Search tips
Search criteria

Results 1-25 (344934)

Clipboard (0)

Related Articles

1.  Global DNA methylation levels in white blood cells as a biomarker for hepatocellular carcinoma risk: a nested case–control study 
Carcinogenesis  2012;33(7):1340-1345.
Global DNA hypomethylation is associated with genomic instability and human cancer and blood DNAs collected at the time of cancer diagnosis have been used to examine the relationship between global methylation and cancer risk. To test the hypothesis that global hypomethylation is associated with increased risk of hepatocellular carcinoma (HCC), we conducted a prospective case–control study nested within a community-based cohort with 16 years of follow-up. We measured methylation levels in Satellite 2 (Sat2) by MethyLight and LINE-1 by pyrosequencing using baseline white blood cell DNA from 305 HCC cases and 1254 matched controls. We found that Sat2 hypomethylation was associated with HCC risk [odds ratio (OR) per unit decrease in natural log Sat2 methylation = 1.77, 95% confidence interval (CI) = 1.06–2.95]. The association was significant among individuals diagnosed with HCC before age 62 (OR per unit decrease in natural log Sat2 methylation = 2.47, 95% CI = 1.06–5.73) but not after (OR = 1.67, 95% CI = 0.84–3.32). We did not observe an association of LINE-1 with HCC overall risk by age at diagnosis. Among carriers of hepatitis B virus surface antigen (HBsAg), with each 1U decrease in natural log Sat2 methylation level, the OR for HCC increased by 2.19 (95% CI = 1.00–4.89). LINE-1 hypomethylation was associated with about a 2-fold increased risk of HCC, with ORs (95% CI) of 2.39 (1.06–5.39), 2.09 (0.91–4.77) and 2.28 (0.95–5.51, P trend = 0.14) for HBsAg carriers in the third, second and lowest quartile of LINE-1 methylation, respectively compared with carriers in the fourth. These results suggest that global hypomethylation may be a useful biomarker of HCC susceptibility.
PMCID: PMC3499052  PMID: 22581841
2.  Analysis of repetitive element DNA methylation by MethyLight 
Nucleic Acids Research  2005;33(21):6823-6836.
Repetitive elements represent a large portion of the human genome and contain much of the CpG methylation found in normal human postnatal somatic tissues. Loss of DNA methylation in these sequences might account for most of the global hypomethylation that characterizes a large percentage of human cancers that have been studied. There is widespread interest in correlating the genomic 5-methylcytosine content with clinical outcome, dietary history, lifestyle, etc. However, a high-throughput, accurate and easily accessible technique that can be applied even to paraffin-embedded tissue DNA is not yet available. Here, we report the development of quantitative MethyLight assays to determine the levels of methylated and unmethylated repeats, namely, Alu and LINE-1 sequences and the centromeric satellite alpha (Satα) and juxtacentromeric satellite 2 (Sat2) DNA sequences. Methylation levels of Alu, Sat2 and LINE-1 repeats were significantly associated with global DNA methylation, as measured by high performance liquid chromatography, and the combined measurements of Alu and Sat2 methylation were highly correlative with global DNA methylation measurements. These MethyLight assays rely only on real-time PCR and provide surrogate markers for global DNA methylation analysis. We also describe a novel design strategy for the development of methylation-independent MethyLight control reactions based on Alu sequences depleted of CpG dinucleotides by evolutionary deamination on one strand. We show that one such Alu-based reaction provides a greatly improved detection of DNA for normalization in MethyLight applications and is less susceptible to normalization errors caused by cancer-associated aneuploidy and copy number changes.
PMCID: PMC1301596  PMID: 16326863
3.  Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry 
Carcinogenesis  2012;33(10):1946-1952.
Global decreases in DNA methylation, particularly in repetitive elements, have been associated with genomic instability and human cancer. Emerging, though limited, data suggest that in white blood cell (WBC) DNA levels of methylation, overall or in repetitive elements, may be associated with cancer risk. We measured methylation levels of three repetitive elements [Satellite 2 (Sat2)], long interspersed nuclear element-1 (LINE-1) and Alu) by MethyLight, and LINE-1 by pyrosequencing in a total of 282 breast cancer cases and 347 unaffected sisters from the New York site of the Breast Cancer Family Registry (BCFR) using DNA from both granulocytes and total WBC. We found that methylation levels in all markers were correlated between sisters (Spearman correlation coefficients ranged from 0.17 to 0.55). Sat2 methylation was statistically significantly associated with increased breast cancer risk [odds ratio (OR) = 2.09, 95% confidence interval (CI) = 1.09–4.03; for each unit decrease in the natural log of the methylation level, OR = 2.12, 95% CI = 0.88–5.11 for the lowest quartile compared with the highest quartile]. These associations were only observed in total WBC but not granulocyte DNA. There was no association between breast cancer and LINE-1 and Alu methylation. If replicated in larger prospective studies, these findings support that selected markers of epigenetic changes measured in WBC, such as Sat2, may be potential biomarkers of breast cancer risk.
PMCID: PMC3499042  PMID: 22678115
4.  DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer 
Gynecologic oncology  2011;121(1):24-31.
The present study was undertaken to analyze the impact of epigenetic alterations with a main focus on nuclear area, aneuploidy, hyperploidy, and proliferation in 70 ovarian cancer specimens.
Morphometric changes and somatic chromosomal ploidy status were assessed by Feulgen spectrophotometry. DNA-hypomethylation of LINE1 repeats was analyzed by means of MethyLight PCR, and methylation levels of satellite 2 (Sat2) and satellite alpha (Satα) DNA sequences in chromosome 1 were measured by Southern blot analysis. These parameters were analyzed with regard to correlations as well as to recurrence and survival.
We identified a significant association between LINE1 DNA-hypomethylation and patient age (p = 0.029). Furthermore, LINE1 DNA-hypomethylation was positively correlated with the nuclear area (r = 0.47; p<0.001) and the proliferation index (r = 0.36; p<0.001). Univariate survival analysis showed that the nuclear area and LINE1 DNA-hypomethylation were prognostic factors for overall (p=0.015 and = 0.006, respectively) and progression-free survival (p=0.020 and p=0.001 respectively), the percentage of aneuploidy only for overall survival (p=0.031). Subgroup survival analyses revealed that the prognostic value of these factors is strictly confined to mucinous cancers. In serous cancers no prognostic value could be pointed out for any analyzed parameter. Multivariate analysis of the entire cohort showed that the percentage of hyperploidy was an independent prognostic parameter for overall survival (p=0.003) and LINE1 DNA-hypomethylation for progression-free survival (p=0.03). In mucinous cancers nuclear area and LINE1 DNA-hypomethylation were found to be independent predictors of progression-free and overall survival.
In this study we identified the correlations between early cancer-associated genome DNA-hypomethylation, nuclear morphometric changes, somatic chromosomal ploidy status and the proliferation index. Prognostic relevance of nuclear area and LINE1 DNA-hypomethylation was revealed exclusively in mucinous ovarian cancers.
PMCID: PMC3062717  PMID: 21251700
DNA ploidy; Nuclear area; Proliferation index; DNA-hypomethylation; Ovarian cancer
5.  Global DNA methylation levels in girls with and without a family history of breast cancer 
Epigenetics  2011;6(1):29-33.
Lower levels of global DNA methylation in white blood cell (WBC) DNA have been associated with adult cancers. It is unknown whether individuals with a family history of cancer also have lower levels of global DNA methylation early in life. We examined global DNA methylation in WBC (measured in three repetitive elements, LINE1, Sat2 and Alu, by MethyLight and in LINE1 by pyrosequencing) in 51 girls aged 6–17 years. Compared to girls without a family history of breast cancer, methylation levels were lower for all assays in girls with a family history of breast cancer and statistically significantly lower for Alu and LINE1 pyrosequencing. After adjusting for age, body mass index (BMI) and Tanner stage, only methylation in Alu was associated with family history of breast cancer. If these findings are replicated in larger studies, they suggest that lower levels of global WBC DNA methylation observed later in life in adults with cancer may also be present early in life in children with a family history of cancer.
PMCID: PMC3052913  PMID: 20930546
Alu; DNA global methylation; early life exposure; epigenetics; LINE1; methylight; pyrosequencing; Sat2
6.  Global methylation profiles in DNA from different blood cell types 
Epigenetics  2011;6(1):76-85.
DNA methylation measured in white blood cell DNA is increasingly being used in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran) and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources [WBC, Gran, mononuclear (MN) and lymphoblastoid cell lines (LCL)], we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA) and [3H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LCL, MN or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [3H]-methyl acceptance, LINE1 and Alu assays. Methylation in MN was correlated with methylation in WBC for the [3H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant correlations ranging from 0.3–0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39–0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18–0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.
PMCID: PMC3052916  PMID: 20890131
[3H]-methyl acceptance assay; Alu; DNA demethylation; epigenetics; LINE1; LUMA; methylight; Sat2
7.  Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors 
Oncogene  2006;25(18):2636-2645.
How hypermethylation and hypomethylation of different parts of the genome in cancer are related to each other and to DNA methyltransferase (DNMT) gene expression is ill defined. We used ovarian epithelial tumors of different malignant potential to look for associations between 5’ gene region or promoter hypermethylation, satellite or global DNA hypomethylation, and RNA levels for ten DNMT isoforms. In the quantitative MethyLight assay, 6 of the 55 examined gene loci (LTB4R, MTHFR, CDH13, PGR, CDH1, and IGSF4) were significantly hypermethylated relative to the degree of malignancy (after adjustment for multiple comparisons; P<0.001). Importantly, hypermethylation of these genes was associated with degree of malignancy independently of the association of satellite or global DNA hypomethylation with degree of malignancy. Cancer-related increases in methylation of only two studied genes, LTB4R and MTHFR, which were appreciably methylated even in control tissues, were associated with DNMT1 RNA levels. Cancer-linked satellite DNA hypomethylation was independent of RNA levels for all DNMT3B isoforms, despite the ICF syndrome-linked DNMT3B deficiency causing juxtacentromeric satellite DNA hypomethylation. Our results suggest that there is not a simple association of gene hypermethylation in cancer with altered DNMT RNA levels, and that this hypermethylation is neither the result nor cause of satellite and global DNA hypomethylation.
PMCID: PMC1449872  PMID: 16532039
DNA hypomethylation; DNA hypermethylation; DNA methyltransferases; ovarian tumors
8.  Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia 
Epigenetics  2011;6(2):188-194.
Global DNA hypomethylation affecting repeat sequences has been reported in different cancer types. Herein, we investigated the methylation levels of repetitive DNA elements in chronic lymphocytic leukemia (CLL), their correlation with the major cytogenetic and molecular features, and clinical relevance in predicting therapy-free survival (TFS). A quantitative bisulfite-PCR Pyrosequencing method was used to evaluate methylation of Alu, long interspersed nuclear elements-1 (LINE-1) and satellite-α (SAT-α) sequences in 77 untreated early-stage (Binet A) CLL patients. Peripheral B-cells from 7 healthy donors were used as controls. Methylation levels (median %5mC) were lower in B-CLLs compared with controls (21.4 vs. 25.9; 66.8 vs. 85.7; 84.0, vs. 88.2 for Alu, LINE-1 and SAT-α, respectively) (p < 0.001). Among CLL patients, a significant association was observed with 17p13.1 deletion (16.8 vs. 22.4; 51.2 vs. 68.5; 52.6 vs. 85.0, for Alu, LINE-1 and SAT-α) but not with other major genetic lesions, IgVH mutation status, CD38 or ZAP-70 expression. Follow-up analyses showed that lower SAT-α methylation levels appeared to be an independent prognostic marker significantly associated with shorter TFS. Our study extended previous limited evidences in methylation of repetitive sequences in CLL suggesting an important biological and clinical relevance in the disease.
PMCID: PMC3775884  PMID: 20930513
Alu; DNA methyltransferases; LINE-1; SAT-α; chronic lymphocytic leukemia
9.  Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma 
Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum, bladder, breast, head and neck, and testicular germ cells. The aim of this study was to examine whether global hypomethylation in blood leukocyte DNA is associated with the risk of hepatocellular carcinoma (HCC). A total of 315 HCC cases and 356 age-, sex- and HBsAg status-matched controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing long interspersed element-1 (LINE-1) repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing. We observed that the median methylation level in HCC cases (percentage of 5-methylcytosine (5mC)=77.7%) was significantly lower than that in controls (79.5% 5mC) (P=0.004, Wilcoxon rank-sum test). The odds ratios (ORs) of HCC for individuals in the third, second, and first (lowest) quartiles of LINE-1 methylation were 1.1 (95% confidence interval (CI) 0.7–1.8), 1.4 (95% CI 0.8–2.2), and 2.6 (95% CI 1.7–4.1) (P for trend <0.001), respectively, compared to individuals in the fourth (highest) quartile. A 1.9-fold (95% CI 1.4–2.6) increased risk of HCC was observed among individuals with LINE-1 methylation below the median compared to individuals with higher (>median) LINE-1 methylation. Our results demonstrate for the first time that individuals with global hypomethylation measured in LINE-1 repeats in blood leukocyte DNA have an increased risk for HCC. Our data provide the evidence that global hypomethylation detected in the easily obtainable DNA source of blood leukocytes may help identify individuals at risk of HCC.
PMCID: PMC3190095  PMID: 21960343
Cancer risk; Epigenetics; Global hypomethylation; Hepatocellular carcinoma; LINE-1 repetitive element
10.  Global DNA Hypomethylation (LINE-1) in the Normal Colon and Lifestyle Characteristics, Dietary and Genetic Factors 
Global loss of methylated cytosines in DNA, thought to predispose to chromosomal instability and aneuploidy, has been associated with an increased risk of colorectal neoplasia. Little is known about the relationships between global hypomethylation and lifestyle, demographics, dietary measures and genetic factors.
Our data were collected as part of a randomized clinical trial testing the efficacy of aspirin and folic acid for the prevention of colorectal adenomas. At a surveillance colonoscopy approximately three years after the qualifying exam, we obtained two biopsies of the normal-appearing mucosa from the right colon and two from the left colon. Specimens were assayed for global hypomethylation using a pyrosequencing assay for LINE-1 (long interspersed nucleotide elements) repeats.
The analysis included data from 388 subjects. There was relatively little variability in LINE methylation overall. Mean LINE-1 methylation levels in normal mucosa from the right bowel were significantly lower than those on the left side (p<0.0001). No significant associations were found between LINE-1 methylation and folate treatment, age, sex, body-mass-index, smoking status, alcohol use, dietary intake or circulating levels of B-vitamins, homocysteine, or selected genotypes. Race, dietary folic acid and plasma B6 showed associations with global methylation that differed between the right and left bowel. The effect of folic acid on risk of adenomas did not differ according to extent of LINE-1 methylation and we found no association between LINE-1 methylation and risk of adenomas.
LINE-1 methylation is not influenced by folic acid supplementation, but differs by colon subsite.
PMCID: PMC2712652  PMID: 19336559
Global LINE-1 methylation; Folate; Folic Acid; Clinical Trial; Colon; Lifestyle; Dietary; Polymorphisms; Adenomas
11.  Genome-Wide Hypomethylation in Head and Neck Cancer Is More Pronounced in HPV-Negative Tumors and Is Associated with Genomic Instability 
PLoS ONE  2009;4(3):e4941.
Loss of genome-wide methylation is a common feature of cancer, and the degree of hypomethylation has been correlated with genomic instability. Global methylation of repetitive elements possibly arose as a defense mechanism against parasitic DNA elements, including retrotransposons and viral pathogens. Given the alterations of global methylation in both viral infection and cancer, we examined genome-wide methylation levels in head and neck squamous cell carcinoma (HNSCC), a cancer causally associated with human papilloma virus (HPV). We assayed global hypomethylation levels in 26 HNSCC samples, compared with their matched normal adjacent tissue, using Pyrosequencing-based methylation assays for LINE repeats. In addition, we examined cell lines derived from a variety of solid tumors for LINE and SINE (Alu) repeats. The degree of LINE and Alu hypomethylation varied among different cancer cell lines. There was only moderate correlation between LINE and Alu methylation levels, with the range of variation in methylation levels being greater for the LINE elements. LINE hypomethylation was more pronounced in HPV-negative than in HPV-positive tumors. Moreover, genomic instability, as measured by genome-wide loss-of-heterozygosity (LOH) single nucleotide polymorphism (SNP) analysis, was greater in HNSCC samples with more pronounced LINE hypomethylation. Global hypomethylation was variable in HNSCC. Its correlation with both HPV status and degree of LOH as a surrogate for genomic instability may reflect alternative oncogenic pathways in HPV-positive versus HPV-negative tumors.
PMCID: PMC2654169  PMID: 19293934
12.  Aberrant Promoter Hypermethylation and Genomic Hypomethylation in Tumor, Adjacent Normal Tissues and Blood from Breast Cancer Patients 
Anticancer research  2010;30(7):2489-2496.
Promoter hypermethylation and global hypomethylation in the human genome are hallmarks of most cancers. Detection of aberrant methylation in white blood cells (WBC) has been suggested as a marker for cancer development, but has not been extensively investigated. This study was carried out to determine whether aberrant methylation in WBC DNA can be used as a surrogate biomarker for breast cancer risk.
Patients and Methods
Promoter hypermethylation of 8 tumor suppressor genes (RASSF1A, APC, HIN1, BRCA1, cyclinD1, RARβ, CDH1 and TWIST1) and DNA methylation for three repetitive elements (LINE1, Sat2M1 and AluM2) were analyzed in invasive ductal carcinoma of the breast, paired adjacent normal tissue and WBC from 40 breast cancer patients by the MethyLight assay. Methylation in WBC from 40 controls was also analyzed.
Tumor and adjacent tissues showed frequent hypermethylation for all genes tested, while WBC DNA was rarely hypermethylated. For HIN1, RASSF1A, APC and TWIST1 there was agreement between hypermethylation in tumor and adjacent tissues (P=0.04, P=0.02, P=0.005 and P<0.0001, respectively). DNA methylation for the three repetitive elements was lower in tumor compared to adjacent tissue and WBC DNA. Significant correlations in the methylation of Sat2M1 between tumor and adjacent tissues and WBC DNA were found (P<0.0001 and P=0.046, respectively). There was also a significant difference in methylation of Sat2M1 between cases and controls (P=0.01).
These results suggest that further studies of WBC methylation, including prospective studies, may provide biomarkers of breast cancer risk.
PMCID: PMC3568974  PMID: 20682973
Breast cancer; promoter hypermethylation; genomic methylation; tumor suppressor genes; repetitive elements; WBC DNA
13.  Unique Association between Global DNA Hypomethylation and Chromosomal Alterations in Human Hepatocellular Carcinoma 
PLoS ONE  2013;8(9):e72312.
Global DNA hypomethylation is a characteristic feature of cancer cells that closely associates with chromosomal instability (CIN). However, the association between these characteristics during hepatocarcinogenesis remains unclear. Herein, we determined the relationship between hypomethylation and CIN in human hepatocellular carcinoma (HCC) by analyzing 179 HCCs, 178 matched non-tumor livers and 23 normal liver tissues. Hypomethylation at three different repetitive DNA (rDNA) sequences and hypermethylation of 12 CpG loci, including 11 tumor suppressor gene (TSG) promoters, were quantified using MethyLight or combined bisulfite restriction analysis. Fractional allelic loss (FAL) was used as a marker for CIN, calculated by analyzing 400 microsatellite markers. Gains and losses at each chromosome were also determined using semi-quantitative microsatellite analysis. The associations between rDNA hypomethylation and FAL, as well as between TSG hypermethylation and FAL were investigated. Significantly more hypomethylation was observed in HCC tissues than in normal liver samples. Progression of hypomethylation during carcinogenesis was more prominent in hepatitis C virus (HCV)-negative cases, which was in contrast to our previous reports of significantly increased TSG methylation levels in HCV-positive tumors. Absence of liver cirrhosis and higher FAL scores were identified as independent contributors to significant hypomethylation of rDNA in HCC. Among the chromosomal alterations frequently observed in HCC, loss of 8p, which was unique in the earliest stages of hepatocarcinogenesis, was significantly associated with hypomethylation of rDNA by multivariable analysis (p = 0.0153). rDNA hypomethylation was also associated with a high FAL score regardless of tumor differentiation (p = 0.0011, well-differentiated; p = 0.0089, moderately/poorly-differentiated HCCs). We conclude that DNA hypomethylation is an important cause of CIN in the earliest step of HCC, especially in a background of non-cirrhotic liver.
PMCID: PMC3759381  PMID: 24023736
14.  Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer 
Oncology Reports  2013;29(4):1308-1314.
Genome-wide DNA hypomethylation and gene hypermethylation play important roles in instability and carcinogenesis. Methylation in long interspersed nucleotide element 1 (LINE-1) is a good indicator of the global DNA methylation level within a cell. Slit homolog 2 (SLIT2), myelin and lymphocyte protein gene (MAL) and insulin-like growth factor binding protein 7 (IGFBP7) are known to be hypermethylated in various malignancies. The aim of the present study was to assess the precise methylation levels of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer (NSCLC) using a pyrosequencing assay. Methylation of all regions was examined in 56 primary NSCLCs using a pyrosequencing assay. Changes in mRNA expression levels of SLIT2, MAL and IGFBP7 were measured before and after treatment with a demethylating agent. Methylation of these genes was also examined in 9 lung cancer cell lines using RT-PCR and a pyrosequencing assay. Frequencies of hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7, defined by predetermined cut off values, were 55, 64, 46 and 54% in NSCLCs, respectively and exhibited tumor-specific features. The hypermethylation of all genes was well correlated with changes in expression. The methylation level and frequency of MAL were significantly higher in smokers and in patients without EGFR mutations. Through accurate measurement of methylation levels using pyrosequencing, hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7 were frequently detected in NSCLCs and associated with various clinical features. Analysis of the methylation profiles of these genes may, therefore, provide novel opportunities for the therapy of NSCLCs.
PMCID: PMC3621652  PMID: 23381221
LINE-1; SLIT2; MAL; IGFBP7; pyrosequencing; methylation
15.  LINE-1 hypomethylation in familial and sporadic cancer 
Increased and decreased methylation at specific sequences (hypermethylation and hypomethylation, respectively) is characteristic of tumor DNA compared to normal DNA and promotes carcinogenesis in multiple ways including genomic instability. Long interspersed element (LINE), an abundant class of retrotransposons, provides a surrogate marker for global hypomethylation. We developed methylation-specific multiplex ligation-dependent probe amplification assays to study LINE-1 methylation in cases of colorectal, gastric, and endometrial cancer (N = 276), stratified by patient category [sporadic; Lynch syndrome (LS); familial colorectal cancer type X (FCCX)] and microsatellite instability status. Within each patient group, LINE-1 showed lower methylation in tumor DNA relative to paired normal DNA and hypomethylation was statistically significant in most cases. Interestingly, normal colorectal mucosa samples from different patient groups displayed differences in LINE-1 methylation that mirrored differences between the respective tumor tissues, with a decreasing trend for LINE-1 methylation from patients with sporadic colorectal cancer to LS to FCCX. Despite the fact that the degree of LINE-1 methylation is generally tissue specific, normal colorectal mucosa, gastric mucosa, and endometrium from LS patients showed similar levels of LINE-1 methylation. Our results suggest that the degree of LINE-1 methylation may constitute a “field defect” that may predispose normal tissues for cancer development.
Electronic supplementary material
The online version of this article (doi:10.1007/s00109-011-0854-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3383956  PMID: 22228215
LINE-1; DNA methylation; Hereditary cancer; Gastrointestinal cancer; Lynch syndrome
16.  LINE-1 Hypomethylation in a Choline-Deficiency-Induced Liver Cancer in Rats: Dependence on Feeding Period 
Chronic feeding of methyl-donor (methionine, choline, folic acid, and vitamin B12) deficient diet induces hepatocellular carcinoma formation in rats. Previous studies have shown that promoter CpG islands in various cancer-related genes are aberrantly methylated in this model. Moreover, the global genome in methyl-donor-deficient diet fed rats contains a lesser amount of 5-methylcytosine than control livers. It is speculated that more than 90% of all 5-methylcytosines lie within the CpG islands of the transposons, including the long/short interspersed nucleotide elements (LINE and SINE). It is considered that the 5-methylcytosines in LINE-1 limit the ability of retrotransposons to be activated and transcribed; therefore, the extent of hypomethylation of LINE-1 could be a surrogate marker for aberrant methylation in other tumor-related genes as well as genome instability. Additionally, LINE-1 methylation status has been shown to be a good indicator of genome-wide methylation. In this study, we determined cytosine methylation status in the LINE-1 repetitive sequences of rats fed a choline-deficient (CD) diet for various durations and compared these with rats fed a choline-sufficient (CS) diet. The methylation status of LINE-1 was assessed by the combined bisulfite restriction analysis (COBRA) method, where the amount of bisulfite-modified and RsaI-cleaved DNA was quantified using gel electrophoresis. Progressive hypomethylation was observed in LINE-1 of CD livers as a function of feeding time; that is, the amount of cytosine in total cytosine (methylated and unmethylated) increased from 11.1% (1 week) to 19.3% (56 weeks), whereas in the control CS livers, it increased from 9.2% to 12.9%. Hypomethylation in tumor tissues was slightly higher (6%) than the nontumorous surrounding tissue. The present result also indicates that age is a factor influencing the extent of cytosine methylation.
PMCID: PMC1479888  PMID: 16877811
17.  Comparison of Methods for Quantification of Global DNA Methylation in Human Cells and Tissues 
PLoS ONE  2013;8(11):e79044.
DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the “gold standard” of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.
PMCID: PMC3832524  PMID: 24260150
18.  Genomic Methylation Changes Over Time in Peripheral Blood Mononuclear Cell DNA: Differences by Assay Type and Baseline Values 
Lower levels of genomic DNA methylation in blood DNA has been associated with risk of different cancers and several cancer risk factors. To understand the use of genomic methylation measures as biomarkers of cancer risk, data are needed on within-individual changes over time.
Using information from 77 subjects with blood collected at 2 visits on average 8 years apart, we examined whether levels of DNA methylation change with time and if so, whether selected cancer risk factors predict these changes. We measured DNA methylation levels in peripheral blood mononuclear cells (PBMC) using three assays that have been used in epidemiologic studies: (i) luminometric methylation assay (LUMA)(ii) LINE-1 by pyrosequencing, and (iii) Sat2 by MethyLight.
Close to a third of all individuals had large changes over time (≥10%) in LUMA with 19.5% increasing and 13.0% decreasing. For Sat2, two-thirds of individuals had large changes with 40% increasing and 26% decreasing over time. In contrast, only 3.9% of individuals had large changes in LINE-1 over time. The degree of change in PBMC DNA methylation was statistically significantly inversely associated with methylation levels at baseline; greater decreases were observed in individuals with higher baseline values for each assay.
These data, if replicated, suggest that changes in DNA methylation over time are highly associated with baseline values of the assay and vary by assay type.
These findings suggest that assays that change more over time may warrant consideration for studies that measure later life exposures.
PMCID: PMC4032622  PMID: 22665578
19.  Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer 
Hypomethylation of DNA repetitive elements is a common finding in cancer, but very little is known about the DNA methylation changes of different types of DNA repetitive elements, such as interspersed repeats (LINE1 and Alu Yb8) and tandem repeats (Sat-α, NBL-2 and D4Z4). We used bisulfite-PCR Pyrosequencing to quantitatively measure the DNA methylation of 5 different DNA repetitive elements in normal tissue and cancer. In all we studied 10 different tissues from 4 individuals undergoing autopsy, 34 paired normal and tumor tissues from patients with bladder cancer, 58 patients with chronic myelogenous leukemia and 23 patients with acute promyelocytic leukemia. We found that the DNA methylation of interspersed repeats (LINE1 and Alu Yb8) was very consistent from person to person and tissue to tissue while tandem DNA repeats appeared more variable in normal tissues. In bladder cancer we found clear hypomethylation of LINE1, Alu Yb8, Sat-α, and NBL-2. Conversely, we found an increase in the DNA methylation levels of D4Z4 from normal to cancer. In contrast leukemia showed no significant changes in the DNA methylation of LINE1 and Alu Yb8, but DNA methylation increases in NBL-2 and D4Z4 tandem repeats. Our findings show that the changes in DNA methylation levels of individual DNA repetitive elements are unique for each repetitive element, which may reflect distinct epigenetic factors and may have important implications in the use of DNA methylation of repetitive elements as global DNA methylation biomarkers. Keywords: DNA methylation, DNA repetitive elements, bladder cancer, leukemia
PMCID: PMC4086885  PMID: 19437537
DNA methylation; DNA repetitive elements; bladder cancer; leukemia
20.  LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis 
Gastric Cancer  2012;16:480-487.
Genome-wide DNA hypomethylation plays an important role in genomic instability and carcinogenesis. DNA methylation in the long interspersed nucleotide element-1, L1 (LINE-1) repetitive element is a good indicator of the global DNA methylation level. In some types of human neoplasms, LINE-1 methylation level is attracting interest as a predictive marker for patient prognosis. However, the prognostic significance of LINE-1 hypomethylation in gastric cancer remains unclear.
Using 203 resected gastric cancer specimens, we quantified LINE-1 methylation using bisulfite-pyrosequencing technology. A Cox proportional hazards model was used to calculate the hazard ratio (HR), adjusted for the clinical and pathological variables.
Gastric cancers showed significantly lower LINE-1 methylation levels compared to matched normal gastric mucosa (p < 0.0001; n = 74). Tumoral LINE-1 methylation range was 11.6–97.5 on a 0–100 scale (n = 203; mean 71.4, median 74.4, standard deviation 12.9). LINE-1 hypomethylation was significantly associated with shorter overall survival [log-rank p = 0.029; univariate HR 2.01, 95 % confidence interval (CI) 1.09–3.99, p = 0.023; stage-matched HR 1.88, 95 % CI 1.02–3.74, p = 0.041; multivariate HR 1.98, 95 % CI 1.04–4.04, p = 0.036]. No significant effect modification was observed by any of the covariates in survival analysis (all p interaction >0.25).
LINE-1 hypomethylation in gastric cancer is associated with shorter survival, suggesting that it has potential for use as a prognostic biomarker.
PMCID: PMC3824342  PMID: 23179365
LINE-1 elements; Gastric cancer; Methylation; Epigenetics; Prognosis
21.  Alu and LINE-1 Hypomethylation Is Associated with HER2 Enriched Subtype of Breast Cancer 
PLoS ONE  2014;9(6):e100429.
The changes in DNA methylation status in cancer cells are characterized by hypermethylation of promoter CpG islands and diffuse genomic hypomethylation. Alu and long interspersed nucleotide element-1 (LINE-1) are non-coding genomic repetitive sequences and methylation of these elements can be used as a surrogate marker for genome-wide methylation status. This study was designed to evaluate the changes of Alu and LINE-1 hypomethylation during breast cancer progression from normal to pre-invasive lesions and invasive breast cancer (IBC), and their relationship with characteristics of IBC. We analyzed the methylation status of Alu and LINE-1 in 145 cases of breast samples including normal breast tissue, atypical ductal hyperplasia/flat epithelial atypia (ADH/FEA), ductal carcinoma in situ (DCIS) and IBC, and another set of 129 cases of IBC by pyrosequencing. Alu methylation showed no significant changes during multistep progression of breast cancer, although it tended to decrease during the transition from DCIS to IBC. In contrast, LINE-1 methylation significantly decreased from normal to ADH/FEA, while it was similar in ADH/FEA, DCIS and IBC. In IBC, Alu hypomethylation correlated with negative estrogen receptor (ER) status, and LINE-1 hypomethylation was associated with negative ER status, ERBB2 (HER2) amplification and p53 overexpression. Alu and LINE-1 methylation status was significantly different between breast cancer subtypes, and the HER2 enriched subtype had lowest methylation levels. In survival analyses, low Alu methylation status tended to be associated with poor disease-free survival of the patients. Our findings suggest that LINE-1 hypomethylation is an early event and Alu hypomethylation is probably a late event during breast cancer progression, and prominent hypomethylation of Alu and LINE-1 in HER2 enriched subtype may be related to chromosomal instability of this specific subtype.
PMCID: PMC4074093  PMID: 24971511
22.  A Cohort Study of Tumoral LINE-1 Hypomethylation and Prognosis in Colon Cancer 
Genome-wide DNA hypomethylation plays has an important role in genomic instability and colorectal carcinogenesis. However, the relationship between cellular DNA methylation level and patient outcome remains uncertain. Using 643 colon cancers in two independent prospective cohorts, we quantified DNA methylation in repetitive long interspersed nucleotide element-1 (LINE-1) elements using pyrosequencing, which is a good indicator of global DNA methylation level. We used Cox proportional hazard models to calculate hazard ratios (HRs) of colon cancer–specific and overall mortality, adjusting for patient and tumoral features, including CpG island methylator phenotype (CIMP). Statistical tests were two-sided. LINE-1 hypomethylation was linearly associated with a statistically significant increase in colon cancer–specific mortality (for a 30% decrease in LINE-1 methylation: multivariable HR = 2.37, 95% confidence interval [CI] = 1.42 to 3.94; Ptrend < .001) and overall mortality (multivariable HR = 1.85, 95% CI = 1.25 to 2.75; Ptrend = .002). The association was consistent across the two independent cohorts and strata of clinical and molecular characteristics, including sex, age, tumor location, stage, and CIMP, microsatellite instability, KRAS, BRAF, p53, and chromosomal instability status. In conclusion, tumoral LINE-1 hypomethylation is independently associated with shorter survival among colon cancer patients.
PMCID: PMC2639290  PMID: 19033568
23.  LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer 
The CpG island methylator phenotype (CIMP) with widespread promoter CpG island methylation is a phenotype in colorectal cancer, associated with microsatellite instability (MSI) and BRAF mutation. Genome-wide hypomethylation may also play an important role in genomic instability. However, the relation between global DNA methylation level and methylation in individual CpG islands remains uncertain. Utilizing 869 population-based colorectal cancers, we measured LINE-1 (long interspersed nucleotide element-1) methylation level by Pyrosequencing, which correlates with global DNA methylation level. We quantified DNA methylation in 8 CIMP-specific promoters (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) by real-time PCR (MethyLight technology). LINE-1 methylation levels in tumors were approximately normally distributed (mean 61.4%, median 62.3%, standard deviation 9.6%). Among the 869 tumors, 128 (15%) were classified as CIMP-high (≥6/8 methylated promoters). The mean LINE-1 methylation level was higher in CIMP-high tumors (65.1%, p<0.0001) than non-CIMP-high tumors (60.7%), and higher in MSI-high tumors (64.7%, p<0.0001) than non-MSI-high tumors (60.7%). When tumors were stratified by MSI/CIMP status, compared to non-MSI-high non-CIMP-high tumors (mean LINE-1 methylation level 60.4%), the mean LINE-1 methylation level was higher in MSI-high CIMP-high (64.8%, p<0.0001), MSI-high non-CIMP-high (64.6%, p=0.03) and non-MSI-high CIMP-high tumors (66.1%, p=0.0003). In addition, 18q loss of heterozygosity in non-MSI-high tumors was correlated with LINE-1 hypomethylation (p=0.004). In conclusion, both CIMP-high and MSI-high are inversely associated with LINE-1 hypomethylation, suggesting that CIMP/MSI and genomic hypomethylation may represent different pathways to colorectal cancer. Our data also support a possible link between global hypomethylation and chromosomal instability.
PMCID: PMC2630175  PMID: 18366060
colon cancer; methylation; epigenomics; CIMP; LINE-1
24.  18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high 
BMC Cancer  2007;7:72.
The CpG island methylator phenotype (CIMP) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, associated with microsatellite instability-high (MSI-high) and BRAF mutations. 18q loss of heterozygosity (LOH) commonly present in colorectal cancer with chromosomal instability (CIN) is associated with global hypomethylation in tumor cell. A recent study has shown an inverse correlation between CIN and CIMP (determined by MINTs, p16, p14 and MLH1 methylation) in colorectal cancer. However, no study has examined 18q LOH in relation to CIMP-high, CIMP-low (less extensive promoter methylation) and CIMP-0 (CIMP-negative), determined by quantitative DNA methylation analysis.
Utilizing MethyLight technology (real-time PCR), we quantified DNA methylation in 8 CIMP-specific promoters {CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1} in 758 non-MSI-high colorectal cancers obtained from two large prospective cohorts. Using four 18q microsatellite markers (D18S55, D18S56, D18S67 and D18S487) and stringent criteria for 18q LOH, we selected 374 tumors (236 LOH-positive tumors with ≥ 2 markers showing LOH; and 138 LOH-negative tumors with ≥ 3 informative markers and no LOH).
CIMP-0 (0/8 methylated promoters) was significantly more common in 18q LOH-positive tumors (59% = 139/236, p = 0.002) than 18q LOH-negative tumors (44% = 61/138), while CIMP-low/high (1/8–8/8 methylated promoters) was significantly more common (56%) in 18q LOH-negative tumors than 18q LOH-positive tumors (41%). These relations persisted after stratification by sex, location, or the status of MSI, p53 expression (by immunohistochemistry), or KRAS/BRAF mutation.
18q LOH is correlated positively with CIMP-0 and inversely with CIMP-low and CIMP-high. Our findings provide supporting evidence for relationship between CIMP-0 and 18q LOH as well as a molecular difference between CIMP-0 and CIMP-low in colorectal cancer.
PMCID: PMC1876238  PMID: 17474983
25.  DNA Methylation Changes in Atypical Adenomatous Hyperplasia, Adenocarcinoma In Situ, and Lung Adenocarcinoma 
PLoS ONE  2011;6(6):e21443.
Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation.
Methodology/Principal Findings
We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer.
The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions.
PMCID: PMC3121768  PMID: 21731750

Results 1-25 (344934)