Search tips
Search criteria

Results 1-25 (859194)

Clipboard (0)

Related Articles

1.  Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia 
Blood Cancer Journal  2011;1(11):e44-.
FMS-like tyrosine kinase 3 (FLT3) is the most commonly mutated gene found in acute myeloid leukemia (AML) patients and its activating mutations have been proven to be a negative prognostic marker for clinical outcome. Pacritinib (SB1518) is a tyrosine kinase inhibitor (TKI) with equipotent activity against FLT3 (IC50=22 n) and Janus kinase 2 (JAK2, IC50=23 n). Pacritinib inhibits FLT3 phosphorylation and downstream STAT, MAPK and PI3 K signaling in FLT3-internal-tandem duplication (ITD), FLT3-wt cells and primary AML blast cells. Oral administration of pacritinib in murine models of FLT3-ITD-driven AML led to significant inhibition of primary tumor growth and lung metastasis. Upregulation of JAK2 in FLT3-TKI-resistant AML cells was identified as a potential mechanism of resistance to selective FLT3 inhibition. This resistance could be overcome by the combined FLT3 and JAK2 activities of pacritinib in this cellular model. Our findings provide a rationale for the clinical evaluation of pacritinib in AML including patients resistant to FLT3-TKI therapy.
PMCID: PMC3256753  PMID: 22829080
Pacritinib; SB1518; FLT3; JAK2; AML
2.  Evaluation of the Antitumor Effects of BPR1J-340, a Potent and Selective FLT3 Inhibitor, Alone or in Combination with an HDAC Inhibitor, Vorinostat, in AML Cancer 
PLoS ONE  2014;9(1):e83160.
Overexpression or/and activating mutation of FLT3 kinase play a major driving role in the pathogenesis of acute myeloid leukemia (AML). Hence, pharmacologic inhibitors of FLT3 are of therapeutic potential for AML treatment. In this study, BPR1J-340 was identified as a novel potent FLT3 inhibitor by biochemical kinase activity (IC50 approximately 25 nM) and cellular proliferation (GC50 approximately 5 nM) assays. BPR1J-340 inhibited the phosphorylation of FLT3 and STAT5 and triggered apoptosis in FLT3-ITD+ AML cells. The pharmacokinetic parameters of BPR1J-340 in rats were determined. BPR1J-340 also demonstrated pronounced tumor growth inhibition and regression in FLT3-ITD+ AML murine xenograft models. The combination treatment of the HDAC inhibitor vorinostat (SAHA) with BPR1J-340 synergistically induced apoptosis via Mcl-1 down-regulation in MOLM-13 AML cells, indicating that the combination of selective FLT3 kinase inhibitors and HDAC inhibitors could exhibit clinical benefit in AML therapy. Our results suggest that BPR1J-340 may be further developed in the preclinical and clinical studies as therapeutics in AML treatments.
PMCID: PMC3885398  PMID: 24416160
3.  A potential therapeutic target for FLT3-ITD AML: PIM1 Kinase 
Leukemia Research  2011;36(2):224-231.
Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) mutation have a poor prognosis, and FLT3 inhibitors are now under clinical investigation. PIM1, a serine/threonine kinase, is up-regulated in FLT3-ITD AML and may be involved in FLT3-mediated leukemogenesis. We employed a PIM1 inhibitor, AR00459339 (Array Biopharma Inc.), to investigate the effect of PIM1 inhibition in FLT3-mutant AML. Like FLT3 inhibitors, AR00459339 was preferentially cytotoxic to FLT3-ITD cells, as demonstrated in the MV4-11, Molm-14, and TF/ITD cell lines, as well as 12 FLT3-ITD primary samples. Unlike FLT3 inhibitors, AR00459339 did not suppress phosphorylation of FLT3, but did promote the de-phosphorylation of downstream FLT3 targets, STAT5, AKT, and BAD. Combining AR00459339 with a FLT3 inhibitor resulted in additive to mildly synergistic cytotoxic effects. AR00459339 was cytotoxic to FLT3-ITD samples from patients with secondary resistance to FLT3 inhibitors, suggesting a novel benefit to combining these agents. We conclude that PIM1 appears to be closely associated with FLT3 signaling, and that inhibition of PIM1 may hold therapeutic promise, either as monotherapy, or by overcoming resistance to FLT3 inhibitors.
PMCID: PMC3380375  PMID: 21802138
4.  Functional Characterization of FLT3 Receptor Signaling Deregulation in Acute Myeloid Leukemia by Single Cell Network Profiling (SCNP) 
PLoS ONE  2010;5(10):e13543.
Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.
Methodology/Principal Findings
Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.
These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.
PMCID: PMC2965086  PMID: 21048955
5.  Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns 
Leukemia  2012;26(7):1462-1470.
Acquired resistance to selective FLT3 inhibitors, is an emerging clinical problem in the treatment of FLT3-ITD+ acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has limited investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD+ human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD+ allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD+ patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13- RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild type allele and duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.
PMCID: PMC3523391  PMID: 22354205
FLT3; Aurora; Kinase; AML; Resistance; Inhibitor
6.  Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: Synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors, and JAK inhibitors 
Leukemia  2012;26(10):2233-2244.
Acute myeloid leukemia (AML) progenitors are frequently characterized by activating mutations in the receptor tyrosine kinase FLT3. Protein tyrosine kinases are integral components of signaling cascades that play a role in both FLT3-mediated transformation as well as viability pathways that are advantageous to leukemic cell survival. The bone marrow microenvironment can diminish AML sensitivity to tyrosine kinase inhibitors (TKIs). We hypothesized that inhibition of protein kinases in addition to FLT3 may be effective in overriding drug resistance in AML. We used a cell-based model mimicking stromal protection as part of an unbiased high-throughput chemical screen to identify kinase inhibitors with the potential to override microenvironment-mediated drug resistance in mutant FLT3-positive AML. Several related multi-targeted kinase inhibitors, including dasatinib, with the capability of reversing microenvironment-induced resistance to FLT3 inhibition were identified and validated. We validated synergy in vitro and demonstrated effective combination potential in vivo. In particular Janus kinase (JAK) inhibitors were effective in overriding stromal protection and potentiating FLT3 inhibition in primary AML and cell lines. These results hint at a novel concept of using combination therapy to override drug resistance in mutant FLT3-positive AML in the bone marrow niche and suppress or eradicate residual disease.
PMCID: PMC4054699  PMID: 22469781
acute myeloid leukemia; FLT3 inhibitor; multi-targeted kinase inhibitor; mutant FLT3; PKC412; AC220; stromal-mediated chemoresistance; drug resistance; synergy
7.  Gene mutations and molecularly targeted therapies in acute myeloid leukemia 
Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations.
PMCID: PMC3555190  PMID: 23358589
Acute myeloid leukemia; targeted therapy; mutation; FLT3; NPM1; CEBPA; JAK2
8.  Potent Activity of Ponatinib (AP24534) in Models of FLT3-Driven Acute Myeloid Leukemia and Other Hematologic Malignancies 
Molecular cancer therapeutics  2011;10(6):1028-1035.
Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD+/+) but not RS4;11 (FLT3-ITD−/−) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD–driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα.
PMCID: PMC3236248  PMID: 21482694
9.  SYK Is a Critical Regulator of FLT3 In Acute Myeloid Leukemia 
Cancer cell  2014;25(2):226-242.
Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myeloproliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML and resistance to FLT3-ITD-targeted therapy.
Although imatinib therapy has been paradigm shifting for treating patients with BCR-ABL-rearranged chronic myelogenous leukemia (CML), the application of targeted kinase inhibitors to treating AML has been a more complex undertaking. In this study, we identified an oncogenic partnership between the most commonly mutated kinase in AML, FLT3, and the cytoplasmic kinase SYK. SYK transactivates FLT3 by a direct physical interaction, is critical for the development of FLT3-ITD-induced myeloid neoplasia, and is more highly activated in primary human FLT3-ITD-positive AML. These studies also raise the possibility of SYK activation as a mechanism of resistance to FLT3 inhibitors, suggest FLT3 mutant AML as a subtype for SYK inhibitor testing, and nominate the clinical testing of SYK and FLT3 inhibitor combinations.
PMCID: PMC4106711  PMID: 24525236
SYK; FLT3-ITD; AML; MYC; MPD; tyrosine kinase
10.  Combining the FLT3 Inhibitor PKC412 and the Triterpenoid CDDO-Me Synergistically Induces Apoptosis in Acute Myeloid Leukemia with ITD mutation 
Molecular cancer research : MCR  2010;8(7):986-993.
Mutations of the FLT3 receptor tyrosine kinase consisting of internal tandem duplications (ITD) have been detected in blasts from 20–30% of patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. FLT3/ITD results in constitutive auto-phosphorylation of the receptor and factor-independent survival in leukemia cell lines. The C-28 methyl ester of the oleane triterpenoid (CDDO-Me) is a multifunctional molecule that induces apoptosis of human myeloid leukemia cells. Here we report that CDDO-Me blocks targeting of NFκB to the nucleus by inhibiting IKKβ-mediated phosphorylation of IκBα. Moreover, CDDO-Me blocked constitutive activation of signal transducer and activator of transcription 3 (STAT3). We report the potent and selective anti-proliferative effects of CDDO-Me on FLT3/ITD-positive myeloid leukemia cell lines and primary AML cells. The present studies demonstrate that CDDO-Me treatment results in caspase-3-mediated induction of apoptosis of FLT3/ITD expressing cells and its anti-proliferative effects are synergistic with PKC412, a FLT3-tyrosine kinase inhibitor currently in clinical trials. Taken together, our studies indicate that CDDO-Me greatly enhanced the efficacy of the FLT3 inhibitor PKC412, suggesting that combining two separate pathway inhibitors may be a viable therapeutic strategy for AML associated with a FLT3/ITD mutation.
PMCID: PMC2905481  PMID: 20571062
FLT3-ITD; AML; STAT3; apoptosis
11.  Treatment of FLT3-ITD acute myeloid leukemia 
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy which is cured in a minority of patients. A FLT3-internal tandem duplication (ITD) mutation, found in approximately a quarter of patients with de novo AML, imparts a particularly poor prognosis. Patients with FLT3-ITD AML often present with more aggressive disease and have a significantly higher propensity for relapse after remission. The therapeutic approach for these patients has traditionally included intensive induction chemotherapy, followed by consolidative chemotherapy or hematopoietic cell transplantation (HCT). In recent years, multiple small molecule inhibitors of the FLT3 tyrosine kinase have been studied preclinically and in clinical trials. The earlier generation of these agents, often non-specific and impacting a variety of tyrosine kinases, produced at best transient peripheral blood responses in early clinical trials. Additionally, the combination of FLT3 inhibitors with cytotoxic regimens has not, as of yet, demonstrated an improvement in overall survival. Nevertheless, multiple current trials, including those with sorafenib, lestaurtinib, and midostaurin, continue to study the combination of FLT3 inhibitors with standard chemotherapy. Factors such as sustained FLT3 inhibition, protein binding, pharmacokinetics, and the presence of elevated FLT3-ligand levels appear to significantly impact the potency of these agents in vivo. In recent years, the development of more specific and potent agents has generated hope that FLT3 inhibitors may play a more prominent role in the treatment of FLT3-ITD AML in the near future. Nevertheless, questions remain regarding the optimal timing and schedule for incorporation of FLT3 inhibitors. The suitability, type, and timing of allogeneic HCT in the therapeutic approach for these patients are also issues which require further study and definition. Recent retrospective data appears to support the efficacy of allogeneic HCT in first complete remission, possibly due to a graft versus leukemia effect. However, larger prospective studies are necessary to further elucidate the role of HCT and its potential combination with FLT3 inhibitor therapy. We are hopeful that current clinical investigation will lead to an optimization and improvement of outcomes for these patients.
PMCID: PMC3301423  PMID: 22432079
12.  BPR1J-097, a novel FLT3 kinase inhibitor, exerts potent inhibitory activity against AML 
British Journal of Cancer  2011;106(3):475-481.
Activating mutations of Fms-like tyrosine kinase 3 (FLT3) constitute a major driver in the pathogenesis of acute myeloid leukaemia (AML). Hence, pharmacological inhibitors of FLT3 are of therapeutic interest for AML.
The effects of inhibition of FLT3 activity by a novel potent FLT3 inhibitor, BPR1J-097, were investigated using in vitro and in vivo assays.
The 50% inhibitory concentration (IC50) of BPR1J-097 required to inhibit FLT3 kinase activity ranged from 1 to 10 n, and the 50% growth inhibition concentrations (GC50s) were 21±7 and 46±14 n for MOLM-13 and MV4-11 cells, respectively. BPR1J-097 inhibited FLT3/signal transducer and activator of transcription 5 phosphorylation and triggered apoptosis in FLT3-driven AML cells. BPR1J-097 also showed favourable pharmacokinetic property and pronounced dose-dependent tumour growth inhibition and regression in FLT3-driven AML murine xenograft models.
These results indicate that BPR1J-097 is a novel small molecule FLT-3 inhibitor with promising in vivo anti-tumour activities and suggest that BPR1J-097 may be further developed in preclinical and clinical studies as therapeutics in AML treatments.
PMCID: PMC3273346  PMID: 22187040
acute myeloid leukaemia; FLT3; FLT3-ITD; MOLM-13; MV4-11; kinase inhibitor
13.  The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations 
Genes & Cancer  2012;3(7-8):503-511.
Activation of the transcription factor STAT5 is essential for the pathogenesis of acute myelogenous leukemia (AML) containing the FLT3 internal tandem duplication (ITD) mutation. FLT3 ITD is a constitutively active tyrosine kinase that drives the activation of STAT5, leading to the growth and survival of AML cells. Although there has been some success in identifying tyrosine kinase inhibitors that block the function of FLT3 ITD, there remains a continued need for effective treatment of this disease. We have identified the psychotropic drug pimozide as an effective inhibitor of STAT5 function. Pimozide inhibits the tyrosine phosphorylation of STAT5, leading to the death of AML cells through the induction of apoptosis. Pimozide shows a combinatorial effect with the tyrosine kinase inhibitors midostaurin (PKC412) and sunitinib in the inhibition of STAT5 tyrosine phosphorylation and the induction of apoptosis. Significantly, pimozide reduces the tumor burden in a mouse model of FLT3-driven AML. Therefore, identifying STAT5 inhibitors may provide a new avenue for the treatment of AML, and these may be effective alone or in combination with tyrosine kinase inhibitors.
PMCID: PMC3527989  PMID: 23264850
STAT5; pimozide; FLT3; AML
14.  Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia 
To evaluate the clinical activity of sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive AML and monitor the emergence of secondary FLT3 tyrosine kinase domain (TKD) mutations during treatment.
Experimental Design
Six children with relapsed/refractory AML were treated with sorafenib in combination with clofarabine and cytarabine, followed by single-agent sorafenib if not a candidate for transplantation. Sunitinib was initiated after sorafenib relapse. Bone marrow samples were obtained for assessment of FLT3 TKD mutations by deep amplicon sequencing. The phase of secondary mutations with ITD alleles was assessed by cloning and sequencing of FLT3 exons 14 through 20. Identified mutations were modeled in Ba/F3 cells and the effect of kinase inhibitors on FLT3 signaling and cell viability was assessed.
Four patients achieved complete remission, but 3 receiving maintenance therapy with sorafenib relapsed after 14–37 weeks. Sunitinib reduced circulating blasts in 2 patients and marrow blasts in 1. Two patients did not respond to sorafenib combination therapy or sunitinib. FLT3 mutations at residues D835 and F691 were observed in sorafenib resistance samples on both ITD-positive and –negative alleles. Deep sequencing revealed low-level mutations and their evolution during sorafenib treatment. Sunitinib suppressed leukemic clones with D835H and F691L mutations, but not D835Y. Cells expressing sorafenib-resistant FLT3 mutations were sensitive to sunitinib in vitro.
Sunitinib has activity in patients that are resistant to sorafenib and harbor secondary FLT3 TKD mutations. The use of sensitive methods to monitor FLT3 mutations during therapy may allow individualized treatment with the currently available kinase inhibitors.
PMCID: PMC3878304  PMID: 23969938
acute myeloid leukemia; sorafenib; sunitinib; FLT3; mutations
15.  SU11652 Inhibits tyrosine kinase activity of FLT3 and growth of MV-4-11 cells 
FLT3-ITD and FLT3-TKD mutations are frequently found in acute myeloid leukemia (AML). This makes tyrosine kinase FLT3 a highly attractive target for therapeutic drug development. However, effective drugs have not yet emerged. This study is intended to identify and to characterize new FLT3 inhibitors.
By using the protein substrate GST-FLT3S to analyze kinase activity of recombinant proteins carrying the catalytic domain of wild type and mutant forms of FLT3, we screened a chemical library containing 80 known protein kinase inhibitors. We identified SU11652 as a potent FLT3 inhibitor and further employed FLT3-ITD-positive MV- 4–11 cells to study its effects on cell growth, apoptosis, cell cycles, and cell signaling.
SU11652 strongly inhibited the activity of wild type, D835Y, and D835H mutant forms of FLT3 with IC50 values of 1.5, 16, and 32 nM, respectively. It effectively blocked the growth of FLT3-ITD -positive MV-4-11 cells at nanomolar concentrations but exhibited much less effects on several other cells which do not carry mutations of FLT3. SU11652 inhibited growth of MV-4-11 cells by inducing apoptosis, causing cell cycle arrest, and blocking activation of the ERK, Akt, and STAT signaling pathways.
SU11652 is a potent FLT3 inhibitor which selectively targets FLT3-ITD-positive cells. It should serve as a good candidate for development of therapeutic drugs to treat AML.
PMCID: PMC3524753  PMID: 23216927
Tyrosine kinase; FLT3; Inhibitor screening; SU11652; Acute myeloid leukemia
16.  Proliferation and Survival Signaling from Both Jak2-V617F and Lyn Involving GSK3 and mTOR/p70S6K/4EBP1 in PVTL-1 Cell Line Newly Established from Acute Myeloid Leukemia Transformed from Polycythemia Vera 
PLoS ONE  2014;9(1):e84746.
The gain of function mutation JAK2-V617F is very frequently found in myeloproliferative neoplasms (MPNs) and is strongly implicated in pathogenesis of these and other hematological malignancies. Here we report establishment of a new leukemia cell line, PVTL-1, homozygous for JAK2-V617F from a 73-year-old female patient with acute myeloid leukemia (AML) transformed from MPN. PVTL-1 is positive for CD7, CD13, CD33, CD34, CD117, HLA-DR, and MPO, and has complex karyotypic abnormalities, 44,XX,-5q,-7,-8,add(11)(p11.2),add(11)(q23),−16,+21,−22,+mar1. Sequence analysis of JAK2 revealed only the mutated allele coding for Jak2-V617F. Proliferation of PVTL-1 was inhibited and apoptosis was induced by the pan-Jak inhibitor Jak inhibitor-1 (JakI-1) or dasatinib, which inhibits the Src family kinases as well as BCR/ABL. Consistently, the Src family kinase Lyn was constitutively activated with phosphorylation of Y396 in the activation loop, which was inhibited by dasatinib but not by JakI-1. Further analyses with JakI-1 and dasatinib indicated that Jak2-V617F phosphorylated STAT5 and SHP2 while Lyn phosphorylated SHP1, SHP2, Gab-2, c-Cbl, and CrkL to induce the SHP2/Gab2 and c-Cbl/CrkL complex formation. In addition, JakI-1 and dasatinib inactivated the mTOR/p70S6K/4EBP1 pathway and reduced the inhibitory phosphorylation of GSK3 in PVTL-1 cells, which correlated with their effects on proliferation and survival of these cells. Furthermore, inhibition of GSK3 by its inhibitor SB216763 mitigated apoptosis induced by dasatinib but not by JakI-1. Together, these data suggest that apoptosis may be suppressed in PVTL-1 cells through inactivation of GSK3 by Lyn as well as Jak2-V617F and additionally through activation of STAT5 by Jak2-V617F. It is also speculated that activation of the mTOR/p70S6K/4EBP1 pathway may mediate proliferation signaling from Jak2-V617F and Lyn. PVTL-1 cells may provide a valuable model system to elucidate the molecular mechanisms involved in evolution of Jak2-V617F-expressing MPN to AML and to develop novel therapies against this intractable condition.
PMCID: PMC3880321  PMID: 24404189
17.  Phase I Study of Quizartinib Administered Daily to Patients With Relapsed or Refractory Acute Myeloid Leukemia Irrespective of FMS-Like Tyrosine Kinase 3–Internal Tandem Duplication Status 
Journal of Clinical Oncology  2013;31(29):3681-3687.
FMS-like tyrosine kinase 3–internal tandem duplication (FLT3-ITD) mutations in acute myeloid leukemia (AML) are associated with early relapse and poor survival. Quizartinib potently and selectively inhibits FLT3 kinase activity in preclinical AML models.
Patients and Methods
Quizartinib was administered orally at escalating doses of 12 to 450 mg/day to 76 patients (median age, 60 years; range, 23 to 86 years; with a median of three prior therapies [range, 0 to 12 therapies]), enrolled irrespective of FLT3-ITD mutation status in a phase I, first-in-human study in relapsed or refractory AML.
Responses occurred in 23 (30%) of 76 patients, including 10 (13%) complete remissions (CR) of any type (two CRs, three CRs with incomplete platelet recovery [CRp], five CRs with incomplete hematologic recovery [CRi]) and 13 (17%) with partial remissions (PRs). Of 17 FLT3-ITD–positive patients, nine responded (53%; one CR, one CRp, two CRis, five PRs); of 37 FLT3-ITD–negative patients, five responded (14%; two CRps, three PRs); of 22 with FLT3-ITD–indeterminate/not tested status, nine responded (41%; one CR, three CRis, five PRs). Median duration of response was 13.3 weeks; median survival was 14.0 weeks. The most common drug-related adverse events (> 10% incidence) were nausea (16%), prolonged QT interval (12%), vomiting (11%), and dysgeusia (11%); most were ≤ grade 2. The maximum-tolerated dose was 200 mg/day, and the dose-limiting toxicity was grade 3 QT prolongation. FLT3-ITD phosphorylation was completely inhibited in an in vitro plasma inhibitory assay.
Quizartinib has clinical activity in patients with relapsed/refractory AML, particularly those with FLT3-ITD, and is associated with an acceptable toxicity profile.
PMCID: PMC3804291  PMID: 24002496
18.  Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia 
Activating mutations [internal tandem duplication (ITD)] or overexpression of the FMS-like tyrosine kinase receptor-3 (FLT3) gene are associated with poor outcome in acute myeloid leukemia (AML) patients, underscoring the need for novel therapeutic approaches. The natural product silvestrol has potent antitumor activity in several malignancies, but its therapeutic impact on distinct molecular high-risk AML subsets remains to be fully investigated. We examined here the preclinical activity of silvestrol in FLT3-ITD and FLT3 wild-type (wt) AML.
Silvestrol in vitro anti-leukemic activity was examined by colorimetric cell viability assay, colony-forming and flow cytometry assays assessing growth inhibition and apoptosis, respectively. Pharmacological activity of silvestrol on FLT3 mRNA translation, mRNA and protein expression was determined by RNA-immunoprecipitation, qRT-PCR and immunoblot analyses, respectively. Silvestrol in vivo efficacy was investigated using MV4-11 leukemia-engrafted mice.
Silvestrol shows antileukemia activity at nanomolar concentrations both in FLT3-wt overexpressing (THP-1) and FLT3-ITD (MV4-11) expressing AML cell lines (IC50 = 3.8 and 2.7 nM, respectively) and patients’ primary blasts [IC50 = ~12 nM (FLT3-wt) and ~5 nM (FLT3-ITD)]. Silvestrol increased apoptosis (~4fold, P = 0.0001), and inhibited colony-formation (100%, P < 0.0001) in primary blasts. Silvestrol efficiently inhibited FLT3 translation reducing FLT3 protein expression by 80–90% and decreased miR-155 levels (~60%), a frequently co-regulated onco-miR in FLT3-ITD-positive AML. The median survival of silvestrol-treated vs vehicle-treated mice was 63 vs 29 days post-engraftment, respectively (P < 0.0001).
Silvestrol exhibits significant in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of FLT3 and miR-155 expression. These encouraging results warrant a rapid translation of silvestrol for clinical testing in AML.
PMCID: PMC3623627  PMID: 23497456
19.  Overcoming myelosuppression due to synthetic lethal toxicity for FLT3-targeted acute myeloid leukemia therapy 
eLife  null;3:e03445.
Activating mutations in FLT3 confer poor prognosis for individuals with acute myeloid leukemia (AML). Clinically active investigational FLT3 inhibitors can achieve complete remissions but their utility has been hampered by acquired resistance and myelosuppression attributed to a ‘synthetic lethal toxicity’ arising from simultaneous inhibition of FLT3 and KIT. We report a novel chemical strategy for selective FLT3 inhibition while avoiding KIT inhibition with the staurosporine analog, Star 27. Star 27 maintains potency against FLT3 in proliferation assays of FLT3-transformed cells compared with KIT-transformed cells, shows no toxicity towards normal human hematopoiesis at concentrations that inhibit primary FLT3-mutant AML blast growth, and is active against mutations that confer resistance to clinical inhibitors. As a more complete understanding of kinase networks emerges, it may be possible to define anti-targets such as KIT in the case of AML to allow improved kinase inhibitor design of clinical agents with enhanced efficacy and reduced toxicity.
eLife digest
Major advances in cancer therapy have improved the treatment options for many patients. However, many cancer treatments are toxic or have severe side effects, making them difficult for patients to tolerate. One cause of these side effects is that many cancer therapies kill both normal cells and cancer cells. Developing cancer therapies that are more targeted is therefore a priority in cancer research.
Acute myeloid leukemia is a type of blood cancer that has proven difficult to treat without causing serious side effects. This cancer is very aggressive and only about 1 in 4 patients are successfully cured of their cancer. At present, physicians treat acute myeloid leukemia with chemotherapy, which kills both the cancer cells and some of the patient's healthy cells.
Many patients with acute myeloid leukemia have mutations in the gene encoding an enzyme called Fms-like tyrosine kinase 3 (FLT3). This mutation makes the enzyme permanently active, and patients with the mutation have a greater risk of their cancer recurring or death. Scientists have recently discovered that treatments that inhibit the FLT3 enzyme can be effective against cancer. However, the drugs investigated so far also interfere with the patient's ability to produce new blood cells, which can lead to infections or an inability to recover from bleeding. Therefore, no new drugs have yet been approved for general use.
Warkentin et al. suspected the reason for the adverse effects of FLT3 inhibitors is that these drugs also inhibit another enzyme necessary for blood cell production. Previous work showed that inhibiting one or the other of the enzymes still allows blood cells to be produced as normal: it is only when both are inhibited that production problems arise. Warkentin et al. therefore looked for a chemical that inhibits only the FLT3 enzyme and found one called Star 27. Tests revealed that this inhibits FLT3 and prevents the growth and spread of cancerous cells but does not impair blood cell production. Additionally, Star 27 continues to work even when mutations arise in the cancer cells that cause resistance to other FLT3 inhibitors.
The findings demonstrate that when it comes to drug development, it is sometimes as important to avoid certain molecular targets as it is to hit others. Understanding the network of enzymes that FLT3 works with could therefore help researchers to develop more effective and safer cancer treatments.
PMCID: PMC4307180  PMID: 25531068
staurosporine; protein kinase; leukemia; FLT3; KIT; chemical synthesis; zebrafish
20.  Functional Pathway Analysis Using SCNP of FLT3 Receptor Pathway Deregulation in AML Provides Prognostic Information Independent from Mutational Status 
PLoS ONE  2013;8(2):e56714.
FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy.
PMCID: PMC3576376  PMID: 23431389
21.  Differences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants 
Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y.
Materials and Methods:
FLT3 was expressed on factor-dependent cells (FDC-P1) using retroviral transduction. The inhibitory effects of CEP701, imatinib, dasatinib, PKC412 and sunitinib were studied on cell proliferation and FLT3 tyrosine phosphorylation. Total expression and proportion of intracellular and surface FLT3 was also determined.
FDC-P1 cells became factor-independent after expression of human FLT3 mutants (ITD and D835Y). FDC-P1 cells expressing FLT3-ITD grow 3 to 4 times faster than those expressing FLT3-D835Y. FD-FLT3-ITD cells were three times more resistant to sunitinib than the FD-FLT3-WT cells. The Geo means for surface FLT3 expression in FD-FLT3-ITD and -D835Y were 65 and 70% less than the FD-FLT3-WT cells. About 40% of expressed FLT3 was detected as intracellular in FD-FLT3-D835Y cell compared to 4 and 4.5% in FD-FLT3-WT and -ITD cells.
Retention of D835Y FLT3 mutant protein may cause altered signaling, endoplasmic reticulum stress and activation of apoptotic signaling pathways leading to lower proliferation rate in FD-FLT3-D835Y than the FLT3-WT and ITD mutant., these may also also contribute, along with the preferential affinity, to the increased sensitivity of D835Y of CEP701 and PKC412. Studying these genetic variations can help determining the prognosis and designing a therapeutic plan for the patients with FLT3 mutations.
PMCID: PMC4328095
Activating mutation; Drug response; FLT3; Protein trafficking
22.  The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia 
Blood Cancer Journal  2012;2(8):e81-.
Aberrantly expressed tyrosine kinases have emerged as promising targets for drug development in acute myeloid leukemia (AML). We report that AKN-028, a novel tyrosine kinase inhibitor (TKI), is a potent FMS-like receptor tyrosine kinase 3 (FLT3) inhibitor (IC50=6 nℳ), causing dose-dependent inhibition of FLT3 autophosphorylation. Inhibition of KIT autophosphorylation was shown in a human megakaryoblastic leukemia cell line overexpressing KIT. In a panel of 17 cell lines, AKN-028 showed cytotoxic activity in all five AML cell lines included. AKN-028 triggered apoptosis in MV4-11 by activation of caspase 3. In primary AML samples (n=15), AKN-028 induced a clear dose-dependent cytotoxic response (mean IC50 1 μℳ). However, no correlation between antileukemic activity and FLT3 mutation status, or to the quantitative expression of FLT3, was observed. Combination studies showed synergistic activity when cytarabine or daunorubicin was added simultaneously or 24 h before AKN-028. In mice, AKN-028 demonstrated high oral bioavailability and antileukemic effect in primary AML and MV4-11 cells, with no major toxicity observed in the experiment. In conclusion, AKN-028 is a novel TKI with significant preclinical antileukemic activity in AML. Possible sequence-dependent synergy with standard AML drugs and good oral bioavailability has made it a candidate drug for clinical trials (ongoing).
PMCID: PMC3432483  PMID: 22864397
acute myeloid leukemia; drug development; tyrosine kinase inhibitor; signal transduction; FLT3
23.  Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia 
EMBO Molecular Medicine  2013;5(9):1351-1366.
FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan–Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients.
PMCID: PMC3799491  PMID: 23929599
acute myeloid leukaemia; antibody therapy; FLT3-ITD mutation; PRL-3; prognostic marker
24.  Role of Misfolded N-CoR Mediated Transcriptional Deregulation of Flt3 in Acute Monocytic Leukemia (AML)-M5 Subtype 
PLoS ONE  2012;7(4):e34501.
The nuclear receptor co-repressor (N-CoR) is a key component of the generic multi-protein complex involved in transcriptional control. Flt3, a key regulator of hematopoietic cell growth, is frequently deregulated in AML (acute myeloid leukemia). Here, we report that loss of N-CoR-mediated transcriptional control of Flt3 due to misfolding, contributes to malignant growth in AML of the M5 subtype (AML-M5). An analysis of hematopoietic genes in AML cells led to the identification of Flt3 as a transcriptional target of N-CoR. Flt3 level was inversely related to N-CoR status in various leukemia cells. N-CoR was associated with the Flt3 promoter in-vivo, and a reporter driven by the Flt3 promoter was effectively repressed by N-CoR. Blocking N-CoR loss with Genistein; an inhibitor of N-CoR misfolding, significantly down-regulated Flt3 levels regardless of the Flt3 receptor mutational status and promoted the differentiation of AML-M5 cells. While stimulation of the Flt3 receptor with the Flt3 ligand triggered N-CoR loss, Flt3 antibody mediated blockade of Flt3 ligand-receptor binding led to N-CoR stabilization. Genetic ablation of N-CoR potentiated Flt3 ligand induced proliferation of BA/F3 cells. These findings suggest that N-CoR-induced repression of Flt3 might be crucial for limiting the contribution of the Flt3 signaling pathway on the growth potential of leukemic cells and its deregulation due to N-CoR loss in AML-M5, could contribute to malignant growth by conferring a proliferative advantage to the leukemic blasts. Therapeutic restoration of N-CoR function could thus be a useful approach in restricting the contribution of the Flt3 signaling pathway in AML-M5 pathogenesis.
PMCID: PMC3326026  PMID: 22514634
25.  Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors 
Current JAK2 inhibitors used for myeloproliferative neoplasms (MPN) treatment are not specific enough to selectively suppress aberrant JAK2 signalling and preserve physiological JAK2 signalling. We tested whether combining a JAK2 inhibitor with a series of serine threonine kinase inhibitors, targeting nine signalling pathways and already used in clinical trials, synergized in inhibiting growth of haematopoietic cells expressing mutant and wild-type forms of JAK2 (V617F) or thrombopoietin receptor (W515L). Out of 15 kinase inhibitors, the ZSTK474 phosphatydylinositol-3′-kinase (PI3K) inhibitor molecule showed strong synergic inhibition by Chou and Talalay analysis with JAK2 and JAK2/JAK1 inhibitors. Other pan-class I, but not gamma or delta specific PI3K inhibitors, also synergized with JAK2 inhibitors. Synergy was not observed in Bcr-Abl transformed cells. The best JAK2/JAK1 and PI3K inhibitor combination pair (ruxolitinib and GDC0941) reduces spleen weight in nude mice inoculated with Ba/F3 cells expressing TpoR and JAK2 V617F. It also exerted strong inhibitory effects on erythropoietin-independent erythroid colonies from MPN patients and JAK2 V617F knock-in mice, where at certain doses, a preferential inhibition of JAK2 V617F mutated progenitors was detected. Our data support the use of a combination of JAK2 and pan-class I PI3K inhibitors in the treatment of MPNs.
PMCID: PMC4117552  PMID: 24251790
combination treatment; kinases; myeloproliferative neoplasms; JAK2; PI3K

Results 1-25 (859194)