Search tips
Search criteria

Results 1-25 (701994)

Clipboard (0)

Related Articles

1.  In vitro evaluation of antioxidant activity of Cordia dichotoma (Forst f.) bark 
Ayu  2013;34(1):124-128.
Cordia dichotoma Forst. f. bark, identified as botanical source of Shleshmataka in Ayurvedic pharmacopoeia. Present investigation was undertaken to evaluate possible antioxidant potential of methanolic and butanol extract of C. dichotoma bark. In vitro antioxidant activity of methanolic and butanol extract was determined by 1,1, diphenyl–2, picrylhydrazyl (DPPH) free radical scavenging assay. The extracts were also evaluated for their phenolic contents and antioxidant activity. Phenolic content was measured using Folin–Ciocalteu reagent and was calculated as Gallic acid equivalents. Antiradical activity of methanolic extract was measured by DPPH assay and was compared to ascorbic acid and ferric reducing power of the extract was evaluated by Oyaizu method. In the present study three in vitro models were used to evaluate antioxidant activity. The first two methods were for direct measurement of radical scavenging activity and remaining one method evaluated the reducing power. The present study revealed that the C. dichotoma bark has significant radical scavenging activity.
PMCID: PMC3764870  PMID: 24049418
Antioxidant; anti–radical; Cordia dichotoma; diphenyl–2; picrylhydrazyl; reducing power; Shleshmataka
2.  Plant profile, phytochemistry and pharmacology of Cordia dichotoma (Indian cherry): A review 
More than half of the world's population relies on the traditional medicine and major role of the traditional medicine including the use of plant extract and their active constituents. Among them, Cordia dichotoma Forst., a small to moderate size plant of family Boragenaceae, commonly called bhokar, lasura, gonda, Indian cherry and shlesmataka. Plant parts such as leaves, fruit, bark and seed have been reported for possessing antidiabetic, antiulcer, anti-inflammatory, immune-modulator and analgesic activity. Screening of fruit, leaves and seed shows the presence of pyrrolizidine alkaloids, coumarins, flavonoids, saponins, terpenes and sterols. Present review focuses on details of geographical distribution, physicochemical parameters, phytoconstituents and pharmacological properties of Cordia dichotoma reported so far.
PMCID: PMC3805104  PMID: 24093795
Cordia dichotoma; Cytotoxic; β-sitosterol; Indian cherry; Diabetes; Pharmacology
3.  Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant 
This study was carried out with an objective to investigate the antibacterial and antifungal potentials of leaves of Cassia fistula Linn. The aim of the study is to assess the antimicrobial activity and to determine the zone of inhibition of extracts on some bacterial and fungal strains. In the present study, the microbial activity of hydroalcohol extracts of leaves of Cassia fistula Linn. (an ethnomedicinal plant) was evaluated for potential antimicrobial activity against medically important bacterial and fungal strains. The antimicrobial activity was determined in the extracts using agar disc diffusion method. The antibacterial and antifungal activities of extracts (5, 25, 50, 100, 250 μg/ml) of Cassia fistula were tested against two Gram-positive—Staphylococcus aureus, Streptococcus pyogenes; two Gram-negative—Escherichia coli, Pseudomonas aeruginosa human pathogenic bacteria; and three fungal strains—Aspergillus niger, Aspergillus clavatus, Candida albicans. Zone of inhibition of extracts were compared with that of different standards like ampicillin, ciprofloxacin, norfloxacin, and chloramphenicol for antibacterial activity and nystatin and griseofulvin for antifungal activity. The results showed that the remarkable inhibition of the bacterial growth was shown against the tested organisms. The phytochemical analyses of the plants were carried out. The microbial activity of the Cassia fistula was due to the presence of various secondary metabolites. Hence, these plants can be used to discover bioactive natural products that may serve as leads in the development of new pharmaceuticals research activities.
PMCID: PMC3217694  PMID: 22171301
Cassia fistula; in vitro antibacterial activity; antifungal activity; secondary metabolites
4.  Microbial evaluation of Limnophila rugosa Roth. (Merr) leaf 
Ayu  2014;35(2):207-210.
Limphonia rugosa Roth. (Merr.), family-Scrophulariaceae is considered as a botanical source of classical Ayurvedic drug Bhringaraja by the traditional practitioners of Odisha and is being used for the management of various disorders.
To study the antimicrobial activity of leaf of L. rugosa.
Materials and Methods:
Methanol extract of L. rugosa leaf (LRLM) has been studied, at various (5, 25, 50, 100, 250 μg/ml) dilutions, against medically important human pathogenic bacteria (two Gram-positive Staphylococcus aureus, Streptococcus pyogenes and two Gram-negative-Escherichia coli, Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger, A. clavatus, Candida albicans) by using the agar disc diffusion method. A zone of inhibition of extract was compared with that of different standards such as ampicillin, ciprofloxacin, norfloxacin and chloramphenicol for antibacterial activity and nystatin and griseofulvin for antifungal activity.
The antibacterial and antifungal activities of the LRLM increased linear with the increase in concentration of extracts. When compared with standard drugs, the results revealed that, for bacterial activity S. pyogenes and S. aureus were more sensitive and in fungal activity C. albicans was more inhibited. The range of growth inhibition zone for all the sensitive bacteria was 11-20 mm and 13-19 mm for fungal strains.
Methanolic extract of L. rugosa leaf is having antibacterial and antifungal activities.
PMCID: PMC4279330  PMID: 25558169
Antifungal activity; Bhringaraja; Gandhamardan hills; in vitro antibacterial activity; Limnophila rugosa leaf; microbial load
5.  Studies on the antibacterial activity of Khaya senegalensis [(Desr.) A. Juss)] stem bark extract on Salmonella enterica subsp. enterica serovar Typhi [(ex Kauffmann and Edwards) Le Minor and Popoff] 
To study the phytochemical screening and antibacterial activity of the stem bark extracts of Khaya senegalensis (K. senegalensis) against Salmonella enterica subsp. enterica serovar Typhi.
The plant components were extracted using methanol, ethanol and water. The phytochemical screening of the stem bark extracts were carried out using a standard method. The antibacterial assay of the stem bark extracts against Salmonella Typhi (S. Typhi) using the agar well diffusion method with different concentrations of 50, 100, 200, 400 and 500 mg/mL and the corresponding concentrations of the control was carried out and the result compared with a standard antibiotic, amoxicillin as the control.
The results obtained from the phytochemical screening of the three plant bark extracts of K. senegalensis showed 10 plant secondary metabolites including saponins, tannins, reducing sugars, aldehyde, phlobatannins, flavonoids, terpenoids, alkaloids, cardiac glycoside and anthroquinones. The ethanol and aqueous extracts showed antibacterial activities against S. Typhi at concentration of 50 mg/mL with the zone diameter of inhibition (ZDI) of 14 mm and 15 mm respectively. The ethanol and aqueous extracts also showed zone diameter of inhibition of 23 mm and 25 mm respectively at 250 mg/mL and 27 mm each at 500 mg/mL. The ethanol and aqueous stem bark extracts gave the highest ZDI at 500 mg/mL while 100 mg/mL gave the least ZDI for ethanol extract and 50 mg/mL for the aqueous extract. This was followed by 400 mg/mL that gave 24 mm ZDI of the aqueous extract and 27 mm of the ethanol extract. The methanol extract showed intermediate susceptibility evidenced by ZDI of 10 mm at 100 mg/mL concentration. The methanol extract also showed antibacterial activity of 24 mm ZDI against the test organism at a higher concentration of 250 mg/mL and 26 mm at 500 mg/mL concentration. The methanol, ethanol and aqueous extracts displayed antibacterial activities against S. Typhi with a statistical significant difference at (P≤0.05). The extracts compared favourably with the standard antibiotic, the control. The minimum inhibitory concentration of the extracts was 250, 200, 200 and 100 mg/mL for methanol, ethanol, aqueous extracts and amoxicillin (control) respectively. The minimum lethal concentration of the extracts was 250, 250, 400 and 200 mg/mL for methanol, ethanol, aqueous extracts and control respectively.
The antibacterial properties of K. senegalensis stem bark extract can be harnessed for the production of new antibiotics or the enhancement of already existing antibiotics.
PMCID: PMC4025353  PMID: 25183098
Khaya senegalensis; Antibacterial; Zone diameter of inhibition; Minimal inhibitory concentration
6.  Antibacterial, antifungal and antioxidant activities of the ethanol extract of the stem bark of Clausena heptaphylla 
There is wide spread interest in drugs derived from plants as green medicine is believed to be safe and dependable, compared with costly synthetic drugs that have adverse effects.
We have attempted to evaluate the antioxidant, In vitro thrombolytic, antibacterial, antifungal and cytotoxic effects of Clausena heptaphylla (Rutaceae) stem bark extract ethanol extract.
Ethanolic stem bark extract of Clausena heptaphylla (CHET) contains flavonoids, alkaloids, saponins and steroids but it lacks tannins, anthraquinones and resins. Phenol content of the extract was 13.42 mg/g and flavonoid content was 68.9 mg/g. CHET exhibited significant DPPH free radical scavenging activity with IC50 value of 3.11 μg/ml. Reducing power of CHET was also moderately stronger. In the cytotoxicity assay, LC50 and Chi-square value of the ethanolic extract against brine shrimp nauplii were 144.1461 μg/ml and 0.8533 demonstrating potent cytotoxic effect of the extract. In vitro thrombolytic activity of CHET is significant with 45.38% clot lysis capability compared to that of Streptokinase (65.78%). In antibacterial screening, moderate zone of inhibition (6.5-9.0 mm in diameter) was observed against gram-positive Bacillus subtilis ATCC 11774, Bacillus cereus ATCC 10876, Staphylococcus aureus ATCC 25923, Bacillus polymyxa ATCC 842 and Bacillus megaterium ATCC 13578 and less promising zone of inhibition (3.0-4.5 mm in diameter) against gram-negative Salmonella typhi ATCC 65154, Shigella flexneri ATCC 12022, Proteus vulgaris ATCC 13315 and Escherichia coli ATCC 25922. Shigella sonnei ATCC 8992 did not show any sensitivity. The MIC values against these bacteria were ranged from 2,000 to 3,500 μg/ml. The extract showed significant zone of inhibition against Rhizopus oryzae DSM 2200, Aspergillus niger DSM 737 and Aspergillus ochraceus DSM 824 in antifungal assay.
Further advanced research is necessary to isolate and characterize the chemical components responsible for the therapeutic properties of the plant.
PMCID: PMC3533896  PMID: 23181593
Antioxidant; Antibacterial; Antifungal; Cytotoxic; Clausena heptaphylla
7.  Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom 
To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity.
Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO.
At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark.
It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.
PMCID: PMC4025313  PMID: 25183127
Naja venom; Cordia macleodii; Hemorrhagic activity; Necrotizing activity; Cardiotoxicity; Neurotoxicity
8.  Antibacterial Activity of some Medicinal Mangroves against Antibiotic Resistant Pathogenic Bacteria 
The antibacterial activity of the leaves and bark of mangrove plants, Avicennia marina, A. officinalis, Bruguiera sexangula, Exoecaria agallocha, Lumnitzera racemosa, and Rhizophora apiculata was evaluated against antibiotic resistant pathogenic bacteria, Staphylococcus aureus and Proteus sp. Soxhlet extracts of petroleum ether, ethyl acetate, ethanol and water were prepared and evaluated the antibacterial activity using agar diffusion method. Most of the plant extracts showed promising antibacterial activity against both bacterial species. However, higher antibacterial activity was observed for Staphylococcus aureus than Proteus sp. The highest antibacterial activity was shown by ethyl acetate of mature leaf extracts of E. agallocha for Staphylococcus aureus. All ethyl acetate extracts showed higher inhibition against S. aureus while some extracts of chloroform, ethyl acetate and ethanol gave inhibition against Proteus sp. None of the petroleum ether and aqueous extracts showed inhibition against Proteus sp. All fresh plant materials did also show more antibacterial activity against both bacterial strains than did dried plant extracts. Antibacterial activity of fresh and dried plant materials reduced for both bacterial strains with time after extraction. Since L. racemosa and A. marina gave the best inhibition for bacterial species, they were used for further investigations. Charcoal treated plant extracts of L. racemosa and A. marina were able to inhibit both bacterial strains more than those of untreated plant extracts. Phytochemical screening of mature leaf, bark of L. racemosa and leaf extracts of A. marina has been carried out and revealed that leaf and bark contained alkaloids, steroids, triterpenoids and flavonoids. None of the above extracts indicate the presence of saponins and cardiac glycosides. Separated bands of extracts by TLC analysis showed antibacterial activity against S. aureus.
PMCID: PMC2929774  PMID: 20838519
Antibacterial activity; inhibition; mangroves; soxhlet extraction
9.  In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases 
Suppression of immune system in treated cancer patients may lead to secondary infections that obviate the need of antibiotics. In the present study, an attempt was made to understand the occurrence of secondary infections in immuno-suppressed patients along with herbal control of these infections with the following objectives to: (a) isolate the microbial species from the treated oral cancer patients along with the estimation of absolute neutrophile counts of patients (b) assess the in vitro antimicrobial activity medicinal plants against the above clinical isolates.
Blood and oral swab cultures were taken from 40 oral cancer patients undergoing treatment in the radiotherapy unit of Regional Cancer Institute, Pt. B.D.S. Health University,
Rohtak, Haryana. Clinical isolates were identified by following general microbiological, staining and biochemical methods. The absolute neutrophile counts were done by following the standard methods. The medicinal plants selected for antimicrobial activity analysis were Asphodelus tenuifolius Cav., Asparagus racemosus Willd., Balanites aegyptiaca L., Cestrum diurnum L., Cordia dichotoma G. Forst, Eclipta alba L., Murraya koenigii (L.) Spreng. , Pedalium murex L., Ricinus communis L. and Trigonella foenum graecum L. The antimicrobial efficacy of medicinal plants was evaluated by modified Kirby-Bauer disc diffusion method. MIC and MFC were investigated by serial two fold microbroth dilution method.
Prevalent bacterial pathogens isolated were Staphylococcus aureus (23.2%), Escherichia coli (15.62%), Staphylococcus epidermidis (12.5%), Pseudomonas aeruginosa (9.37%), Klebsiella pneumonia (7.81%), Proteus mirabilis (3.6%), Proteus vulgaris (4.2%) and the fungal pathogens were Candida albicans (14.6%), Aspergillus fumigatus (9.37%). Out of 40 cases, 35 (87.5%) were observed as neutropenic. Eight medicinal plants (A. tenuifolius, A. racemosus, B. aegyptiaca, E. alba, M. koenigii, P. murex R. communis and T. foenum graecum) showed significant antimicrobial activity (P < .05) against most of the isolates. The MIC and MFC values were ranged from 31 to 500 μg/ml. P. aeruginosa was observed highest susceptible bacteria (46.6%) on the basis of susceptible index.
It can be concluded that treated oral cancer patients were neutropenic and prone to secondary infection of microbes. The medicinal plant can prove as effective antimicrobial agent to check the secondary infections in treated cancer patients.
PMCID: PMC3121585  PMID: 21599889
10.  Antimicrobial screening of ethnobotanically important stem bark of medicinal plants 
Pharmacognosy Research  2010;2(4):254-257.
The stem barks are the rich sources of tannins and other phenolic compounds. Tannins inhibited the growth of various fungi, yeast, bacteria and virus. Hence, ten stem barks of ethnomedicinally important plants were screened for antibacterial and antifungal activities against human pathogenic strains.
Air-dried and powdered stem bark of each plant was extracted with 50% aqueous ethanol, lyophilized and the dried crude extracts were used for the screening against 11 bacteria and 8 fungi. Antibacterial and antifungal activities were performed according to microdilution methods by NCCLS.
The plants Prosopis chilensis, Pithecellobium dulce, Mangifera indica showed significant antibacterial and antifungal activities against Streptococcus pneumonia, Enterobacter aerogenes, Klebsiella pneumonia and Candida albicans with MIC of 0.08mg/ml. Pithecellobium dulce bark also showed significant antibacterial activity against Bacillus cereus.
The bark of Pithecellobium dulce has more or less similar activity against the known antibiotic and may be considered as potent antimicrobial agent for various infectious diseases.
PMCID: PMC3141137  PMID: 21808577
Antibacterial; antifungal; bark; ethnobotany; MIC
11.  Bactericidal Activity of Methanol Extracts of Crabapple Mangrove Tree (Sonneratia caseolaris Linn.) Against Multi-Drug Resistant Pathogens 
The crabapple mangrove tree, Sonneratia caseolaris Linn. (Family: Sonneratiaceae), is one of the foreshore plants found in estuarine and tidal creek areas and mangrove forests. Bark and fruit extracts from this plant have previously been shown to have an anti-oxidative or cytotoxic effect, whereas flower extracts of this plant exhibited an antimicrobial activity against some bacteria. According to the traditional folklore, it is medicinally used as an astringent and antiseptic. Hence, this investigation was carried out on the extract of the leaves, pneumatophore and different parts of the flower or fruit (stamen, calyx, meat of fruit, persistent calyx of fruit and seeds) for antibacterial activity using the broth microdilution method. The antibacterial activity was evaluated against five antibiotic-sensitive species (three Gram-positive and two Gram-negative bacteria) and six drug-resistant species (Gram-positive i.e. Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium and Gram-negative i.e. Extended-spectrum beta-lactamase-Escherichia coli, multidrug-resistant–Pseudomonas aeruginosa and Acenetobacter baumannii). The methanol extracts from all tested parts of the crabapple mangrove tree exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria, but was mainly a bactericidal against the Gram-negative bacteria, including the multidrug-resistant strains, when compared with only bacteriostatic on the Gram-positive bacteria. Using Soxhlet apparatus, the extracts obtained by sequential extraction with hexane, dichloromethane and ethyl acetate revealed no discernable antibacterial activity and only slightly, if at all, reduced the antibacterial activity of the subsequently obtained methanol extract. Therefore, the active antibacterial compounds of the crabapple mangrove tree should have a rather polar structure.
PMCID: PMC3574533  PMID: 23441048
Antimicrobial activity; bactericidal; crabapple mangrove tree; drug resistant bacteria; Sonneratia caseolaris Linn
12.  Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico 
Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml−1. We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml−1), C. glabrata (MICs 31.25 μg ml−1) and C. parapsilosis (MICs between 31.25 and 125 μg ml−1); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml−1); Colubrina greggii against E. faecalis (MICs 250 μg ml−1) and Cordia boissieri against C. glabrata (MIC 125 μg ml−1). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri.
PMCID: PMC3136635  PMID: 19770266
13.  Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf 
Pharmacognosy Research  2015;7(1):126-130.
Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research.
To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract.
Material and Methods:
The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study.
In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug.
This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract.
PMCID: PMC4285642  PMID: 25598647
Analgesic; anti-inflammatory; antipyretic; Boraginaceae; Cordia dichotoma
14.  Evaluation of in-vitro antibacterial activity and anti-inflammatory activity for different extracts of Rauvolfia tetraphylla L. root bark 
To assess the in-vitro antibacterial activity and anti-inflammatory activity of orally administered different extracts (Hydro-alcoholic, methanolic, ethyl acetate and hexane) of Rauvolfia tetraphylla (R. tetraphylla) root bark in Carrageenan induced acute inflammation in rats.
In-vitro antibacterial activity was evaluated for extracts against four Gram positive and four Gram negative bacteria by using cylinder plate assay. Hydro-alcoholic extract (70% v/v ethanol) at 200, 400 and 800 mg/kg doses and methanolic, ethyl acetate and hexane extracts at doses 100, 200 and 400 mg/kg were tested for anti-inflammatory activity in Carrageenan induced rat paw oedema model and paw thickness was measured every one hour up to 6 hrs.
All extracts of R. tetraphylla root bark showed good zone of inhibition against tested bacterial strains. In Carrageenan induced inflammation model, hydro-alcoholic and methanolic extract of R. tetraphylla root bark at three different doses produced significant (P<0.001) reduction when compared to vehicle treated control group and hexane, ethyl acetate extracts.
In the present study extracts of R. tetraphylla root bark shows good in-vitro antibacterial activity and in-vivo anti-inflammatory activity in rats.
PMCID: PMC3609229  PMID: 23569853
Rauvolfia tetraphylla; Root bark; In-vitro antibacterial activity; Inflammation; Anti-inflammatory activity
15.  Cytotoxic and antimicrobial activity of selected Cameroonian edible plants 
In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities.
Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines.
The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively.
Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer.
PMCID: PMC3635900  PMID: 23565827
Cytotoxic; Antimicrobial; Edible plants; Cameroon
16.  Modulation of the norfloxacin resistance in Staphylococcus aureus by Cordia verbenaceae DC 
Background & objectives:
Several chemical compounds isolated from natural sources have antibacterial activity and some enhance the antibacterial activity of antibiotics reversing the natural resistance of bacteria to certain antibiotics. In this study, the hexane and methanol extract of Cordia verbenaceae were assessed for antibacterial activity alone and combinated with norfloxacin against the Staphylococcus aureus strain SA1199B.
The minimum inhibitory concentration (MIC) of extracts was assayed using microdilution assay and the modulatory activity was evaluated using plate diffusion assay.
The MIC observed varied between 256 to >1024 μg/ml. However, the antibiotic activity of norfloxacin was enhanced in the presence of subinhibitory concentrations of hexane extract of C. verbenaceae (HECV).
Interpretations & conclusions:
Our results indicate that Cordia verbenaceae DC. can be a source of plant derived products with antibiotic modifying activity.
PMCID: PMC3657884  PMID: 23481069
Antibacterial activity; antibiotics; Cordia verbenaceae DC; hexane extract; modulation of resistance; Staphylococcus aureus
17.  Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates 
Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds.
PMCID: PMC3155364  PMID: 21845091
Afzelia Africana; synergy; antibiotics; extract; drug-resistant; microorganisms
18.  Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains 
To investigate the in vitro antimicrobial activities of the leaf extract in different solvents viz., methanol, ethanol and water extracts of the selected plant Ricinus communis.
Agar well diffusion method and agar tube dilution method were carried out to perform the antibacterial and antifungal activity of methanol, ethanol and aqueous extracts.
Methanol leaf extracts were found to be more active against Gram positive bacteria (Bacillus subtilis: ATCC 6059 and Staphylococcus aureus: ATCC 6538) as well as Gram negative bacteria (Pseudomonas aeruginosa: ATCC 7221 and Klebsiella pneumoniae) than ethanol and aqueous leaf extracts. Antifungal activity of methanol and aqueous leaf extracts were also carried out against selected fungal strains as Aspergillus fumigatus and Aspergillus flavus. Methanolic as well as aqueous leaf extracts of Ricinus communis were effective in inhibiting the fungal growth.
The efficient antibacterial and antifungal activity of Ricinus communis from the present investigation revealed that the methanol leaf extracts of the selected plant have significant potential to inhibit the growth of pathogenic bacterial and fungal strains than ethanol and aqueous leaf extracts.
PMCID: PMC3621469  PMID: 23593573
Antibacterial; Antifungal; Relative percentage inhibition; Ricinus communis; Methanol; Ethanol
19.  Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem 
Ternimalia brownii Fresen (Combretaceae) is widely used in traditional medicine to treat bacterial, fungal and viral infections. There is a need to evaluate extracts of this plant in order to provide scientific proof for it's wide application in traditional medicine system.
Extraction of stem bark, wood and whole roots of T. brownii using solvents of increasing polarity, namely, Pet ether, dichloromethane, dichloromethane: methanol (1:1), methanol and aqua, respectively, afforded dry extracts. The extracts were tested for antifungal and antibacterial activity and for brine shrimp toxicity test.
Extracts of the stem bark, wood and whole roots of T. brownii exhibited antibacterial activity against standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, and Bacillus anthracis and the fungi, Candida albicans and Cryptococcus neoformans. Aqueous extracts exhibited the strongest activity against both bacteria and fungi. Extracts of the roots and stem bark exhibited relatively mild cytotoxic activity against brine shrimp larvae with LC50 values ranging from 113.75–4356.76 and 36.12–1458.81 μg/ml, respectively. The stem wood extracts exhibited the highest toxicity against the shrimps (LC50 values 2.58–14.88 μg/ml), while that of cyclophosphamide, a standard anticancer drug, was 16.33 (10.60–25.15) μg/ml.
These test results support traditional medicinal use of, especially, aqueous extracts for the treatment of conditions such as diarrhea, and gonorrhea. The brine shrimp results depict the general trend among plants of the genus Terminalia, which are known to contain cytotoxic compounds such as hydrolysable tannins. These results warrant follow-up through bioassay-directed isolation of the active principles.
PMCID: PMC1851717  PMID: 17394672
20.  Protective effect of Lannea coromandelica Houtt. Merrill. against three common pathogens 
Ayurvedic text reports suggested Lannea coromandelica is used in various microbial origin disorders like dysentery, sore eyes and leprosy, genital wounds.
The present study was designed to investigate the antimicrobial effect of L. coromandelica Houtt. Merrill. (Anacardiaceae) on microbes which cause female reproductive tract infection.
Materials and Methods:
Ethanolic and aqueous bark extract (Ext.) of L. coromandelica were screened against strains of Streptococcus pyogens, Staphylococcus aureus, and Candida albicans. Antimicrobial assay had been done with agar well diffusion method.
Ethanolic extracts [100% (16 mg), 75% (12 mg) and 50% (8 mg)] of L. coromandelica exhibited zone of inhibition (ZI) 19.21 mm, 18.45 mm, 16.41 mm and 18.12 mm, 17.35 mm, 16.35 mm against S. aureus and S. pyogens, respectively. However, only 100% and 75% ethanolic extract showed (ZI-19.18 mm, 16.29 mm) activity against C. albicans. Nevertheless, aqueous extract (100%) showed higher antifungal activity (ZI-16.97 mm). Ciprofloxacin and amphotericin B were used as a standard drugs in the present study.
The results demonstrated that L. coromandelica Houtt. Merrill. have antibacterial activity against S. pyogens, S. aureus and antifungal property against C. albicans. Our findings corroborate the ethnobotanical use of L. coromandelica in traditional medicine system (Ayurveda) of India.
PMCID: PMC3891178  PMID: 24459389
Agar well diffusion method; antibacterial; antifungal; ayurveda; Candida albicans; female reproductive tract infection; Lannea coromandelica; Staphylococcus aureus; Streptococcus pyogens
21.  Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn 
To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi.
The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control.
At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL).
It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L).
PMCID: PMC3614197  PMID: 23569803
Zingiber zerumbet (L.) Smith; Antibacterial; Antifungal; Minimum inhibitory concentration (MIC); Antimicrobial activity; Rhizome; Antifungal activity; Phytochemicals; Disc diffusion method; Soluble fraction; Pathogenic bacteria
22.  In Vitro Antibacterial and Antioxidant Studies of Croton roxburghii L., from Similipal Biosphere Reserve 
Indian Journal of Microbiology  2011;51(3):363-368.
In vitro antibacterial activities of acetone, ethanol, methanol and water extracts of leaves and bark of Croton roxburghii L. studied against ten human pathogenic bacterial strains showed significantly higher activity in acetone extract and least activity in case of aqueous. Minimal inhibitory concentration (MIC) values of all extracts ranged between 0.62 and 10 mg/ml, while minimal bactericidal concentration (MBC) values ranged from 1.25 to values greater than 10 mg/ml. The antioxidant assays viz. DPPH, hydrogen peroxide scavenging, iron reducing and iron chelating assays along with total phenol and ascorbic acid content were carried out with aqueous extracts of leaves and bark. While the total phenol contents in leaves and bark extracts were 0.766 ± 0.014 and 0.735 ± 0.028% respectively their ascorbic acid contents were found to be 0.252 ± 0.019 and 0.431 ± 0.013% respectively. DPPH activities in both (leaves and bark) extracts increased with the increase in concentrations. Iron chelating capacity of leaves extract is significantly higher than that of the bark. Leaves extract showed an increase in percentage of scavenging property with the increase in concentrations. Plant extracts showed low amount of iron reducing property at all concentrations. Hydrogen peroxide scavenging properties of bark was low than that of the leaves.
PMCID: PMC3209925  PMID: 22754018
Antimicrobial activity; Medicinal plant; Reactive oxygen species; Crude plant extracts
23.  In vitro antibacterial and antifungal activities of Cassia fistula Linn. fruit pulp extracts 
Ayu  2012;33(1):123-129.
Aim of the study is to assess the antimicrobial activity Cassia fistula fruit pulp extracts on some bacterial and fungal strains. Hydro alcohol and chloroform extracts of Cassia fistula fruit pulp were evaluated for the potential antimicrobial activity. The antimicrobial activity was determined in both the extracts using the agar disc diffusion method. Extracts were effective on tested microorganisms. The antibacterial and antifungal activities of solvent extracts (5, 25, 50, 100, 250 μg/mL) of C. fistula were tested against two gram positive, two gram negative human pathogenic bacteria and three fungi, respectively. Crude extracts of C. fistula exhibited moderate to strong activity against most of the bacteria tested. The tested bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Escherichia coil, Pseudomonas aeruginosa, and fungal strains were Aspergillus. niger, Aspergillus. clavatus, Candida albicans. The antibacterial potential of the extracts were found to be dose dependent. The antibacterial activities of the C. fistula were due to the presence of various secondary metabolites. Hence, these plants can be used to discover bioactive natural products that may serve as leads in the development of new pharmaceuticals research activities.
PMCID: PMC3456850  PMID: 23049197
Antibacterial activity; Antifungal activity; Bacteria; Cassia fistula
24.  Which tree orders in southern Africa have the highest antimicrobial activity and selectivity against bacterial and fungal pathogens of animals? 
The study randomly screened leaf extracts of several hundred southern African tree species against important microbial pathogens to determine which taxa have the highest activity and may yield useful products to treat infections in the animal health market.
We determined the antibacterial and antifungal activity of 714 acetone leaf extracts of 537 different tree species against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Cryptococcus neoformans. A sensitive serial dilution microplate method was used.
Several extracts had MICs as low as 0.02 mg/ml. We analysed 14 out of the 38 tree orders where we determined the activity of more than 8 different tree species representing 89% of all species examined. There were statistically significant differences in some cases. Celastrales, Rosales and Myrtales had the highest activity against Gram-positive bacteria, the Myrtales and Fabales against the Gram-negative bacteria and the Malvales and Proteales against the fungi. Species present in the Asterales followed by the Gentiales and Lamiales had the lowest activities against all the microorganisms tested. Fabales species had the highest activities against all the microorganisms tested. There was substantial selectivity in some orders. Proteales species had very high activity against the fungi but very low activity against the bacteria. The species in the Celastrales and Rosales had very low antifungal activity, low activity against Gram-negative bacteria and very high activity against Gram-positive bacteria.
Against all classes of microorganisms, the four orders containing species with the highest average antimicrobial activities also contained several species with low activities against different pathogens and vice versa. These results therefore should be used with circumspection in selecting tree orders that would yield the highest probability of finding species with promising activities. Nevertheless there was a twofold increase in probability of finding extracts with interesting antifungal activity from orders with high mean activity than from orders with low mean activity. The probability increased to threefold and fivefold for Gram-positive and Gram-negative bacteria respectively.
PMCID: PMC4158104  PMID: 25164197
25.  Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae) 
Records have shown that Combretum adenogonium Steud. Ex A. Rich (Combretaceae) is used in traditional medicine systems of several tribes in Tanzania. This study focused on the investigation of antibacterial activity, anti-HIV-1 protease activity, toxicity properties and classes of phytochemicals in extracts from C. adenogonium Steud. Ex A. Rich (Combretaceae) to evaluate potential of these extracts for development as herbal remedies.
Dried plant material were ground to fine powder and extracted using 80% aqueous ethanol to afford root, leaf and stem bark extracts. The extracts were assayed for anti-HIV-1 protease activities, antibacterial activities using microdilution methods and cytotoxicity using brine shrimps lethality assay. Screening for major phytochemical classes was carried out using standard chemical tests.
All extracts exhibited antibacterial activity to at least one of the test bacteria with MIC-values ranging from 0.31-5.0 mg/ml. Two extracts, namely, root and stem bark exhibited anti-HIV-1 PR activity with IC50 values of 24.7 and 26.5 μg/ml, respectively. Stem bark and leaf extracts showed mild toxicity with LC50 values of 65.768 μg/ml and 76.965 μg/ml, respectively, whereas roots were relatively non-toxic (LC50 = 110.042 μg/ml). Phytochemical screening of the extracts indicated presence of flavonoids, terpenoids, alkaloids, tannins, glycosides and saponins.
These results provide promising baseline information for the potential development of C. adenogonium extracts in treatment of bacterial and HIV/AIDS-related opportunistic infections.
PMCID: PMC3517472  PMID: 23013240
Combretum adenogonium; Combretaceae; Anti-HIV-1 protease; Antibacterial; Cytotoxicity

Results 1-25 (701994)