PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (404349)

Clipboard (0)
None

Related Articles

1.  Novel lineages of Prochlorococcus and Synechococcus in the global oceans 
The ISME Journal  2011;6(2):285-297.
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.
doi:10.1038/ismej.2011.106
PMCID: PMC3260499  PMID: 21955990
cyanobacteria; Prochlorococcus; Synechococcus; diversity; global ocean; 16S-23S rRNA ITS
2.  Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis 
The ISME Journal  2012;7(1):184-198.
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.
doi:10.1038/ismej.2012.89
PMCID: PMC3526172  PMID: 22895163
HNLC; Prochlorococcus; siderophore
3.  Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean† 
The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean.
PMCID: PMC91849  PMID: 10653704
4.  The Effects of Natural Iron Fertilisation on Deep-Sea Ecology: The Crozet Plateau, Southern Indian Ocean 
PLoS ONE  2011;6(6):e20697.
The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.
doi:10.1371/journal.pone.0020697
PMCID: PMC3114783  PMID: 21695118
5.  Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean 
The ISME Journal  2011;6(4):733-744.
Growth limitation of phytoplankton and unicellular nitrogen (N2) fixers (diazotrophs) were investigated in the oligotrophic Western South Pacific Ocean. Based on change in abundances of nifH or 23S rRNA gene copies during nutrient-enrichment experiments, the factors limiting net growth of the unicellular diazotrophs UCYN-A (Group A), Crocosphaera watsonii, γ-Proteobacterium 24774A11, and the non-diazotrophic picocyanobacterium Prochlorococcus, varied within the region. At the westernmost stations, numbers were enhanced by organic carbon added as simple sugars, a combination of iron and an organic chelator, or iron added with phosphate. At stations nearest the equator, the nutrient-limiting growth was not apparent. Maximum net growth rates for UCYN-A, C. watsonii and γ-24774A11 were 0.19, 0.61 and 0.52 d−1, respectively, which are the first known empirical growth rates reported for the uncultivated UCYN-A and the γ-24774A11. The addition of N enhanced total phytoplankton biomass up to 5-fold, and the non-N2-fixing Synechococcus was among the groups that responded favorably to N addition. Nitrogen was the major nutrient-limiting phytoplankton biomass in the Western South Pacific Ocean, while availability of organic carbon or iron and organic chelator appear to limit abundances of unicellular diazotrophs. Lack of phytoplankton response to nutrient additions in the Pacific warm pool waters suggests diazotroph growth in this area is controlled by different factors than in the higher latitudes, which may partially explain previously observed variability in community composition in the region.
doi:10.1038/ismej.2011.152
PMCID: PMC3309360  PMID: 22094348
Crocosphaera; cyanobacteria; group A; nitrogen fixation; qPCR; UCYN-A
6.  The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling 
PLoS ONE  2014;9(12):e114067.
The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.
doi:10.1371/journal.pone.0114067
PMCID: PMC4254789  PMID: 25469984
7.  Biogeography of Photosynthetic Light-Harvesting Genes in Marine Phytoplankton 
PLoS ONE  2009;4(2):e4601.
Background
Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters.
Methods
All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration.
Conclusion/Significance
Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron-limited, high-nutrient low-chlorophyll region of the equatorial Pacific. This observation demonstrates the ecological importance of isiA genes in enabling marine Synechococcus to acclimate to iron limitation and suggests that the presence of this gene can be a natural biomarker for iron limitation in oceanic environments.
doi:10.1371/journal.pone.0004601
PMCID: PMC2644788  PMID: 19240807
8.  Comparative quantitative proteomics of prochlorococcus ecotypes to a decrease in environmental phosphate concentrations 
Aquatic Biosystems  2012;8:7.
Background
The well-lit surface waters of oligotrophic gyres significantly contribute to global primary production. Marine cyanobacteria of the genus Prochlorococcus are a major fraction of photosynthetic organisms within these areas. Labile phosphate is considered a limiting nutrient in some oligotrophic regions such as the Caribbean Sea, and as such it is crucial to understand the physiological response of primary producers such as Prochlorococcus to fluctuations in the availability of this critical nutrient.
Results
Prochlorococcus strains representing both high light (HL) (MIT9312) and low light (LL) (NATL2A and SS120) ecotypes were grown identically in phosphate depleted media (10 μM Pi). The three strains displayed marked differences in cellular protein expression, as determined by high throughput large scale quantitative proteomic analysis. The only strain to demonstrate a significantly different growth rate under reduced phosphate conditions was MIT9312. Additionally, there was a significant increase in phosphate-related proteins such as PhoE (> 15 fold increase) and a depression of the Rubisco protein RbcL abundance in this strain, whereas there appeared to be no significant change within the LL strain SS120.
Conclusions
This differential response between ecotypes highlights the relative importance of phosphate availability to each strain and from these results we draw the conclusion that the expression of phosphate acquisition mechanisms are activated at strain specific phosphate concentrations.
doi:10.1186/2046-9063-8-7
PMCID: PMC3349580  PMID: 22480396
Prochlorococcus; PstS; PhoA; PhoE; Growth; Phosphate
9.  Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus 
PLoS Genetics  2007;3(12):e231.
Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the “leaves of the tree,” between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.
Author Summary
Prochlorococcus—the most abundant photosynthetic microbe living in the vast, nutrient-poor areas of the ocean—is a major contributor to the global carbon cycle. Prochlorococcus is composed of closely related, physiologically distinct lineages whose differences enable the group as a whole to proliferate over a broad range of environmental conditions. We compare the genomes of 12 strains of Prochlorococcus representing its major lineages in order to identify genetic differences affecting the ecology of different lineages and their evolutionary origin. First, we identify the core genome: the 1,273 genes shared among all strains. This core set of genes encodes the essentials of a functional cell, enabling it to make living matter out of sunlight and carbon dioxide. We then create a genomic tree that maps the gain and loss of non-core genes in individual strains, showing that a striking number of genes are gained or lost even among the most closely related strains. We find that lost and gained genes commonly cluster in highly variable regions called genomic islands. The level of diversity among the non-core genes, and the number of new genes added with each new genome sequenced, suggest far more diversity to be discovered.
doi:10.1371/journal.pgen.0030231
PMCID: PMC2151091  PMID: 18159947
10.  Relationship between Abundance and Specific Activity of Bacterioplankton in Open Ocean Surface Waters 
Marine microbial communities are complex and dynamic, and their ecology impacts biogeochemical cycles in pelagic ecosystems. Yet, little is known about the relative activities of different microbial populations within genetically diverse communities. We used rRNA as a proxy for activity to quantify the relative specific activities (rRNA/ribosomal DNA [rDNA or rRNA genes]) of the eubacterial populations and to identify locations or clades for which there are uncouplings between specific activity and abundance. After analyzing 1.6 million sequences from 16S rDNA and rRNA (cDNA) libraries from two euphotic depths from a representative site in the Pacific Ocean, we show that although there is an overall positive relationship between the abundances (rDNAs) and activities (rRNAs) among populations of the bacterial community, for some populations these measures are uncoupled. Different ecological strategies are exemplified by the two numerically dominant clades at this site: the cyanobacterium Prochlorococcus is abundant but disproportionately more active, while the heterotrophic SAR11 is abundant but less active. Other rare populations, such as Alteromonas, have high specific activities in spite of their low abundances, suggesting intense population regulation. More detailed analyses using a complementary quantitative PCR (qPCR)-based approach of measuring relative specific activity for Prochlorococcus populations in the Pacific and Atlantic Oceans also show that specific activity, but not abundance, reflects the key drivers of light and nutrients in this system; our results also suggest substantial top-down regulation (e.g., grazing, viruses, or organismal interactions) or transport (e.g., mixing, immigration, or emigration) of these populations. Thus, we show here that abundance and specific activity can be uncoupled in open ocean systems and that describing both is critical to characterizing microbial communities and predicting marine ecosystem functioning and responses to change.
doi:10.1128/AEM.02155-12
PMCID: PMC3536108  PMID: 23087033
11.  Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre 
The ISME Journal  2012;7(3):603-614.
Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic, that is, potentially enhance uptake of scarce organic molecules using the available solar radiation to energise appropriate transport systems. Here, we assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions using 33P-ATP, 3H-ATP and 35S-methionine tracers. Light-stimulated uptake of these substrates was assessed in two dominant bacterioplankton groups discriminated by flow cytometric sorting of tracer-labelled cells and identified using catalysed reporter deposition fluorescence in situ hybridisation. One group of cells, encompassing 48% of all bacterioplankton, were identified as members of the SAR11 clade, whereas the other group (24% of all bacterioplankton) was Prochlorococcus. When exposed to light, SAR11 cells took 31% more ATP and 32% more methionine, whereas the Prochlorococcus cells took 33% more ATP and 34% more methionine. Other bacterioplankton did not demonstrate light stimulation. Thus, the SAR11 and Prochlorococcus groups, with distinctly different light-harvesting mechanisms, used light equally to enhance, by approximately one-third, the uptake of different types of organic molecules. Our findings indicate the significance of light-driven uptake of essential organic nutrients by the dominant bacterioplankton groups in the surface waters of one of the less productive, vast regions of the world's oceans—the oligotrophic North Atlantic subtropical gyre.
doi:10.1038/ismej.2012.126
PMCID: PMC3580278  PMID: 23096403
SAR11; Prochlorococcus; light stimulation; flow cytometric sorting; radioisotope tracing; ATP and amino-acid uptake
12.  High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean▿  
Applied and Environmental Microbiology  2007;73(13):4198-4205.
Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 × 105 cells ml−1 and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 × 10−3 μg liter−1) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.
doi:10.1128/AEM.02652-06
PMCID: PMC1932784  PMID: 17496136
13.  Groups without Cultured Representatives Dominate Eukaryotic Picophytoplankton in the Oligotrophic South East Pacific Ocean 
PLoS ONE  2009;4(10):e7657.
Background
Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone.
Methodology/Principal Findings
In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated.
Conclusions/Significance
Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups.
doi:10.1371/journal.pone.0007657
PMCID: PMC2764088  PMID: 19893617
14.  Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre 
The ISME Journal  2011;6(6):1238-1249.
Oceanic subtropical gyres are considered biological deserts because of the extremely low availability of nutrients and thus minimum productivities. The major source of nutrient nitrogen in these ecosystems is N2-fixation. The South Pacific Gyre (SPG) is the largest ocean gyre in the world, but measurements of N2-fixation therein, or identification of microorganisms involved, are scarce. In the 2006/2007 austral summer, we investigated nitrogen and carbon assimilation at 11 stations throughout the SPG. In the ultra-oligotrophic waters of the SPG, the chlorophyll maxima reached as deep as 200 m. Surface primary production seemed limited by nitrogen, as dissolved inorganic carbon uptake was stimulated upon additions of 15N-labeled ammonium and leucine in our incubation experiments. N2-fixation was detectable throughout the upper 200 m at most stations, with rates ranging from 0.001 to 0.19 nM N h−1. N2-fixation in the SPG may account for the production of 8–20% of global oceanic new nitrogen. Interestingly, comparable 15N2-fixation rates were measured under light and dark conditions. Meanwhile, phylogenetic analyses for the functional gene biomarker nifH and its transcripts could not detect any common photoautotrophic diazotrophs, such as, Trichodesmium, but a prevalence of γ-proteobacteria and the unicellular photoheterotrophic Group A cyanobacteria. The dominance of these likely heterotrophic diazotrophs was further verified by quantitative PCR. Hence, our combined results show that the ultra-oligotrophic SPG harbors a hitherto unknown heterotrophic diazotrophic community, clearly distinct from other oceanic gyres previously visited.
doi:10.1038/ismej.2011.182
PMCID: PMC3358028  PMID: 22170429
diazotrophs; γ-proteobacteria; nifH; (photo)heterotrophic nitrogen fixation; UCYN-A; ultra-oligotrophy
15.  Non-Random Assembly of Bacterioplankton Communities in the Subtropical North Pacific Ocean 
The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.
doi:10.3389/fmicb.2011.00140
PMCID: PMC3130143  PMID: 21747815
16S rRNA gene; assembly; community; gyre; oligotrophic; time series
16.  Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre 
The abundance of aerobic anoxygenic phototrophic (AAP) bacteria, cyanobacteria, and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific Gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic Ocean but only 5% or less in the Pacific Ocean. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than that of Prochlorococcus spp. and 10-fold higher than that of Synechococcus spp. In contrast, Prochlorococcus spp. outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP bacterial genera (Erythrobacter and Roseobacter spp.). Concentrations of bacteriochlorophyll a (BChl a) were low (∼1%) compared to those of chlorophyll a in the North Atlantic. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, the pigment content of AAP bacteria approached that of Prochlorococcus in shelf break water. Our results suggest that AAP bacteria can be quite abundant in some oceanic regimes and that their distribution in the water column is consistent with phototrophy.
doi:10.1128/AEM.72.1.557-564.2006
PMCID: PMC1352302  PMID: 16391092
17.  Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments 
Ecology and Evolution  2013;3(6):1780-1797.
Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.
doi:10.1002/ece3.593
PMCID: PMC3686209  PMID: 23789085
Cyanophage; metagenomics; osmolyte; Pelagibacter; population genomics; Prochlorococcus; SAR11
18.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance 
The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory.
PMCID: PMC98958  PMID: 10066832
19.  Variability in the Correlation between Asian Dust Storms and Chlorophyll a Concentration from the North to Equatorial Pacific 
PLoS ONE  2013;8(2):e57656.
A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997–2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54–0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32–0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.
doi:10.1371/journal.pone.0057656
PMCID: PMC3584023  PMID: 23460892
20.  Diversity and Abundance of Bolidophyceae (Heterokonta) in Two Oceanic Regions 
Applied and Environmental Microbiology  1999;65(10):4528-4536.
The diversity and abundance of the Bolidophyceae (Heterokonta), a newly described picoplanktonic algal class which is a sister group to the diatoms, was assessed in the equatorial Pacific Ocean and in the Mediterranean Sea by culture isolation, molecular biology techniques, and pigment analyses. Eight strains of Bolidophyceae were isolated in culture from different mesotrophic and oligotrophic areas. The corresponding small subunit (SSU) rRNA gene sequences allowed us to design two probes specific for the Bolidophyceae. These probes have been used in natural samples (i) to selectively amplify and detect Bolidophyceae sequences and (ii) to quantify the relative abundance of Bolidophyceae within the picoeukaryote community. Sequences available to date indicate that the class Bolidophyceae comprises at least three different clades, two corresponding to the previously described species Bolidomonas pacifica and Bolidomonas mediterranea and the third one corresponding to a subspecies of B. pacifica. Amplification of the SSU rRNA gene from natural samples with universal primers and hybridization using a Bolidomonas-specific probe followed by a eukaryote-specific probe allowed us to estimate the contribution of the Bolidophyceae to the eukaryotic DNA in both Pacific and Mediterranean waters to be lower than 1%. Similarly, high-performance liquid chromatography analyses of fucoxanthin, the major carotenoid present in Bolidophyceae, indicated that less than 4% of the total chlorophyll a in the picoplanktonic fraction in the equatorial Pacific was due to Bolidophyceae. Consequently, although strains of Bolidophyceae have been isolated from samples collected at several stations, this new class seems to have been a minor component of the natural picoeukaryotic populations in the ecosystems investigated, at least during the periods sampled.
PMCID: PMC91603  PMID: 10508085
21.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences 
Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.
doi:10.1128/AEM.68.3.1180-1191.2002
PMCID: PMC123739  PMID: 11872466
22.  Genetic Manipulation of Prochlorococcus Strain MIT9313: Green Fluorescent Protein Expression from an RSF1010 Plasmid and Tn5 Transposition▿  
Applied and Environmental Microbiology  2006;72(12):7607-7613.
Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.
doi:10.1128/AEM.02034-06
PMCID: PMC1694220  PMID: 17041154
23.  Vertical Profiles of Bacteria in the Tropical and Subarctic Oceans Revealed by Pyrosequencing 
PLoS ONE  2013;8(11):e79423.
Community composition of Bacteria in the surface and deep water layers were examined at three oceanic sites in the Pacific Ocean separated by great distance, i.e., the South China Sea (SCS) in the western tropical Pacific, the Costa Rica Dome (CRD) in the eastern tropical Pacific and the western subarctic North Pacific (SNP), using high throughput DNA pyrosequencing of the 16S rRNA gene. Bioinformatic analysis rendered a total of 143600 high quality sequences with an average 11967 sequences per sample and mean read length of 449 bp. Phylogenetic analysis showed that Proteobacteria dominated in all shallow and deep waters, with Alphaproteobacteria and Gammaproteobacteria the two most abundant components, and SAR11 the most abundant group at family level in all regions. Cyanobacteria occurred mainly in the surface euphotic layer, and the majority of them in the tropical waters belonged to the GpIIa family including Prochlorococcus and Synechococcus, whilst those associated with Cryptophytes and diatoms were common in the subarctic waters. In general, species richness (Chao1) and diversity (Shannon index H′) were higher for the bacterial communities in the intermediate water layers than for those in surface and deep waters. Both NMDS plot and UPGMA clustering demonstrated that bacterial community composition in the deep waters (500 m ∼2000 m) of the three oceanic regions shared a high similarity and were distinct from those in the upper waters (5 m ∼100 m). Our study indicates that bacterial community composition in the DOC-poor deep water in both tropical and subarctic regions were rather stable, contrasting to those in the surface water layers, which could be strongly affected by the fluctuations of environmental factors.
doi:10.1371/journal.pone.0079423
PMCID: PMC3827353  PMID: 24236132
24.  Spatial Variations in Microbial Community Composition in Surface Seawater from the Ultra-Oligotrophic Center to Rim of the South Pacific Gyre 
PLoS ONE  2013;8(2):e55148.
Surface seawater in the South Pacific Gyre (SPG) is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern transect of the SPG during the Integrated Ocean Drilling Program (IODP) Expedition 329. Samples from four distinct sites (Sites U1368, U1369, U1370 and U1371) were examined, representing ∼5400 kilometers of transect line from the gyre heart to the edge area. Real-time PCR analysis showed 16S rRNA gene abundance in the gyre seawater, ranging from 5.96×105 to 2.55×106 copies ml−1 for Bacteria and 1.17×103 to 1.90×104 copies ml−1 for Archaea. The results obtained by statistic analyses of 16S rRNA gene clone libraries revealed the community composition in the southern SPG area: diversity richness estimators in the gyre center (Sites U1368 & U1369) are generally lower than those at sites in the gyre edge (Sites U1370 & U1371) and their community structures are clearly distinguishable. Phylogenetic analysis showed the predominance of Proteobacteria (especially Alphaproteobacteria) and Cyanobacteria in bacterial 16S rRNA gene clone libraries, whereas phylotypes of Betaproteobacteria were only detected in the central gyre. Archaeal 16S rRNA genes in the clone libraries were predominated by the sequences of Marine Group II within the Euryarchaeota, and the Crenarchaeota sequences were rarely detected, which is consistent with the real-time PCR data (only 9.9 to 22.1 copies ml−1). We also performed cultivation of heterotrophic microbes onboard, resulting in 18.9% of phylogenetically distinct bacterial isolates at least at the species level. Our results suggest that the distribution and diversity of microbial communities in the SPG surface seawater are closely related to the ultra-oligotrophic oceanographic features in the Pacific Ocean.
doi:10.1371/journal.pone.0055148
PMCID: PMC3566182  PMID: 23405118
25.  Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability 
Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (Fv/Fm) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways.
doi:10.1038/msb4100087
PMCID: PMC1682016  PMID: 17016519
cyanobacteria; interstrain; nitrogen; Prochlorococcus; transcription

Results 1-25 (404349)