PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (440721)

Clipboard (0)
None

Related Articles

1.  Study of a QCM Dimethyl Methylphosphonate Sensor Based on a ZnO-Modified Nanowire-Structured Manganese Dioxide Film 
Sensors (Basel, Switzerland)  2010;10(9):8275-8290.
Sensitive, selective and fast detection of chemical warfare agents is necessary for anti-terrorism purposes. In our search for functional materials sensitive to dimethyl methylphosphonate (DMMP), a simulant of sarin and other toxic organophosphorus compounds, we found that zinc oxide (ZnO) modification potentially enhances the absorption of DMMP on a manganese dioxide (MnO2) surface. The adsorption behavior of DMMP was evaluated through the detection of tiny organophosphonate compounds with quartz crystal microbalance (QCM) sensors coated with ZnO-modified MnO2 nanofibers and pure MnO2 nanofibers. Experimental results indicated that the QCM sensor coated with ZnO-modified nanostructured MnO2 film exhibited much higher sensitivity and better selectivity in comparison with the one coated with pure MnO2 nanofiber film. Therefore, the DMMP sensor developed with this composite nanostructured material should possess excellent selectivity and reasonable sensitivity towards the tiny gaseous DMMP species.
doi:10.3390/s100908275
PMCID: PMC3231230  PMID: 22163653
quartz crystal microbalance; gas sensor; volatile organic vapor; DMMP; nanowire; manganese dioxide; zinc oxide
2.  Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents 
Sensors (Basel, Switzerland)  2011;11(7):6893-6904.
The sensing behavior of SnO2-based thick film gas sensors in a flow system in the presence of a very low concentration (ppb level) of chemical agent simulants such as acetonitrile, dipropylene glycol methyl ether (DPGME), dimethyl methylphosphonate (DMMP), and dichloromethane (DCM) was investigated. Commercial SnO2 [SnO2(C)] and nano-SnO2 prepared by the precipitation method [SnO2(P)] were used to prepare the SnO2 sensor in this study. In the case of DCM and acetonitrile, the SnO2(P) sensor showed higher sensor response as compared with the SnO2(C) sensors. In the case of DMMP and DPGME, however, the SnO2(C) sensor showed higher responses than those of the SnO2(P) sensors. In particular, the response of the SnO2(P) sensor increased as the calcination temperature increased from 400 °C to 800 °C. These results can be explained by the fact that the response of the SnO2-based gas sensor depends on the textural properties of tin oxide and the molecular size of the chemical agent simulant in the detection of the simulant gases (0.1–0.5 ppm).
doi:10.3390/s110706893
PMCID: PMC3231691  PMID: 22163991
sensor; SnO2; sensor response; chemical agent simulant
3.  High-energy ball milling technique for ZnO nanoparticles as antibacterial material 
Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose.
doi:10.2147/IJN.S18267
PMCID: PMC3124392  PMID: 21720499
ZnO nanoparticles; antibacterial; HEBM; SEM; XRD; photoluminescence
4.  Development of QCM Trimethylamine Sensor Based on Water Soluble Polyaniline 
Sensors (Basel, Switzerland)  2007;7(10):2378-2388.
A rapid, sensitive, low-cost device to detect trimethylamine was presented in this paper. The preparation of water soluble polyaniline was firstly studied. Then the polyaniline was characterized via Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy and scanning electron microscopy (SEM). Based on the water soluble polyaniline film, a quartz crystal microbalance (QCM) sensor for trimethylamine detection was fabricated and its characteristics were examined. The sensor consisted of one quartz crystal oscillator coated with the polyaniline film for sensing and the other one for reference. Pretreated with trimethylamine, the QCM sensor had an excellent linear sensitivity to trimethylamine. Easily recovered by N2 purgation, the response of the sensor exhibited a good repeatability. Responses of the sensor to trimethylamine, ethanol and ethyl acetate were compared, and the results showed that the response was related to the polarity of the analyte vapor. Experimental result also showed that the sensitivity of the sensor was relatively stable within one month. The simple and feasible method to prepare and coat the polyaniline sensing film makes it promising for mass production.
PMCID: PMC3864527
QCM; Gas Sensor; Conducting Polymer; Polyaniline; Trimethylamine
5.  Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample 
Nanoscale Research Letters  2012;7(1):390.
The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming the Mg2Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg2Cu and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final 18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of crystals is proposed: As the ball milling time increases, the sizes of Mg2Cu and Cu crystals become smaller and smaller, so the diffracted peaks of Mg2Cu and Cu become broader and broader and result in their overlap between 39° and 45°, at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak, microstructure observation and annealing experiment on the milled sample were carried out. In the transmission electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified as Mg2Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is observed. All the above results confirm that the broad halo diffracted peak in the milled MgCu sample is attributed to the overlap of the broadened peaks of the very small Mg2Cu and Cu nanocrystalline phase, not the MgCu amorphous phase. The whole milling process of MgCu can be described as follows: Mg+Cu→Mg2Cu+Cu→Mg2Cunanocrystal+Cunanocrystal.
doi:10.1186/1556-276X-7-390
PMCID: PMC3462153  PMID: 22793264
6.  Investigation of In Vitro Drug Release from Porous Hollow Silica Nanospheres Prepared of ZnS@SiO2 Core-Shell 
In this contribution, porous hollow silica nanoparticles using inorganic nanosized ZnS as a template were prepared. The hydrothermal method was used to synthesize pure ZnS nanospheres material. The ZnS@SiO2 core-shell nanocomposites were prepared using a simple sol-gel method successfully. The hollow silica nanostructures were achieved by selective removal of the ZnS core. The morphology, structure, and composition of the product were determined using powder X-ray diffraction (XRD), emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The results demonstrated clearly that the pure ZnS nanoparticles are in a spherical form with the average size of 40 nm and correspond with zinc blend structure. The porous hollow silica nanoparticles obtained were exploited as drug carriers to investigate in vitro release behavior of amoxicillin in simulated body fluid (SBF). UV-visible spectrometry was carried out to determine the amount of amoxicillin entrapped in the carrier. Amoxicillin release profile from porous hollow silica nanoparticles followed a three-stage pattern and indicated a delayed release effect.
doi:10.1155/2013/541030
PMCID: PMC3792506  PMID: 24170995
7.  Microscopic Perspective on the Adsorption Isotherm of a Heterogeneous Surface 
Adsorption of dissolved molecules onto solid surfaces can be extremely sensitive to the atomic-scale properties of the solute and surface, causing difficulties for the design of fluidic systems in industrial, medical and technological applications. In this communication, we show that the Langmuir isotherm for adsorption of a small molecule to a realistic, heterogeneous surface can be predicted from atomic structures of the molecule and surface through molecular dynamics (MD) simulations. We highlight the method by studying the adsorption of dimethyl-methylphosphonate (DMMP) to amorphous silica substrates and show that subtle differences in the atomic-scale surface properties can have drastic effects on the Langmuir isotherm. The sensitivity of the method presented is sufficient to permit the optimization of fluidic devices and to determine fundamental design rules for controlling adsorption at the nanoscale.
doi:10.1021/jz200749d
PMCID: PMC3353733  PMID: 22611479
Langmuir isotherm; adsorption; nanochannel; nanofluidics; potential of mean force; molecular dynamics
8.  Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling 
Nanoscale Research Letters  2007;2(8):397-404.
The Class F fly ash has been subjected to high energy ball milling and has been converted into nanostructured material. The nano structured fly ash has been characterized for its particle size by using particle size analyzer, specific surface area with the help of BET surface area apparatus, structure by X-ray diffraction studies and FTIR, SEM and TEM have been used to study particle aggregation and shape of the particles. On ball milling, the particle size got reduced from 60 μm to 148 nm by 405 times and the surface area increased from 0.249 m2/gm to 25.53 m2/gm i.e. by more than 100%. Measurement of surface free energy as well as work of adhesion found that it increased with increased duration of ball milling. The crystallite was reduced from 36.22 nm to 23.01 nm for quartz and from 33.72 nm to 16.38 nm for mullite during ball milling to 60 h. % crystallinity reduced from 35% to 16% during 60 h of ball milling because of destruction of quartz and hematite crystals and the nano structured fly ash is found to be more amorphous. Surface of the nano structured fly ash has become more active as is evident from the FTIR studies. Morphological studies revealed that the surface of the nano structured fly ash is more uneven and rough and shape is irregular, as compared to fresh fly ash which are mostly spherical in shape.
doi:10.1007/s11671-007-9074-4
PMCID: PMC3246387
High energy ball mill; Fly ash; Nanostructured materials; Quartz; Mullite
9.  Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum 
Biosensors & bioelectronics  2007;23(10):1413-1421.
We demonstrate a label-free peptide-coated carbon nanotube based immunosensor for the direct assay of human serum. A rheumatoid arthritis (RA) specific (cyclic citrulline-containing) peptide, was immobilized to functionalized single-walled carbon nanotubes deposited on a quartz crystal microbalance (QCM) sensing crystal. Serum from RA patients was used to probe these nanotube-based sensors, and antibody binding was detected by QCM sensing. Specific antibody binding was also determined by comparing the assay of two serum control groups (normal and diseased sera), and the native unmodified peptide. The sensitivity of the nanotube-based sensor (detection in the femtomol range) was higher than that of the established ELISA and recently described microarray assay systems, detecting 34.4% and 37.5% more RA patients with anti-citrullinated peptide antibodies than those found by ELISA and microarray respectively. As well as 18.4% and 19.6% greater chance of a negative test being a true indicator of a person not having RA than by either ELISA or microarray respectively. The performance of our label-free biosensor constitutes its application in the direct assay of sera in research and diagnostics.
doi:10.1016/j.bios.2007.11.022
PMCID: PMC3418051  PMID: 18222083
10.  Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow 
Sensors (Basel, Switzerland)  2013;13(9):12012-12029.
Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow.
doi:10.3390/s130912012
PMCID: PMC3821326  PMID: 24021970
quartz crystal microbalance; high fundamental frequency; allan deviation; turbulences; laminar flow element; acceleration sensitivity; temperature gradient
11.  A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids 
Sensors (Basel, Switzerland)  2008;8(1):370-411.
From the first applications of AT-cut quartz crystals as sensors in solutions more than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor is becoming into a good alternative analytical method in a great deal of applications such as biosensors, analysis of biomolecular interactions, study of bacterial adhesion at specific interfaces, pathogen and microorganism detection, study of polymer film-biomolecule or cell-substrate interactions, immunosensors and an extensive use in fluids and polymer characterization and electrochemical applications among others. The appropriate evaluation of this analytical method requires recognizing the different steps involved and to be conscious of their importance and limitations. The first step involved in a QCM system is the accurate and appropriate characterization of the sensor in relation to the specific application. The use of the piezoelectric sensor in contact with solutions strongly affects its behavior and appropriate electronic interfaces must be used for an adequate sensor characterization. Systems based on different principles and techniques have been implemented during the last 25 years. The interface selection for the specific application is important and its limitations must be known to be conscious of its suitability, and for avoiding the possible error propagation in the interpretation of results. This article presents a comprehensive overview of the different techniques used for AT-cut quartz crystal microbalance in in-solution applications, which are based on the following principles: network or impedance analyzers, decay methods, oscillators and lock-in techniques. The electronic interfaces based on oscillators and phase-locked techniques are treated in detail, with the description of different configurations, since these techniques are the most used in applications for detection of analytes in solutions, and in those where a fast sensor response is necessary.
PMCID: PMC3681153
QCM; electronic interfaces; oscillators; detection; piezoelectric sensors
12.  Preparation of hollow magnetite microspheres and their applications as drugs carriers 
Nanoscale Research Letters  2012;7(1):210.
Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile.
Graphical abstract
Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications.
doi:10.1186/1556-276X-7-210
PMCID: PMC3388010  PMID: 22490731
Fe3O4; Drug carrier; Rhodamine-B; Methotrexate
13.  Experimental Investigation of the Cross-Sensitivity and Size Effects of Polyvinylidene Fluoride Film Sensors on Modal Testing 
Sensors (Basel, Switzerland)  2012;12(12):16641-16659.
Due to advantages such as light weight, flexibility, and low cost, polyvinylidene fluoride (PVDF) films have been widely used in engineering applications as sensors for detecting strain, pressure, or micro-force. However, it is known that PVDF strain sensors have strain cross-sensitivity in mutually orthogonal directions. Furthermore, the size of the PVDF film sensor would also affect the dynamic strain sensing performance. In this paper, to investigate the cross-sensitivity and size effects experimentally, we employ PVDF film sensors to perform dynamic measurements on a cantilever beam. Since the vibrations of the cantilever beam are excited by impacts of a steel ball, the induced highly repeatable transient responses contain a wide range of resonant frequencies and thus can be used to investigate both the size and cross-sensitivity effects of the PVDF film sensors in a dynamic sensing environment. Based on the experimental results of the identified resonant frequencies compared with results obtained from a strain gauge, finite element calculations, and theoretical predictions, suggestions for the use of the PVDF strain sensor in modal testing are given in this paper.
doi:10.3390/s121216641
PMCID: PMC3571802  PMID: 23211752
PVDF film sensor; cantilever beam; cross-sensitivity; size effect; transient response
14.  Profiling of Molecular Interactions in Real Time using Acoustic Detection 
Biosensors & bioelectronics  2006;22(9-10):2382-2386.
Acoustic sensors that exploit resonating quartz crystals to directly detect the binding of an analyte to a receptor are finding increasing utility in the quantification of clinically-relevant analytes. We have developed a novel acoustic detection technology, which we term Resonant Acoustic Profiling (RAP™). This technology builds on the fundamental basics of the “quartz crystal microbalance” or “QCM” with several key additional features including two- or four-channel automated sample delivery, in-line referencing and microfluidic sensor ‘cassettes’ that are pre-coated with easy-to-use surface chemistries. Example applications are described for the quantification of myoglobin concentration and its interaction kinetics, and for the ranking of enzyme-cofactor specificities.
doi:10.1016/j.bios.2006.10.019
PMCID: PMC1994559  PMID: 17129723
QCM; kinetics; microfluidics; affinity; label-free; binding
15.  Hollow Block Copolymer Nanoparticles through a Spontaneous One-Step Structural Reorganization 
ACS nano  2013;7(2):1120-1128.
The spontaneous one-step synthesis of hollow nanocages and nanotubes from spherical and cylindrical micelles based on poly(acrylic acid)-b-polylactide (P(AA)-b-P(LA)) block copolymers (BCPs) has been achieved. This structural reorganization, which occurs simply upon drying of the samples, was elucidated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). We show that it was necessary to use stain-free imaging to examine these nanoscale assemblies, as the hollow nature of the particles was obscured by application of a heavy metal stain. Additionally, the internal topology of the P(AA)-b-P(LA) particles could be tuned by manipulating the drying conditions to give solid or compartmentalized structures. Upon re-suspension, these reorganized nanoparticles retain their hollow structure and can be display significantly enhanced loading of a hydrophobic dye compared to the original cylinders.
doi:10.1021/nn400272p
PMCID: PMC3589578  PMID: 23391297
Polymer; hollow nanostructures; drying; microscopy; solution assembly; block copolymer; nanoparticles
16.  Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties 
Scientific Reports  2013;3:3004.
Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures.
doi:10.1038/srep03004
PMCID: PMC3801147  PMID: 24141599
17.  Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance 
Sensors (Basel, Switzerland)  2012;12(10):13284-13294.
Measurement by impedance spectroscopy of the changes in intrazeolitic cation motion of pressed pellets of zeolite particles upon adsorption of dimethylmethylphosphonate (DMMP) provides a strategy for sensing DMMP, a commonly used simulant for highly toxic organophosphate nerve agents. In this work, two strategies for improving the impedance spectroscopy based sensing of DMMP on zeolites were investigated. The first one is the use of cerium oxide (CeO2) coated on the zeolite surface to neutralize acidic groups that may cause the decomposition of DMMP, and results in better sensor recovery. The second strategy was to explore the use of zeolite Y membrane. Compared to pressed pellets, the membranes have connected supercages of much longer length scales. The zeolite membranes resulted in higher sensitivity to DMMP, but recovery of the device was significantly slower as compared to pressed zeolite pellets.
doi:10.3390/s121013284
PMCID: PMC3545567  PMID: 23201996
chemical warfare agents; zeolite membranes; chemical gas sensors
18.  Estimations of intra- and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours. 
British Journal of Cancer  1998;78(5):606-611.
Quantification of metabolite or drug concentrations in living tissues requires determination of intra- and extracellular volumes. This study demonstrates how this can be achieved non-invasively by 31P magnetic resonance spectroscopy (MRS) employing dimethyl methylphosphonate (DMMP) as a marker of total water space, 3-aminopropylphosphonate (3-APP) as a marker of extracellular space and P and 3-APP as markers of intracellular pH (pH) and extracellular pH (pHe) respectively. The MRS measurements of the tumour volumes were validated by classic radiolabelling methods using 3H2O and [14C]inulin as markers of total and extracellular space respectively. The extracellular volume fraction measured by radiolabelling of RIF-1 tumours was 23 +/- 0.83% (mean +/- s.e.m. n = 9), not significantly different (P > 0.1) from that found by MRS (27 +/- 2.9%, n = 9, London, and 35 +/- 6.7, n = 14, Baltimore). In untreated RIF-1 tumours, pH was about 0.2 units higher than pHe (P < 0.01). 5-Fluorouracil (5FU) treatment (165 mg kg(-1)) caused no significant changes in either pHe or per cent extracellular volume. However significant increases in pH, 48 h after treatment (P < 0.01) correlated with decreased tumour size and improved bioenergetic status [NTP/inorganic phosphate (Pi) ratio]. This study shows the feasibility of an MR method (verified by a 'gold standard') for studying the effects of drug treatment on intra- and extracellular spaces and pH in solid tumours in vivo.
PMCID: PMC2063062  PMID: 9744499
19.  Prototypes of Newly Conceived Inorganic and Biological Sensors for Health and Environmental Applications 
Sensors (Basel, Switzerland)  2012;12(12):17112-17127.
This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide) and medicine (drug administration, cancer diagnosis and prognosis) by means of amperometric, quartz crystal microbalance with frequency (QCM_F) and quartz crystal microbalance with dissipation monitoring (QCM_D) technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.
doi:10.3390/s121217112
PMCID: PMC3571829  PMID: 23235450
QCM_D; protein-protein interaction; calcium oxide matrices; CO2; Langmuir-Blodgett; laccase; amperometry; clomipramine
20.  Single Chain Fragment Variable Recombinant Antibody as a Template for Fc Sensors 
Analytical chemistry  2011;83(2):625-630.
A label free immunosensor for detection of Fc receptors expressed on cell surface was developed and characterized by Quartz Crystal Microbalance (QCM) transducer. Taking advantage of the characteristics of single chain fragment variable (scFv) recombinant antibody and the multivalency of an antibody, the engineered recombinant scFv was immobilized onto pre-formed functionalized self-assembled monolayers (SAMs) template surface. The monomeric ScFv can bind with the CH1 region of any rabbit IgG to form a highly oriented IgG layer with its Fc portion pointing toward solution phase. This results in a highly oriented Fc sensor that can be used to study the thermodynamics and kinetics of binding between Fc portion of immunoglobulin and cell surface Fc receptor (FcR), an important area of the immune system. The Fc sensor was used to study the binding between Staphylococcus aureus (S. aureus) and Macrophage with Fc receptor. Parallel characterization of cell surface Fc receptors in the same samples by ELISA was also performed.
doi:10.1021/ac102087w
PMCID: PMC3061302  PMID: 21230001
Quartz Crystal Microbalance (QCM); Single chain fragment variable (ScFv); Fc receptor; Staphylococcus aureus; Macrophage; ELISA
21.  Adsorbed gels versus brushes: Viscoelastic differences 
It is of fundamental import to be able to easily distinguish between the viscoelastic properties of a molecular gel (non-covalent cross-linked three dimensional polymer structure) and a brush (polymer structure that emanates from a surface in three-dimensions sans cross-linking). This has relevance in biology and in designing surfaces with desired chemical and viscoelastic properties for nano- and genomic-technology applications. Agarose and thiol tagged poly(ethylene glycol) were chosen model systems as they are known, on adsorption, to behave like a molecular gel and brush, respectively. Here, we focus on their viscoelastic differences using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in resonance frequency and dissipation for three overtones using QCM-D were fitted with the Voigt viscoelastic model to calculate the shear viscosity and shear modulus for the adsorbed agarose gel and the PEG brush. At a surface coverage of 500 ng/cm2, the shear viscosities and shear moduli were 0.0025 ± 0.0002 Pa-s and 2.0 ± 0.17 × 105 Pa and 0.0010 ± 0.0001 Pa-s and 5.0 ± 0.3 × 104 Pa for the gel and brush, respectively. Thus, the adsorbed agarose gel layer was far more rigid than that of covalently bound PEG brush due to its cross-linked network. Also, the diffusivity of agarose and PEG in solution was compared during adsorption onto a bare gold surface. The estimated value for the effective diffusivity of the PEG (without a thiol tag) and of the agarose gel was of the order of 10−11 and 10−15 m2/s, respectively. This low diffusivity for agarose supports the contention that it exists as a molecular gel with a H-bonded cross-linked network in aqueous solution. With the methods used here, it is relatively easy to distinguish the differences in viscoelastic properties between an adsorbed gel and brush.
doi:10.1021/la0624743
PMCID: PMC3953464  PMID: 17286418
22.  Quartz Crystal Microbalance with Dissipation Monitoring: Enabling Real-Time Characterization of Biological Materials and Their Interactions 
In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Δf), a simultaneous parameter related to the energy loss or dissipation (ΔD) of the system is also measured. Δf essentially measures changes in the mass attached to the sensor surface, while ΔD measures properties related to the viscoelastic properties of the adlayer. Thus, QCM-D measures two totally independent properties of the adlayer. The focus of this review is an overview of the QCM-D technology and highlights of recent applications. Specifically, recent applications dealing with DNA, proteins, lipids, and cells will be detailed. This is not intended as a comprehensive review of all possible applications of the QCM-D technology, but rather a glimpse into a few highlighted application areas in the biomolecular field that were published in 2007.
PMCID: PMC2563918  PMID: 19137101
QCM-D; quartz; DNA; proteins; lipids; cells
23.  Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH)2 Hollow Architectures and their In Situ Thermal Conversion to NiO 
Nanoscale Research Letters  2009;4(6):550-557.
Three-dimensional (3D) flower-like hierarchical β-Ni(OH)2 hollow architectures were synthesized by a facile hydrothermal route. The as-obtained products were well characterized by XRD, SEM, TEM (HRTEM), SAED, and DSC-TGA. It was shown that the 3D flower-like hierarchical β-Ni(OH)2 hollow architectures with a diameter of several micrometers are assembled from nanosheets with a thickness of 10–20 nm and a width of 0.5–2.5 μm. A rational mechanism of formation was proposed on the basis of a range of contrasting experiments. 3D flower-like hierarchical NiO hollow architectures with porous structure were obtained after thermal decomposition at appropriate temperatures. UV–Vis spectra reveal that the band gap of the as-synthesized NiO samples was about 3.57 eV, exhibiting obviously red shift compared with the bulk counterpart.
doi:10.1007/s11671-009-9279-9
PMCID: PMC2894297  PMID: 20596326
Ni(OH)2; NiO; Hollow architecture; Hydrothermal synthesis
24.  Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH)2Hollow Architectures and their In Situ Thermal Conversion to NiO 
Nanoscale Research Letters  2009;4(6):550-557.
Three-dimensional (3D) flower-like hierarchicalβ-Ni(OH)2hollow architectures were synthesized by a facile hydrothermal route. The as-obtained products were well characterized by XRD, SEM, TEM (HRTEM), SAED, and DSC-TGA. It was shown that the 3D flower-like hierarchicalβ-Ni(OH)2hollow architectures with a diameter of several micrometers are assembled from nanosheets with a thickness of 10–20 nm and a width of 0.5–2.5 μm. A rational mechanism of formation was proposed on the basis of a range of contrasting experiments. 3D flower-like hierarchical NiO hollow architectures with porous structure were obtained after thermal decomposition at appropriate temperatures. UV–Vis spectra reveal that the band gap of the as-synthesized NiO samples was about 3.57 eV, exhibiting obviously red shift compared with the bulk counterpart.
doi:10.1007/s11671-009-9279-9
PMCID: PMC2894297  PMID: 20596326
Ni(OH)2; NiO; Hollow architecture; Hydrothermal synthesis
25.  A Novel Route for Preparation of Hollow Carbon Nanospheres Without Introducing Template 
Nanoscale Research Letters  2009;4(11):1365-1370.
A newly developed route for the synthesis of hollow carbon nanospheres without introducing template under hydrothermal conditions was reported. Hollow carbon nanospheres with the diameter of about 100 nm were synthesized using alginate as reagent only. Many instruments were applied to characterize the morphologies and structures of carbon hollow nanospheres, such as XRD, TEM, and Raman spectroscopy. The possible formation and growth mechanism of carbon hollow spheres were discussed on the basis of the investigation of reaction influence factors, such as temperature, time, and content. The findings would be useful for the synthesis of more materials with hollow structure and for the potential use in many aspects. The loading of SnO2 on the surface of carbon hollow spheres was processed, and its PL property was also characterized.
Electronic supplementary material
The online version of this article (doi:10.1007/s11671-009-9406-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s11671-009-9406-7
PMCID: PMC2894182  PMID: 20628463
Synthesis; Nanostructure; Carbon hollow nanospheres

Results 1-25 (440721)