophic epidermolysis bullosa in 10 families by mutation and haplotype analysis in the type VII collagen gene (COL7A1). 
Molecular Medicine  1996;2(1):59-76.
BACKGROUND: Epidermolysis bullosa (EB) is a group of heritable diseases that manifest as blistering and erosions of the skin and mucous membranes. In the dystrophic forms of EB (DEB), the diagnostic hallmark is abnormalities in the anchoring fibrils, attachment structures beneath the cutaneous basement membrane zone. The major component of anchoring fibrils is type VII collagen, and DEB has been linked to the type VII collagen gene (COL7A1) at 3p21, with no evidence for locus heterogeneity. Due to life-threatening complications and significant long-term morbidity associated with the severe, mutilating form of recessive dystrophic EB (RDEB), there has been a demand for prenatal diagnosis from families with affected offspring. MATERIALS AND METHODS: Intragenic polymorphisms in COL7A1 and flanking microsatellite markers on chromosome 3p21, as well as detection of pathogenetic mutations in families, were used to perform PCR-based prenatal diagnosis from DNA obtained by chorionic villus sampling at 10-15 weeks or amniocentesis at 12-15 weeks gestation in 10 families at risk for recurrence of RDEB. RESULTS: In nine cases, the fetus was predicted to be normal or a clinically unaffected carrier of a mutation in one allele. These predictions have been validated in nine cases by the birth of a healthy child. In one case, an affected fetus was predicted, and the diagnosis was confirmed by fetal skin biopsy. CONCLUSIONS: DNA-based prenatal diagnosis of RDEB offers an early, expedient method of testing which will largely replace the previously available invasive fetal skin biopsy at 18-20 weeks gestation.
PMCID: PMC2230038  PMID: 8900535
21.  Bone Marrow Transplantation for Recessive Dystrophic Epidermolysis Bullosa 
The New England journal of medicine  2010;363(7):629-639.
Recessive dystrophic epidermolysis bullosa is an incurable, often fatal mucocutaneous blistering disease caused by mutations in COL7A1, the gene encoding type VII collagen (C7). On the basis of preclinical data showing biochemical correction and prolonged survival in col7−/− mice, we hypothesized that allogeneic marrow contains stem cells capable of ameliorating the manifestations of recessive dystrophic epidermolysis bullosa in humans.
Between October 2007 and August 2009, we treated seven children who had recessive dystrophic epidermolysis bullosa with immunomyeloablative chemotherapy and allogeneic stem-cell transplantation. We assessed C7 expression by means of immunofluorescence staining and used transmission electron microscopy to visualize anchoring fibrils. We measured chimerism by means of competitive polymerase-chain-reaction assay, and documented blister formation and wound healing with the use of digital photography.
One patient died of cardiomyopathy before transplantation. Of the remaining six patients, one had severe regimen-related cutaneous toxicity, with all having improved wound healing and a reduction in blister formation between 30 and 130 days after transplantation. We observed increased C7 deposition at the dermal–epidermal junction in five of the six recipients, albeit without normalization of anchoring fibrils. Five recipients were alive 130 to 799 days after transplantation; one died at 183 days as a consequence of graft rejection and infection. The six recipients had substantial proportions of donor cells in the skin, and none had detectable anti-C7 antibodies.
Increased C7 deposition and a sustained presence of donor cells were found in the skin of children with recessive dystrophic epidermolysis bullosa after allogeneic bone marrow transplantation. Further studies are needed to assess the long-term risks and benefits of such therapy in patients with this disorder. (Funded by the National Institutes of Health; number, NCT00478244.)
PMCID: PMC2967187  PMID: 20818854
22.  Antibodies against desmoglein 3 (pemphigus vulgaris antigen) are present in sera from patients with paraneoplastic pemphigus and cause acantholysis in vivo in neonatal mice. 
Journal of Clinical Investigation  1998;102(4):775-782.
Paraneoplastic pemphigus (PNP) is an autoimmune blistering disease that occurs in association with underlying neoplasms. Patients with PNP develop characteristic IgG autoantibodies directed against multiple antigens, most of which have been identified as cytoplasmic proteins of the plakin family (desmoplakin I, II, BPAG1, envoplakin, and periplakin). This study identified cell surface target antigens of PNP. We focused on desmoglein (Dsg) 3 and Dsg1, the autoantigens of pemphigus vulgaris and pemphigus foliaceus. ELISA using baculovirus-expressed recombinant Dsgs (rDsg3, rDsg1) has revealed that 25 out of 25 PNP sera tested were positive against Dsg3 and 16 of 25 were positive against Dsg1. All of 12 PNP sera tested immunoprecipitated Dsg3. Removal of anti-Dsg3 autoantibodies by immunoadsorption was sufficient to eliminate the ability of PNP sera to induce cutaneous blisters in neonatal mice in vivo. Furthermore, anti-Dsg3-specific antibodies that were affinity purified from PNP sera were proven to be pathogenic and caused blisters in neonatal mice. These findings indicate that Dsg3 and Dsg1 are the cell surface target antigens in PNP and that IgG autoantibodies against Dsg3 in PNP sera play a pathogenic role in inducing loss of cell adhesion of keratinocytes and causing blister formation.
PMCID: PMC508940  PMID: 9710446
23.  The pathophysiology of autoimmune blistering diseases 
Journal of Clinical Investigation  2005;115(4):825-828.
Knowledge of the pathophysiology of immunobullous diseases has been advanced by the demonstration that passive transfer of antibodies against skin autoantigens can induce blisters in experimental animals with clinical, histologic, and immunopathologic features similar to those seen in human patients. In this issue of the JCI, Liu et al. extend their earlier observations regarding an experimental murine model of bullous pemphigoid by showing that the plasminogen/plasmin signaling cascade synergizes with MMP-9 during the early phase of antibody-induced blister formation in vivo. In a separate study, Sitaru et al. show for the first time to my knowledge that passive transfer of experimental antibodies against type VII collagen create subepidermal blisters in mice that mimic those seen in patients with epidermolysis bullosa acquisita (see the related article beginning on page 870). While the articles by Liu, Sitaru, and their colleagues identify pathways of inflammation and tissue injury that, if interrupted, may abrogate blister formation, in a third study, Payne et al. utilized phage display technologies to isolate human anti-desmoglein monoclonal antibodies from a patient with pemphigus vulgaris and show that such antibodies have restricted patterns of heavy and light chain gene usage — findings suggesting that autoantibodies may represent an additional target for therapeutic interventions in patients with immunobullous diseases (see the related article beginning on page 888).
PMCID: PMC1070439  PMID: 15841169
24.  Type VII Collagen Gene Mutations (c.8569G>T and c.4879G>A) Result in the Moderately Severe Phenotype of Recessive Dystrophic Epidermolysis Bullosa in a Korean Patient 
Journal of Korean Medical Science  2009;24(2):256-261.
Dystrophic epidermolysis bullosa (DEB) are caused by mutations in the COL7A1 gene, which encodes type VII collagen. Even though more than 500 different COL7A1 mutations have been identified in DEB, it still remains to be under-investigated. To investigate the mutation of COL7A1 in moderately severe phenotype of recessive DEB (RDEB) in a Korean patient, the mutation detection strategy was consisted of polymerase chain reaction (PCR) amplification of genomic DNA, followed by heteroduplex analysis, nucleotide sequencing of the PCR products demonstrating altered mobility. In this study, we found that one mutation (c.8569G>T) was detected within exon 116. The mutation of c.8569G>T in exon 116 changed the GAG (Glu) to TAG, eventually resulted in premature termination of type VII collagen polypeptide. Furthermore the mother did not have the mutation c.8569G>T in exon 116. The other novel mutation (c.4879G>A) was detected within exon 51 of both patient and mother, thereby resulting in changing valine (Val) to isoleucine (Ile) in type VII collagen polypeptide. Taken together, in this study we identified compound heterozygosity for COL7A1 mutations (c.8569G>T and c.4879G>A) in moderately severe RDEB in a Korean patient. We hope that this data contribute to the expanding database on COL7A1 mutations in DEB.
PMCID: PMC2672125  PMID: 19399267
Epidermolysis Bullosa Dystrophica; COL7A1; Mutation
25.  Aberrant Expression and Secretion of Heat Shock Protein 90 in Patients with Bullous Pemphigoid 
PLoS ONE  2013;8(7):e70496.
The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP), the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i) Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii) in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii) Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv) Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT) cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP.
PMCID: PMC3728143  PMID: 23936217

Results 1-25 (624845)