Search tips
Search criteria

Results 1-25 (450407)

Clipboard (0)

Related Articles

1.  Study of a QCM Dimethyl Methylphosphonate Sensor Based on a ZnO-Modified Nanowire-Structured Manganese Dioxide Film 
Sensors (Basel, Switzerland)  2010;10(9):8275-8290.
Sensitive, selective and fast detection of chemical warfare agents is necessary for anti-terrorism purposes. In our search for functional materials sensitive to dimethyl methylphosphonate (DMMP), a simulant of sarin and other toxic organophosphorus compounds, we found that zinc oxide (ZnO) modification potentially enhances the absorption of DMMP on a manganese dioxide (MnO2) surface. The adsorption behavior of DMMP was evaluated through the detection of tiny organophosphonate compounds with quartz crystal microbalance (QCM) sensors coated with ZnO-modified MnO2 nanofibers and pure MnO2 nanofibers. Experimental results indicated that the QCM sensor coated with ZnO-modified nanostructured MnO2 film exhibited much higher sensitivity and better selectivity in comparison with the one coated with pure MnO2 nanofiber film. Therefore, the DMMP sensor developed with this composite nanostructured material should possess excellent selectivity and reasonable sensitivity towards the tiny gaseous DMMP species.
PMCID: PMC3231230  PMID: 22163653
quartz crystal microbalance; gas sensor; volatile organic vapor; DMMP; nanowire; manganese dioxide; zinc oxide
2.  Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents 
Sensors (Basel, Switzerland)  2011;11(7):6893-6904.
The sensing behavior of SnO2-based thick film gas sensors in a flow system in the presence of a very low concentration (ppb level) of chemical agent simulants such as acetonitrile, dipropylene glycol methyl ether (DPGME), dimethyl methylphosphonate (DMMP), and dichloromethane (DCM) was investigated. Commercial SnO2 [SnO2(C)] and nano-SnO2 prepared by the precipitation method [SnO2(P)] were used to prepare the SnO2 sensor in this study. In the case of DCM and acetonitrile, the SnO2(P) sensor showed higher sensor response as compared with the SnO2(C) sensors. In the case of DMMP and DPGME, however, the SnO2(C) sensor showed higher responses than those of the SnO2(P) sensors. In particular, the response of the SnO2(P) sensor increased as the calcination temperature increased from 400 °C to 800 °C. These results can be explained by the fact that the response of the SnO2-based gas sensor depends on the textural properties of tin oxide and the molecular size of the chemical agent simulant in the detection of the simulant gases (0.1–0.5 ppm).
PMCID: PMC3231691  PMID: 22163991
sensor; SnO2; sensor response; chemical agent simulant
3.  Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine 
Biosensors  2014;4(2):90-110.
Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP) exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM) sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA) conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL), and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing.
PMCID: PMC4264373  PMID: 25587412
bupivacaine; electropolymerization; liquid crystal; molecularly imprinted polymer; nanostructured polymer films; piezoelectric sensor; quartz crystal microbalance
4.  Sulfur/graphitic hollow carbon sphere nano-composite as a cathode material for high-power lithium-sulfur battery 
Nanoscale Research Letters  2013;8(1):343.
The intrinsic low conductivity of sulfur which leads to a low performance at a high current rate is one of the most limiting factors for the commercialization of lithium-sulfur battery. Here, we present an easy and convenient method to synthesize a mono-dispersed hollow carbon sphere with a thin graphitic wall which can be utilized as a support with a good electrical conductivity for the preparation of sulfur/carbon nano-composite cathode. The hollow carbon sphere was prepared from the pyrolysis of the homogenous mixture of the mono-dispersed spherical silica and Fe-phthalocyanine powder in elevated temperature. The composite cathode was manufactured by infiltrating sulfur melt into the inner side of the graphitic wall. The electrochemical cycling shows a capacity of 425 mAh g−1 at 3 C current rate which is more than five times larger than that for the sulfur/carbon black nano-composite prepared by simple ball milling.
PMCID: PMC3735411  PMID: 23914902
Lithium-sulfur battery; Hollow carbon sphere; Graphitic carbon; Nano-composite; Cathode
5.  Dye–Sensitized Nanostructured Crystalline Mesoporous Tin-doped Indium Oxide Films with Tunable Thickness for Photoelectrochemical Applications 
A simple route towards nanostructured mesoporous Indium–Tin Oxide (templated nano–ITO) electrodes exhibiting both high conductivities and optimized bicontinuous pore–solid network is reported. The ITO films are first produced as an X–ray–amorphous, high surface area material, by adapting recently established template–directed sol–gel methods using Sn(IV) and In(III) salts. Carefully controlled temperature/atmosphere treatments convert the as–synthesized ITO films into nano-crystalline coatings with the cubic bixbyite structure. Specially, a multi-layered synthesis was successfully undertaken for tuning the film thickness. In order to evaluate the performances of templated nano–ITO as an electrode substrate for photoelectrochemical applications, photoelectrodes were prepared by covalent grafting of a redox–active dye, the complex [Ru(bpy)2(4,4′-(CH2PO3H2)2-bpy)]Cl2 1 (bpy=bipyridine). Surface coverage was shown to increase with the film thickness, from 0.7 × 10−9−2 (one layer, 45 nm) to 3.5 × 10−9−2 (ten layers, 470 nm), the latter value being ~ 100 times larger than that for commercially available planar ITO. In the presence of an electron mediator, photocurrents up to 50 μ−2 have been measured under visible light irradiation, demonstrating the potential of this new templated nano-ITO preparation for the construction of efficient photoelectrochemical devices.
PMCID: PMC3880857  PMID: 24404381
ITO; Mesoporous; Sol-gel Process; Multi-layered; Ruthenium dye; Photocurrents
6.  Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling 
Nanoscale Research Letters  2007;2(8):397-404.
The Class F fly ash has been subjected to high energy ball milling and has been converted into nanostructured material. The nano structured fly ash has been characterized for its particle size by using particle size analyzer, specific surface area with the help of BET surface area apparatus, structure by X-ray diffraction studies and FTIR, SEM and TEM have been used to study particle aggregation and shape of the particles. On ball milling, the particle size got reduced from 60 μm to 148 nm by 405 times and the surface area increased from 0.249 m2/gm to 25.53 m2/gm i.e. by more than 100%. Measurement of surface free energy as well as work of adhesion found that it increased with increased duration of ball milling. The crystallite was reduced from 36.22 nm to 23.01 nm for quartz and from 33.72 nm to 16.38 nm for mullite during ball milling to 60 h. % crystallinity reduced from 35% to 16% during 60 h of ball milling because of destruction of quartz and hematite crystals and the nano structured fly ash is found to be more amorphous. Surface of the nano structured fly ash has become more active as is evident from the FTIR studies. Morphological studies revealed that the surface of the nano structured fly ash is more uneven and rough and shape is irregular, as compared to fresh fly ash which are mostly spherical in shape.
PMCID: PMC3246387
High energy ball mill; Fly ash; Nanostructured materials; Quartz; Mullite
7.  Potentiometric CO2 Sensor Using Li+ Ion Conducting Li3PO4 Thin Film Electrolyte 
Sensors (Basel, Switzerland)  2005;5(11):465-472.
Li+ ion conducting Li3PO4 thin film electrolytes with thickness 300nm, 650nm and 1.2μm were deposited on Al2O3 substrate at room temperature by thermal evaporation method. Reference and sensing electrodes were printed on Au interfaces by conventional screen printing technique. The overall dimension of the sensor was 3 × 3 mm and of electrodes were 1 × 1.5 mm each. The fabricated solid state potentiometric CO2 sensors of type: CO2, O2, Au, Li2TiO3-TiO2| Li3PO4 |Li2CO3, Au, CO2, O2 have been investigated for CO2 sensing properties. The electromotive force (emf) and Δemf/dec values of the sensors are dependent on the thickness of the electrolyte film. 1.2μm thickness deposited sensor has shown good sensing behavior than the sensors with less thickness. The Δemf values of the sensor are linearly increased up to 460°C operating temperature and became stable above 460°C. Between 460-500°C temperatures region the sensor has reached an equilibrium state and the experimentally obtained Δemf values are about 80% of the theoretically calculated values. A Nernst's slope of -61mV/decade has been obtained between 250 to 5000 ppm of CO2 concentration at 500°C temperature. The sensor is suitable for ease of mass production in view of its miniaturization and cost effectiveness after some further improvement.
PMCID: PMC3934518
Thin film; Thick film; Potentiometric CO2 sensor; Li+ ion electrolyte
8.  Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample 
Nanoscale Research Letters  2012;7(1):390.
The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming the Mg2Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg2Cu and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final 18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of crystals is proposed: As the ball milling time increases, the sizes of Mg2Cu and Cu crystals become smaller and smaller, so the diffracted peaks of Mg2Cu and Cu become broader and broader and result in their overlap between 39° and 45°, at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak, microstructure observation and annealing experiment on the milled sample were carried out. In the transmission electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified as Mg2Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is observed. All the above results confirm that the broad halo diffracted peak in the milled MgCu sample is attributed to the overlap of the broadened peaks of the very small Mg2Cu and Cu nanocrystalline phase, not the MgCu amorphous phase. The whole milling process of MgCu can be described as follows: Mg+Cu→Mg2Cu+Cu→Mg2Cunanocrystal+Cunanocrystal.
PMCID: PMC3462153  PMID: 22793264
9.  Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen 
Journal of materials chemistry  2009;19(24):4138-4147.
The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy.
PMCID: PMC2756769  PMID: 19809598
10.  Dynamic Response of CoSb2O6 Trirutile-Type Oxides in a CO2 Atmosphere at Low-Temperatures 
Sensors (Basel, Switzerland)  2014;14(9):15802-15814.
Experimental work on the synthesis of the CoSb2O6 oxide and its CO2 sensing properties is presented here. The oxide was synthesized by a microwave-assisted colloidal method in presence of ethylenediamine after calcination at 600 °C. This CoSb2O6 oxide crystallized in a tetragonal structure with cell parameters a = 4.6495 and c = 9.2763 Å, and space group P42/mnm. To prove its physical, chemical and sensing properties, the oxide was subjected to a series of tests: Raman spectroscopy, Scanning Electron Microscopy (SEM) and impedance (Z) measurements. Microstructures, like columns, bars and hollow hemispheres, were observed. For the CO2 sensing test, a thick film of CoSb2O6 was used, measuring the impedance variations on the presence of air/CO2 flows (0.100 sccm/0.100 sccm) using AC (alternating current) signals in the frequency-range 0.1–100 kHz and low relative temperatures (250 and 300 °C). The CO2 sensing results were quite good.
PMCID: PMC4208146  PMID: 25162232
sensing properties; CoSb2O6; trirutile; chemical synthesis
11.  Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature 
Nanoscale Research Letters  2014;9(1):467.
In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed.
PMCID: PMC4159556  PMID: 25246871
P3HT; Au-loaded ZnO; Composite films; NH3 sensor; Flame spray pyrolysis
12.  Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation 
Nanoscale Research Letters  2012;7(1):347.
Cu2O p-type semiconductor hollow porous microspheres have been prepared by using a simple soft-template method at room temperature. The morphology of as-synthesized samples is hollow spherical structures with the diameter ranging from 200 to 500 nm, and the surfaces of the spheres are rough, porous and with lots of channels and folds. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was investigated by UV-visible spectroscopy. The results show that the hollow porous Cu2O particles were uniform in diameters and have an excellent ability in visible light-induced degradation of MO. Meanwhile, the growth mechanism of the prepared Cu2O was also analyzed. We find that sodium dodecyl sulfate acted the role of soft templates in the synthesis process. The hollow porous structure was not only sensitive to the soft template but also to the amount of reagents.
PMCID: PMC3443013  PMID: 22738162
Cu2O; Hollow porous microspheres; Photocatalytic; Visible light
13.  Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution 
ACS nano  2010;4(3):1573-1579.
Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering.
PMCID: PMC2844465  PMID: 20158250
Branched hollow fibers; Polyvinylpyrrolidone; Self-assembly; Silica; Gold; nanoparticles
14.  Gene Expression Patterns in Larval Schistosoma mansoni Associated with Infection of the Mammalian Host 
The infective schistosome cercaria develops within the intramolluscan daughter sporocyst from an undifferentiated germ ball, during which synthesis of proteins essential for infection occurs. When the aquatic cercaria locates the mammalian host it rapidly penetrates into the epidermis using glandular secretions. It then undergoes metamorphosis into the schistosomulum, including replacement of its tegument surface membranes, a process taking several days before it exits the skin. Patterns of gene expression underlying this transition have been characterised.
Methods and Principal Findings
All gene models from the S. mansoni genome ( were incorporated into a high-density oligonucleotide array. Double-stranded cDNA from germ balls, cercariae, and day 3 schistosomula was hybridised to the array without amplification. Statistical analysis was performed using Bioconductor to reveal differentially transcribed loci. Genes were categorised on the basis of biological process, tissue association or molecular function to aid understanding of the complex processes occurring. Genes necessary for DNA replication were enriched only in the germ ball, while those involved in translation were up-regulated in the germ ball and/or day 3 schistosomulum. Different sets of developmental genes were up-regulated at each stage. A large number of genes encoding elastases and invadolysins, and some venom allergen-like proteins were up-regulated in the germ ball, those encoding cysteine and aspartic proteases in the cercaria and schistosomulum. Micro exon genes encoding variant secreted proteins were highly up-regulated in the schistosomulum along with tegument and gut-associated genes, coincident with remodelling of the parasite body. Genes encoding membrane proteins were prominently up-regulated in the cercaria and/or day 3 schistosomulum.
Our study highlights an expanded number of transcripts encoding proteins potentially involved in skin invasion. It illuminates the process of metamorphosis into the schistosomulum and highlights the very early activation of gut-associated genes whilst revealing little change in the parasite's energy metabolism or stress responses.
Author Summary
The schistosome cercaria develops from undifferentiated germ balls within the daughter sporocyst located in the hepatopancreas of its snail intermediate host. This is where the proteins it uses to infect humans are synthesised. After a brief free life in fresh water, if the cercaria locates a host, it infects by direct penetration through the skin. It then transforms into the schistosomulum stage, adapted for life in human tissues. We have designed a large scale array comprising probes representing all known schistosome genes and used it in hybridisation experiments to establish which genes are turned on or off in the parasite during these stages in its life cycle. Genes encoding proteins involved in cell division were prominent in the germ ball along with those for proteases and potential immunomodulators, deployed during skin penetration. The non-feeding cercaria was the least active at synthesising proteins. Conversion to the schistosomulum was accompanied by transcription of genes involved in body remodeling, including production of a new outer surface, and gut activation long before ingestion of red blood cells begins. Our data help us to understand better the proteins deployed to achieve infection, and subsequent adaptations necessary for establishment of the parasite in the human host.
PMCID: PMC3166049  PMID: 21912711
15.  Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties 
Scientific Reports  2013;3:3004.
Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures.
PMCID: PMC3801147  PMID: 24141599
16.  A Novel Route for Preparation of Hollow Carbon Nanospheres Without Introducing Template 
Nanoscale Research Letters  2009;4(11):1365-1370.
A newly developed route for the synthesis of hollow carbon nanospheres without introducing template under hydrothermal conditions was reported. Hollow carbon nanospheres with the diameter of about 100 nm were synthesized using alginate as reagent only. Many instruments were applied to characterize the morphologies and structures of carbon hollow nanospheres, such as XRD, TEM, and Raman spectroscopy. The possible formation and growth mechanism of carbon hollow spheres were discussed on the basis of the investigation of reaction influence factors, such as temperature, time, and content. The findings would be useful for the synthesis of more materials with hollow structure and for the potential use in many aspects. The loading of SnO2on the surface of carbon hollow spheres was processed, and its PL property was also characterized.
PMCID: PMC2894182  PMID: 20628463
Synthesis; Nanostructure; Carbon hollow nanospheres
17.  A Novel Route for Preparation of Hollow Carbon Nanospheres Without Introducing Template 
Nanoscale Research Letters  2009;4(11):1365-1370.
A newly developed route for the synthesis of hollow carbon nanospheres without introducing template under hydrothermal conditions was reported. Hollow carbon nanospheres with the diameter of about 100 nm were synthesized using alginate as reagent only. Many instruments were applied to characterize the morphologies and structures of carbon hollow nanospheres, such as XRD, TEM, and Raman spectroscopy. The possible formation and growth mechanism of carbon hollow spheres were discussed on the basis of the investigation of reaction influence factors, such as temperature, time, and content. The findings would be useful for the synthesis of more materials with hollow structure and for the potential use in many aspects. The loading of SnO2 on the surface of carbon hollow spheres was processed, and its PL property was also characterized.
Electronic supplementary material
The online version of this article (doi:10.1007/s11671-009-9406-7) contains supplementary material, which is available to authorized users.
PMCID: PMC2894182  PMID: 20628463
Synthesis; Nanostructure; Carbon hollow nanospheres
18.  Dissolution Testing of Hardly Soluble Materials by Surface Sensitive Techniques: Clotrimazole from an Insoluble Matrix 
Pharmaceutical Research  2014;31(10):2708-2715.
The low aqueous solubility of many drugs impedes detailed investigation as the detection limit of standard testing routines is limited. This is further complicated within application relevant thin films typical used in patches or stripes for buccal or topical routes.
In this work a model system is developed based on spin – casting technique allowing defined clotrimazole and clotrimazole – polystyrene composite films preparation at a solid surface. Various highly sensitive techniques including quarz crystal microbalance (QCM), X-ray reflevtivity (XRR) and X-ray photon spectroscopy (XPS) are used to investigate the drug release over time into an aqueous media.
The results reveal a steady drug release for both samples over the course of the experiments but with the release from the composite being significantly slower. In addition the dissolution rate of the clotrimazole sample initially increases up to 30 min after which a decrease is noted. XRR shows that this is a result of surface roughening together with film thickness reduction. The results for the composite show that the release in the composite film is a result of drug diffusion within the matrix and collapsing PS film thickness whereby XPS shows that the amount of clotrimazole at the surface after 800 min immersion is still high.
It can be stated that the applied techniques allow following low mass drug release in detail which may also be applied to other systems like pellets or surface loaded nano-carriers providing information for processing and application relevant parameters.
PMCID: PMC4197366  PMID: 24752480
clotrimazole; composite; contact angle; differential scanning calorimetry; dissolution; drug release; polystyrene; quartz crystal microbalance with dissipation; thin film; X-ray photoelectron spectroscopy; X-ray reflectivity
19.  Surfactant-free synthesis of Cu2O hollow spheres and their wavelength-dependent visible photocatalytic activities using LED lamps as cold light sources 
Nanoscale Research Letters  2014;9(1):624.
A facile synthesis route of cuprous oxide (Cu2O) hollow spheres under different temperatures without the aid of a surfactant was introduced. Morphology and structure varied as functions of reaction temperature and duration. A bubble template-mediated formation mechanism was proposed, which explained the reason of morphology changing with reaction temperature. The obtained Cu2O hollow spheres were active photocatalyst for the degradation of methyl orange under visible light. A self-designed equipment of light emitting diode (LED) cold light sources with the wavelength of 450, 550, and 700 nm, respectively, was used for the first time in the photocatalysis experiment with no extra heat introduced. The most suitable wavelength for Cu2O to photocatalytic degradation is 550 nm, because the light energy (2.25 eV) is closest to the band gap of Cu2O (2.17 eV). These surfactant-free synthesized Cu2O hollow spheres would be highly attractive for practical applications in water pollutant removal and environmental remediation.
PMCID: PMC4256968  PMID: 25489279
Cuprous oxide; Hollow spheres; Surfactant-free; Photocatalysis; LED cold light sources
20.  Preparation of hollow magnetite microspheres and their applications as drugs carriers 
Nanoscale Research Letters  2012;7(1):210.
Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile.
Graphical abstract
Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications.
PMCID: PMC3388010  PMID: 22490731
Fe3O4; Drug carrier; Rhodamine-B; Methotrexate
21.  Development of QCM Trimethylamine Sensor Based on Water Soluble Polyaniline 
Sensors (Basel, Switzerland)  2007;7(10):2378-2388.
A rapid, sensitive, low-cost device to detect trimethylamine was presented in this paper. The preparation of water soluble polyaniline was firstly studied. Then the polyaniline was characterized via Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy and scanning electron microscopy (SEM). Based on the water soluble polyaniline film, a quartz crystal microbalance (QCM) sensor for trimethylamine detection was fabricated and its characteristics were examined. The sensor consisted of one quartz crystal oscillator coated with the polyaniline film for sensing and the other one for reference. Pretreated with trimethylamine, the QCM sensor had an excellent linear sensitivity to trimethylamine. Easily recovered by N2 purgation, the response of the sensor exhibited a good repeatability. Responses of the sensor to trimethylamine, ethanol and ethyl acetate were compared, and the results showed that the response was related to the polarity of the analyte vapor. Experimental result also showed that the sensitivity of the sensor was relatively stable within one month. The simple and feasible method to prepare and coat the polyaniline sensing film makes it promising for mass production.
PMCID: PMC3864527
QCM; Gas Sensor; Conducting Polymer; Polyaniline; Trimethylamine
22.  Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules 
We report on nanothin multilayer hydrogels of cross-linked poly(N-vinylcaprolactam) (PVCL) that exhibit distinctive and reversible thermoresponsive behavior. The single-component PVCL hydrogels were produced by selective cross-linking of PVCL in layer-by-layer films of PVCL-NH2 copolymers assembled with poly(methacrylic acid) (PMAA) via hydrogen bonding. The degree of the PVCL hydrogel film shrinkage, defined as the ratio of wet thicknesses at 25°C to 50°C, was demonstrated to be 1.9±0.1 and 1.3±0.1 for the films made from PVCL-NH2-7 and PVCL-NH2-14 copolymers, respectively. No temperature-responsive behavior was observed for non-cross-linked two-component films due to the presence of PMAA. We also demonstrated that temperature-sensitive PVCL capsules of cubical and spherical shapes could be fabricated as hollow hydrogel replicas of inorganic templates. The cubical (PVCL)7 capsules retained their cubical shape when temperature was elevated from 25°C to 50°C exhibiting 21±1% decrease in the capsule size. Spherical hydrogel capsules demonstrated similar shrinkage of 23±1%. The temperature-triggered capsule size changes were completely reversible. Our work opens new prospects for developing biocompatible and nanothin hydrogel-based coatings and containers for temperate-regulating drug delivery, cellular uptake, sensing, and transport behavior in microfluidic devices.
PMCID: PMC3472452  PMID: 23087543
Poly(N-vinylcaprolactam); thermoresponsive films; multilayer hydrogels; cubical capsules
23.  Hydrothermal evolution, optical and electrochemical properties of hierarchical porous hematite nanoarchitectures 
Hollow or porous hematite (α-Fe2O3) nanoarchitectures have emerged as promising crystals in the advanced materials research. In this contribution, hierarchical mesoporous α-Fe2O3 nanoarchitectures with a pod-like shape were synthesized via a room-temperature coprecipitation of FeCl3 and NaOH solutions, followed by a mild hydrothermal treatment (120°C to 210°C, 12.0 h). A formation mechanism based on the hydrothermal evolution was proposed. β-FeOOH fibrils were assembled by the reaction-limited aggregation first, subsequent and in situ conversion led to compact pod-like α-Fe2O3 nanoarchitectures, and finally high-temperature, long-time hydrothermal treatment caused loose pod-like α-Fe2O3 nanoarchitectures via the Ostwald ripening. The as-synthesized α-Fe2O3 nanoarchitectures exhibit good absorbance within visible regions and also exhibit an improved performance for Li-ion storage with good rate performance, which can be attributed to the porous nature of Fe2O3 nanoarchitectures. This provides a facile, environmentally benign, and low-cost synthesis strategy for α-Fe2O3 crystal growth, indicating the as-prepared α-Fe2O3 nanoarchitectures as potential advanced functional materials for energy storage, gas sensors, photoelectrochemical water splitting, and water treatment.
PMCID: PMC3552811  PMID: 23279781
Hematite; Hierarchical nanoarchitectures; Hydrothermal; Mesoporous; Lithium-ion batteries
24.  Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing 
Sensors (Basel, Switzerland)  2007;7(5):650-675.
ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.
PMCID: PMC3785690
ZnO; Flame spray pyrolysis; Crack; Ethanol sensor
25.  Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis 
Biosensors  2011;1(3):70-92.
Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR) instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM) and the film bulk acoustic resonator (FBAR), calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.
PMCID: PMC4264362  PMID: 25586921
biomolecular interaction analysis; BIA; sensor; transducer; drug discovery; drug development

Results 1-25 (450407)