Search tips
Search criteria

Results 1-25 (1405396)

Clipboard (0)

Related Articles

1.  Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle 
Age  2012;35(4):1061-1075.
Recently, we showed that administration of the angiotensin-converting enzyme inhibitor enalapril to aged rats attenuated muscle strength decline and mitigated apoptosis in the gastrocnemius muscle. The aim of the present study was to investigate possible mechanisms underlying the muscle-protective effects of enalapril. We also sought to discern the effects of enalapril mediated by nitric oxide (NO) from those independent of this signaling molecule. Eighty-seven male Fischer 344 × Brown Norway rats were randomly assigned to receive enalapril (n = 23), the NO synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME; n = 22), enalapril + l-NAME (n = 19), or placebo (n = 23) from 24 to 27 months of age. Experiments were performed on the tibialis anterior muscle. Total NOS activity and the expression of neuronal, endothelial, and inducible NOS isoforms (nNOS, eNOS, and iNOS) were determined to investigate the effects of enalapril on NO signaling. Transcript levels of tumor necrosis factor-alpha (TNF-α) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were assessed to explore actions of enalapril on inflammation and mitochondrial biogenesis, respectively. Protein expression of energy-sensing and insulin signaling mediators, including protein kinase B (Akt-1), phosphorylated Akt-1 (pAkt-1), mammalian target of rapamycin (mTOR), AMP-activated protein kinase subunit alpha (AMPKα), phosphorylated AMPKα (pAMPKα), and the glucose transporter GLUT-4, was also determined. Finally, the generation of hydrogen peroxide (H2O2) was quantified in subsarcolemmal (SSM) and intermyofibrillar (IFM) mitochondria. Enalapril increased total NOS activity, which was prevented by l-NAME co-administration. eNOS protein content was enhanced by enalapril, but not by enalapril + l-NAME. Gene expression of iNOS was down-regulated by enalapril either alone or in combination with l-NAME. In contrast, protein levels of nNOS were unaltered by treatments. The mRNA abundance of TNF-α was reduced by enalapril relative to placebo, with no differences among any other group. PCG-1α gene expression was unaffected by enalapril and lowered by enalapril + l-NAME. No differences in protein expression of Akt-1, pAkt-1, AMPKα, pAMPKα, or GLUT-4 were detected among groups. However, mTOR protein levels were increased by enalapril compared with placebo. Finally, all treatment groups displayed reduced SSM, but not IFM H2O2 production relative to placebo. Our data indicate that enalapril induces a number of metabolic adaptations in aged skeletal muscle. These effects result from the concerted modulation of NO and angiotensin II signaling, rather than from a dichotomous action of enalapril on the two pathways. Muscle protection by enalapril administered late in life appears to be primarily mediated by mitigation of oxidative stress and pro-inflammatory signaling.
PMCID: PMC3705103  PMID: 22639176
Aging; Nitric oxide synthase (NOS) isoforms; Mitochondria; mTOR; Glucose tolerance; l-NAME; Inflammation; ACE inhibitors
2.  Inhibition of NF-κB-induced inflammatory responses by angiotensin II antagonists in aged rat kidney 
Experimental gerontology  2011;46(7):542-548.
In this study, we explored the mechanisms by which the angiotensin converting enzyme inhibitor (ACEI), enalapril, and the Ang II receptor blocker (ARB), losartan suppress oxidative stress and NF-κB activation-induced inflammatory responses in aged rat kidney. The experimentations were carried out utilizing aged (24-month-old) Brown Norway x Fischer 344 (F1) male rats which were randomized into 3 groups and administered enalapril (40 mg/kg), losartan (30 mg/kg) or placebo for 6 months (daily p.o.). The level of reactive species (RS), peroxynitrite (ONOO−), GSH/GSSG and lipid peroxidation were measured. The activity of the pro-inflammatory transcription factor NF-κB, and gene expression of proteins in upstream signaling cascades were measured by electro-mobility shift assay (EMSA) and Western blotting. Enalapril and losartan differentially attenuated redox imbalance and the redox-sensitive transcription factor, NF-κB pathway. Furthermore, stimulation of the NF-κB activation pathway by phosphorylation of p65 was attenuated by both compounds. Moreover, mediation of phosphorylation of p65 by phosphorylation of IκB kinase αβ (IKKαβ) and mitogen- and stress-activated protein kinase-1 (MSK1), were also inhibited by enalapril and losartan. Finally, both compounds also lowered expression of NF-κB-dependent inflammatory genes, such as cyclooxygenase-2 (COX-2),) and inducible NO synthase (iNOS). Only losartan lowered levels of 5-lipoxygenase (5-LOX). These findings indicate that enalapril and losartan differentially suppress inflammatory responses via inhibition of oxidative stress-induced NF-κB activation in aged rat kidney.
PMCID: PMC3104080  PMID: 21377515
3.  Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344 × Brown Norway rats 
Age  2010;33(2):167-183.
The primary purpose of the present set of studies was to provide a direct comparison of the effects of the angiotensin-converting enzyme inhibitor enalapril and the angiotensin receptor blocker losartan on body composition, physical performance, and muscle quality when administered late in life to aged rats. Overall, enalapril treatment consistently attenuated age-related increases in adiposity relative to both placebo and losartan. The maximal effect was achieved after 3 months of treatment (between 24 and 27 months of age), at a dose of 40 mg/kg and was observed in the absence of any changes in physical activity, body temperature, or food intake. In addition, the reduction in fat mass was not due to changes in pathology given that enalapril attenuated age-related increases in tumor development relative to placebo- and losartan-treated animals. Both enalapril and losartan attenuated age-related decreases in grip strength, suggesting that changes in body composition appear dissociated from improvements in physical function and may reflect a differential impact of enalapril and losartan on muscle quality. To link changes in adiposity to improvements in skeletal muscle quality, we performed gene array analyses to generate hypotheses regarding cell signaling pathways altered with enalapril treatment. Based on these results, our primary follow-up pathway was mitochondria-mediated apoptosis of myocytes. Relative to losartan- and placebo-treated rats, only enalapril decreased DNA fragmentation and caspase-dependent apoptotic signaling. These data suggest that attenuation of the severity of skeletal muscle apoptosis promoted by enalapril may represent a distinct mechanism through which this compound improves muscle strength/quality.
PMCID: PMC3127467  PMID: 21153712
Age-related adiposity; Body composition; Sarcopenia; Renin–angiotensin system; Physical function; Muscle quality
4.  Differential effects of late-life initiation of low-dose enalapril and losartan on diastolic function in senescent Fischer 344 × Brown Norway male rats 
Age  2011;34(4):831-843.
No proven pharmacological therapies to delay or reverse age-related diastolic dysfunction exist. We hypothesized that late-life low-dose (non-blood-pressure-lowering) angiotensin-converting enzyme inhibition vs. angiotensin II receptor blockade would be equally efficacious at mitigating diastolic dysfunction in the senescent Fischer 344 × Brown Norway rat. Enalapril (10 mg/kg/day; n = 9) initiated at 24 months of age and continued for 6 months, increased myocardial relaxation (e'), reduced Doppler-derived indices of filling pressure (E/e'), favorably lowered the ratio of phospholamban–SERCA2 and reduced oxidative stress markers, Rac1 and nitrotyrosine, in aged hearts. Treatment with losartan (15 mg/kg/day; n = 9) similarly mitigated signs of cardiac oxidative stress, but impairments in diastolic function persisted when compared with untreated rats (n = 7). Our findings favor the idea that the lusitropic benefit of low-dose angiotensin-converting enzyme inhibitor initiated late in life may be related to an antioxidant-mediated modulation of SERCA2, resulting in improved relaxation rather than via overt effects on cardiac structure or blood pressure.
PMCID: PMC3682061  PMID: 21720770
Angiotensin-converting enzyme inhibitor; Angiotensin II receptor blocker; Diastolic dysfunction; Oxidative stress; SERCA2; Tissue Doppler
5.  Effect of Aging and Obesity on Insulin Responsiveness and Glut-4 Glucose Transporter Content in Skeletal Muscle of Fischer 344 × Brown Norway Rats 
This study investigated the metabolic changes with age in the Fischer 344 × Brown Norway rat and its suitability as an animal model of postmaturational insulin resistance. Specifically, we determined whether an age-associated decrease in glucose disposal is associated with diminished whole body insulin responsiveness and/or a decrease in glucose transporter (GLUT-4) protein and mRNA content in medial gastrocnemius muscle of male Fischer 344 × Brown Norway rats of ages 8, 18, and 28 months. Fasting plasma glucose was unchanged with age. There was a significant age effect on visceral adiposity, fasting plasma insulin levels, insulin responsiveness, and GLUT-4 protein content. Insulin responsiveness and GLUT-4 protein were lower in the 18-month-old rats than in the 8-month-old rats. The findings of age-associated increases in visceral adiposity and insulin resistance, and decreases in GLUT-4 in the Fisher 344 × Brown Norway rat, suggest that this rat strain may be an appropriate model for studying the effects of aging on glucose homeostasis.
PMCID: PMC2714732  PMID: 11682570
6.  Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles 
PLoS ONE  2013;8(6):e65118.
Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [14C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.
PMCID: PMC3670927  PMID: 23755179
7.  Greater insulin sensitivity in calorie restricted rats occurs with unaltered circulating levels of several important myokines and cytokines 
Calorie restriction (CR; ~60% of ad libitum, AL intake) has been associated with substantial alterations in body composition and insulin sensitivity. Recently, several proteins that are secreted by nontraditional endocrine tissues, including skeletal muscle and other tissues, have been discovered to modulate energy metabolism, body composition, and insulin sensitivity. The aim of this study was to characterize the influence of CR by rats on plasma levels of six of these newly recognized metabolic hormones (BDNF, FGF21, IL-1β, myonectin, myostatin, and irisin). Body composition of 9-month old male Fischer-344/Brown Norway rats (AL and CR groups) was determined by nuclear magnetic resonance. Blood sampled from the carotid artery of unanesthetized rats was used to measure concentrations of glucose and plasma proteins. As expected, CR versus AL rats had significantly altered body composition (reduced percent fat mass, increased percent lean mass) and significantly improved insulin sensitivity (based on the homeostasis model assessment-estimated insulin resistance index). Also consistent with previous reports, CR compared to AL rats had significantly greater plasma levels of adiponectin and corticosterone. However, there were no significant diet-related differences in plasma levels of BDNF, FGF21, IL-1β, myonectin, myostatin, or irisin. In conclusion, these results indicate that alterations in plasma concentration of these six secreted proteins are not essential for the CR-related improvement in insulin sensitivity in rats.
PMCID: PMC3541154  PMID: 23067400
Myonectin; Myostatin; FGF21; Irisin; Insulin resistance; Dietary restriction; Adiponectin; FNDC5
8.  Iron Accumulation with Age, Oxidative Stress and Functional Decline 
PLoS ONE  2008;3(8):e2865.
Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.
PMCID: PMC2481398  PMID: 18682742
9.  Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats 
Toxicology and applied pharmacology  2009;243(3):332-339.
Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.
PMCID: PMC2830378  PMID: 20026095
Deoxyglucose; Calorie restriction; Lifespan; Mortality; Cardiac vacuolarization
10.  Age-related Declines in Thirst and Salt Appetite Responses in Male Fischer 344 x Brown Norway Rats 
Physiology & behavior  2014;135:180-188.
The F344xBN strain is the first generational cross between Fischer 344 (F344) and Brown Norway (BN) rats. The F344xBN strain is widely used in aging studies as it is regarded as a model of “healthy” aging (Sprott, 1991). In the present work, male F344xBN rats aged 4 mo (young, n = 6) and 20 mo (old, n = 9) received a series of experimental challenges to body fluid homeostasis to determine their thirst and salt appetite responses. Corresponding urinary responses were measured in some of the studies. Following sodium depletion, old rats ingested less saline solution (0.3 M NaCl) than young rats on a body weight basis, but both ages drank enough saline solution to completely repair the accrued sodium deficits. Following intracellular dehydration, old rats drank less water than young rats, again on a body weight basis, and were less able than young rats to drink amounts of water proportionate to the osmotic challenge. Compared with young rats, old rats drank less of both water and saline solution after combined food and fluid restriction, and also were refractory to the stimulatory effects of low doses of captopril on water drinking and sodium ingestion. Age differences in urinary water and sodium excretion could not account for the age differences in accumulated water and sodium balances. These results extend observations of diminished behavioral responses of aging animals to the F344xBN rat strain and support the idea that impairments in behavior contribute more to the waning ability of aging animals to respond to body fluid challenges than do declines in kidney function. In addition, the results suggest that behavioral defense of sodium homeostasis is less diminished with age in the F344xBN strain compared to other strains so far studied.
PMCID: PMC4116463  PMID: 24952266
aging; diuresis; natriuresis; dehydration; hypovolemia
11.  The effects of age and muscle contraction on AMPK activity and heterotrimer composition 
Experimental gerontology  2014;55:120-128.
Sarcopenia is characterized by increased skeletal muscle atrophy due in part to alterations in muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways which regulate many cellular processes that are disrupted in old-age. Functional AMPK is a heterotrimer composed of alpha, beta and gamma subunits, and each subunit can be represented in the heterotrimer by one of two (α1/α2, β1/β2) or three (γ1/γ2/γ3) isoforms. Altered isoform composition affects AMPK localization and function. Previous work has shown that overall AMPK activation with endurance-type exercise is blunted in old vs. young skeletal muscle. However, details regarding the activation of the specific isoforms of AMPK, as well as the heterotrimeric composition of AMPK in old skeletal muscle are unknown. Our purpose here, therefore, was to determine the effect of old-age on 1) the activation of the α1 and α2 catalytic subunits of AMPK in skeletal muscle by a continuous contraction bout, and 2) the heterotrimeric composition of skeletal muscle AMPK. We studied gastrocnemius (GAST) and tibialis anterior (TA) muscles from young adult (YA; 8 mo old) and old (O; 30 mo old) male Fischer344 x Brown Norway F1 hybrid rats after an in situ bout of endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). AMPKα phosphorylation and AMPKα1 and α2 activities were unaffected by age at rest. However, AMPKα phosphorylation and AMPKα2 protein content and activity were lower in O vs. YA after STIM. Conversely, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM in O but not YA muscles. AMPKγ3 overall concentration and its association with AMPKα1 and α2 was lower in O vs. YA GAST. We conclude that activation of AMPKα1 is enhanced, while activation of α2 is suppressed immediately after repeated skeletal muscle contractions in O vs. YA skeletal muscle. These changes are associated with changes in the AMPK heterotrimer composition. Given the known roles of AMPK α1, α2 and γ3, this may contribute to sarcopenia and associated muscle metabolic dysfunction.
PMCID: PMC4081450  PMID: 24747582
AMPK; skeletal muscle; aging
12.  Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy 
Experimental gerontology  2011;47(1):100-108.
In the present study, we investigated the effects of 7 and 14 days of re-loading following 14-day muscle unweighting (hindlimb suspension, HS) on iron transport, non-heme iron levels and oxidative damage in the gastrocnemius muscle of young (6 months) and old (32 months) male Fischer 344×Brown Norway rats. Our results demonstrated that old rats had lower muscle mass, higher levels of total non-heme iron and oxidative damage in skeletal muscle in comparison with young rats. Non-heme iron concentrations and total non-heme iron amounts were 3.4- and 2.3-fold higher in aged rats as compared with their young counterparts, respectively. Seven and 14 days of re-loading was associated with higher muscle weights in young animals as compared with age-matched HS rats, but there was no difference in muscle weights among aged HS, 7 and 14 days of re-loading rats, indicating that aged rats may have a lower adaptability to muscle disuse and a lower capacity to recover from muscle atrophy. Protein levels of cellular iron transporters, such as divalent metal transport-1 (DMT1), transferrin receptor-1 (TfR1), Zip14, and ferroportin (FPN), and their mRNA abundance were determined. TfR1 protein and mRNA levels were significantly lower in aged muscle. Seven and 14 days of re-loading were associated with higher TfR1 mRNA and protein levels in young animals in comparison with their age-matched HS counterparts, but there was no difference between cohorts in aged animals, suggesting adaptive responses in the old to cope with iron deregulation. The extremely low expression of FPN in skeletal muscle might lead to inefficient iron export in the presence of iron overload and play a critical role in age-related iron accumulation in skeletal muscle. Moreover, oxidative stress was much greater in the muscles of the older animals measured as 4-hydroxy-2-nonhenal (HNE)-modified proteins and 8-oxo-7,8-dihydroguanosine levels. These markers remained fairly constant with either HS or re-loading in young rats. In old rats, HNE-modified proteins and 8-oxo-7,8-dihydroguanosine levels were markedly higher in HS and were lower after 7 days of recovery. However, no difference was observed following 14 days of recovery between control and re-loading animals. In conclusion, advanced age is associated with disruption of muscle iron metabolism which is further perturbed by disuse and persists over a longer time period.
PMCID: PMC4545509  PMID: 22085543
Aging; Sarcopenia; Iron metabolism; Hindlimb unloading and re-loading; Skeletal muscle atrophy
13.  The effects of aging on the functional and structural properties of the rat basilar artery 
Physiological Reports  2014;2(6):e12031.
Aging leads to progressive pathophysiological changes in blood vessels of the brain and periphery. The aim of this study was to evaluate the effects of aging on cerebral vascular function and structure. Basilar arteries were isolated from male Fischer 344 cross Brown Norway (F344xBN) rats at 3, 8, and 24 months of age. The basilar arteries were cannulated in the pressurized system (90 cm H2O). Contractile responses to KCl (30–120 mmol/L) and endothelin‐1 (10−11–10−7 mol/L) were evaluated. Responses to acetylcholine (ACh) (10−10–10−4 mol/L), diethylamine (DEA)‐NONO‐ate (10−10–10−4 mol/L), and papaverin (10−10–10−4 mol/L) were assessed to determine both endothelium‐dependent and endothelium‐independent responsiveness. Advanced aging (24 months) decreased responses of the basilar artery to both the contractile and relaxing agents; whereas, DEA‐induced dilation was significantly higher in the 8‐month‐old group compared with the younger and older groups. The arterial wall‐to‐lumen ratio was significantly increased in 24‐month‐old rats. Smooth muscle cell count was also decreased in old rats. These findings indicate that aging produces dysfunction of both the endothelium and the vascular smooth muscle in the basilar artery. Aging also alters wall structure of the basilar artery, possibly through decreases in smooth muscle cell number and concomitant hypertrophy.
The purpose of this study was to determine the effects of advancing age on the structure and vasomotor responses of the basilar artery as well as the serum antioxidant capacity. Advanced aging (24 months) decreased responses of the basilar artery to both the contractile and relaxing agents, whereas, DEA‐induced dilation was significantly higher in the 8‐month‐old group compared with the younger and older rats. The arterial wall‐to‐lumen ratio was significantly increased in 24‐month‐old rats. Smooth muscle cell count was also decreased in old rats. Our findings demonstrate that aging is associated with functional impairment in endothelium‐dependent and ‐independent relaxation responses and contractility in the basilar arteries, and these diminished responses are accompanied by structural remodeling and decreased antioxidant capacity of the serum.
PMCID: PMC4208653  PMID: 24907295
Acetylcholine; aging; antioxidant capacity; basilar artery; endothelin; NO; papaverin; vascular smooth muscle; vasoreactivity; vertebrobasilar insufficiency
14.  Comparison of Temporal Transcriptomic Profiles from Immature Lungs of Two Rat Strains Reveals a Viral Response Signature Associated with Chronic Lung Dysfunction 
PLoS ONE  2014;9(12):e112997.
Early life respiratory viral infections and atopic characteristics are significant risk factors for the development of childhood asthma. It is hypothesized that repeated respiratory viral infections might induce structural remodeling by interfering with the normal process of lung maturation; however, the specific molecular processes that underlie these pathological changes are not understood. To investigate the molecular basis for these changes, we used an established Sendai virus infection model in weanling rats to compare the post-infection transcriptomes of an atopic asthma susceptible strain, Brown Norway, and a non-atopic asthma resistant strain, Fischer 344. Specific to this weanling infection model and not described in adult infection models, Sendai virus in the susceptible, but not the resistant strain, results in morphological abnormalities in distal airways that persist into adulthood. Gene expression data from infected and control lungs across five time points indicated that specific features of the immune response following viral infection were heightened and prolonged in lungs from Brown Norway rats compared with Fischer 344 rats. These features included an increase in macrophage cell number and related gene expression, which then transitioned to an increase in mast cell number and related gene expression. In contrast, infected Fischer F344 lungs exhibited more efficient restoration of the airway epithelial morphology, with transient appearance of basal cell pods near distal airways. Together, these findings indicate that the pronounced macrophage and mast cell responses and abnormal re-epithelialization precede the structural defects that developed and persisted in Brown Norway, but not Fischer 344 lungs.
PMCID: PMC4249857  PMID: 25437859
15.  Short-term caloric restriction, resveratrol, or combined treatment regimens initiated in late-life alter mitochondrial protein expression profiles in a fiber-type specific manner in aged animals 
Experimental gerontology  2013;48(9):858-868.
Aging is associated with a loss in muscle known as sarcopenia that is partially attributed to apoptosis. In aging rodents, caloric restriction (CR) increases health and longevity by improving mitochondrial function and the polyphenol resveratrol (RSV) has been reported to have similar benefits. In the present study, we investigated the potential efficacy of using short-term (6 weeks) CR (20%), RSV (50 mg/kg/day), or combined CR + RSV (20% CR and 50 mg/kg/day RSV), initiated at late-life (27 months) to protect muscle against sarcopenia by altering mitochondrial function, biogenesis, content, and apoptotic signaling in both glycolytic white and oxidative red gastrocnemius muscle (WG and RG, respectively) of male Fischer 344 × Brown Norway rats. CR but not RSV attenuated the age-associated loss of muscle mass in both mixed gastrocnemius and soleus muscle, while combined treatment (CR + RSV) paradigms showed a protective effect in the soleus and plantaris muscle (P < 0.05). Sirt1 protein content was increased by 2.6-fold (P < 0.05) in WG but not RG muscle with RSV treatment, while CR or CR + RSV had no effect. PGC-1α levels were higher (2-fold) in the WG from CR-treated animals (P < 0.05) when compared to ad-libitum (AL) animals but no differences were observed in the RG with any treatment. Levels of the anti-apoptotic protein Bcl-2 were significantly higher (1.6-fold) in the WG muscle of RSV and CR + RSV groups compared to AL (P < 0.05) but tended to occur coincident with elevations in the pro-apoptotic protein Bax so that the apoptotic susceptibility as indicated by the Bax to Bcl-2 ratio was unchanged. There were no alterations in DNA fragmentation with any treatment in muscle from older animals. Additionally, mitochondrial respiration measured in permeabilized muscle fibers was unchanged in any treatment group and this paralleled the lack of change in cytochrome c oxidase (COX) activity. These data suggest that short-term moderate CR, RSV, or CR + RSV tended to modestly alter key mitochondrial regulatory and apoptotic signaling pathways in glycolytic muscle and this might contribute to the moderate protective effects against aging-induced muscle loss observed in this study.
PMCID: PMC4550205  PMID: 23747682
Aging; Caloric restriction; Sarcopenia; Apoptosis; Biogenesis; Sirtuins
16.  Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats 
Age  2015;37(2):30.
Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNia (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.
PMCID: PMC4375133  PMID: 25813803
Aging; Female; Skeletal muscle; Apoptosis; ROS; Caspase
Dysphagia  2010;26(3):256-263.
Age-related tongue weakness may contribute to swallowing deficits in the elderly. One contributing factor may be an alteration in muscle fiber type properties with aging. However, it is not clear how muscle fiber types within the aged tongue may vary from those found in young adults, or how fiber types may vary across the anteroposterior axis of the extrinsic tongue muscles. We examined myosin heavy chain (MHC) composition of anterior, medial, and posterior sections of the genioglossus muscle (GG) in 10 old male Fischer 344/Brown Norway rats and compared findings to previously reported data from young adult male rats. Significant differences (p< .01) between young adult and old rats were found in the distribution of MHC isoforms along the anteroposterior axis of the muscle. In the anterior, medial, and posterior regions, there was a significantly smaller proportion of type IIb MHC in the old rat GG muscles, while the proportion of type IIx MHC was significantly greater. In the medial region, the proportion of type I MHC was found to be significantly greater in the old rats. Thus, we found a shift to more slowly contracting muscle fibers in the aged rat tongue.
PMCID: PMC2998581  PMID: 20809174
Tongue; Dysphagia; Myosin heavy chain; Aging; Deglutition; Deglutition Disorders
18.  The regulatory role of AT1 receptor on activated HSCs in hepatic fibrogenesis: Effects of RAS inhibitors on hepatic fibrosis induced by CCl4 
AIM: To assess the effect of ACE inhibitor and AngII type 1 (AT1) receptor antagonist in preventing hepatic fibrosis caused by CCl4 administration in rats; to investigate whether or not there are expression of AT1 receptors on hepatic stellate cells; and to observe the effect of AngII on proliferation and ECM synthesis of cultured HSCs.
METHODS: Studies were conducted in male Sprague-Dawley rats. Except for the hepatofibrotic model group and the control group, in three treated groups, either enalapril (5 mg/kg), or losartan (10 mg/kg), or enalapril + losartan were given to the fibrotic rats by daily gavage, and saline vehicle was given to model and normal control rats. After 6 wk, liver fibrosis was assessed directly by hepatic morphometric analysis, which has been considered the gold standard for the quantification of fibrosis. The expressions of AT1 receptors and (α-mooth muscle actin, α-SMA) in liver tissue or isolated hepatic stellate cells (HSCs) were detected by immunohistochemical techniques. The effect of AngII on HSC proliferation was determined by MTT method. Effect of AngII on collagen synthesis of HSCs was de termined by 3H-proline incorporation.
RESULTS: Contrasted to the fibrosis in rats of the model group, groups of rats treated with either enalapril or losartan, or a combination of two drugs showed a limited expansion of the interstitium (4.23 ± 3.70 vs 11.22 ± 4.79, P < 0.05), but no difference was observed among three treated groups (5.38 ± 3.43, 4. 96 ± 2.96, 4.23 ± 2.70, P > 0.05). Expression of AT1 receptors was found in fibrotic interstitium of fibrotic rats, whereas in normal control rats they were limited to vasculature only to a very slight degree. AT1 receptors were also expressed on activated HSCs in the culture. At concentrations from 10-9 to 10-5 mol/L, AngII stimulated HSC proliferation in culture in a dose-dependent manner. Increasing AngII concentrations produced corresponding increases in 3H-proline incorporation. Differences among groups were significant.
CONCLUSION: Angiotensin-converting enzyme inhibitors and AT 1 blocker may slow the progression of hepatic fibrosis; activated HSCs express AT1 receptors, and AngII can stimulate the proliferation and collagen synthesis of HSCs in a dose-dependent manner; and activation of RAS may be related to hepatic fibrogenesis induced by CCl4.
PMCID: PMC4728269  PMID: 11819703
renin-angiotensin system; liver cirrhosis; enalapril; extracellular matrix; immunohistochemistry; losartan; liver/injuries
19.  Cytokine mRNA expression profiles in rats infected with the intestinal nematode Nippostrongylus brasiliensis. 
Infection and Immunity  1995;63(12):4653-4660.
Although the immune responses to intestinal nematode infection have been well studied and have been shown to be strongly driven by Th2-associated cytokines in mice, such information has been limited with respect to rats. We investigated changes in levels of the mRNAs encoding interleukin-2 (IL-2), IL-3, IL-4, IL-5, IL-10, and gamma interferon in the mesenteric lymph nodes of rats infected with Nippostrongylus brasiliensis by reverse transcription-PCR in comparison with immunoglobulin E (IgE)/IgG2a antibody, eosinophil, basophil, and mucosal mast cell responses. In the two rat strains used, Brown Norway and Fischer-344, which show different responses to allergens, serum IgE increased to much higher levels in the former than in the latter 2 weeks after infection. Intestinal mastocytosis was observed much earlier and more intensely in Brown Norway rats than in Fischer-344 rats, but the degrees of peripheral eosinophilia and basophilia did not differ between the two strains. In both strains, IL-3, IL-4, and IL-5 mRNA expression increased and peaked around 7 to 14 days after infection, while expression of IL-2, IL-10, and gamma interferon mRNAs did not change notably throughout the experimental period. The highest IL-4 mRNA expression was observed slightly earlier in Brown Norway than in Fischer-344 rats, but levels of IL-3 and IL-5 mRNAs peaked synchronously in both strains. The amounts of mRNAs encoding these three cytokines were always higher in Brown Norway than in Fischer-344 rats. It is suggested that in rats, Th2 or Th2-like cells are also induced after nematode infection, and IgE elevation is mainly related to increased IL-4 gene expression.
PMCID: PMC173668  PMID: 7591119
20.  Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats 
Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3 mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20-min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca2+-induced swelling, an indicator of permeability transition pore opening, was reduced in mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury.
PMCID: PMC4312194  PMID: 25451170
heart; aging; ischemia/reperfusion; mitochondria; ROS scavenger; XJB-5-131
21.  Effect of aging on rat skeletal muscle β-AR function in male Fischer 344 × Brown Norway rats 
The American journal of physiology  1996;270(2 Pt 2):R462-R468.
In this study, we tested the hypothesis that, in the male Fischer 344 × Brown Norway (F344xBN) rat, aging would be associated with an increase in sympathetic nervous system activity and a decrease in skeletal muscle β-adrenergic-receptor (β-AR) density and function. Radioligand-binding studies using [125I]iodocyanopindolol were done to evaluate β-AR density (Bmax) and antagonist-binding affinity in gastrocnemius and cardiac muscle from 6-, 18-, and 28-mo-old male F344xBN rats. β-AR function was measured as adenylyl cyclase (AC) activity stimulated by the β-AR agonist isoproterenol (Iso, 10−4 M). Basal arterial plasma norepinephrine (pNE) concentrations were higher in the 28-than in the 6- and 18-mo-old rats. Bmax was greatest and Iso-stimulated AC activity was unchanged in gastrocnemius muscle of the 28-mo-old age group. In contrast, there was an age-associated decrease in Bmax and Iso-stimulated AC activity in cardiac muscle. In conclusion, there was an age-associated increase in pNE concentrations in male F344xBN rats, suggesting an increase in sympathetic nervous system activity. In addition, there was an age-associated increase in skeletal muscle β-AR density, whereas in skeletal muscle β-AR-stimulated AC activity remained unchanged with age.
PMCID: PMC2714882  PMID: 8779880
adenylyl cyclase; catecholamines; sympathetic nervous system; isoproterenol; forskolin
22.  A persistent increase in insulin-stimulated glucose uptake by both fast-twitch and slow-twitch skeletal muscles after a single exercise session by old rats 
Age  2012;35(3):573-582.
Exercise has been demonstrated to enhance subsequent insulin-stimulated glucose uptake (GU) by predominantly type II (fast-twitch) muscle of old rats, but previous research has not evaluated exercise effects on GU by type I (slow-twitch) muscle from old rats. Accordingly, we studied male Fischer 344/Brown Norway rats (24 months old) and determined GU (0, 100, 200, and 5,000 μU/ml insulin) of isolated soleus (predominantly type I) and epitrochlearis (predominantly type II) muscles after one exercise session. Epitrochlearis (100, 200, and 5,000 μU/ml insulin) and soleus (100 and 200 μU/ml insulin) GU were greater at 3-h postexercise vs. age-matched sedentary controls. Insulin receptor tyrosine phosphorylation (Tyr1162/1163) was unaltered by exercise in either muscle. Akt phosphorylation (pAkt) was greater for exercised vs. sedentary rats in the epitrochlearis (Ser473 and Thr308 with 100 and 200 μU/ml, respectively) and soleus (Ser473 with 200 μU/ml). AS160 phosphorylation (pAS160) was greater for exercised vs. sedentary rats in the epitrochlearis (Thr642 with 100 μU/ml), but not the soleus. Exercised vs. sedentary rats did not differ for total protein abundance of insulin receptor, Akt, AS160, or GLUT4 in either muscle. These results demonstrate that both predominantly type I and type II muscles from old rats are susceptible to exercise-induced improvement in insulin-mediated GU by mechanisms that are independent of enhanced insulin receptor tyrosine phosphorylation or altered abundance of important signaling proteins or GLUT4. Exercise-induced elevation in pAkt, and possibly pAS160, may contribute to this effect in the epitrochlearis of old rats, but other mechanisms are likely important for the soleus.
PMCID: PMC3636414  PMID: 22286902
Glucose transport; Aging; Insulin signaling; Insulin resistance
23.  Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats 
Biogerontology  2014;15(3):217-232.
Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.
Electronic supplementary material
The online version of this article (doi:10.1007/s10522-014-9492-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4019835  PMID: 24652515
Muscle; Aging; Metabolomics; Sarcopenia; Biomarkers; NAD
24.  Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction 
TNF-α-mediated apoptosis is enhanced in aged rodent muscles, suggesting that this pathway may be involved in sarcopenia. Interleukin-15 (IL-15), a muscle-derived anabolic cytokine, mitigates muscle wasting and apoptosis in cachectic rats. This effect is thought to occur through inhibition of TNF-α-triggered apoptosis. We investigated IL-15 signaling and the TNF-α-mediated pathway of apoptosis in the gastrocnemius muscle of Fischer344×Brown Norway rats across the ages of 8, 18, 29 and 37 months, in relation to life-long calorie restriction (CR, 40% calorie intake reduction). Aging caused loss of muscle mass and increased apoptotic DNA fragmentation, which were mitigated by CR. Protein levels of IL-15 and mRNA abundance of IL-15 receptor α-chain decreased in senescent ad libitum (AL) fed rats, but were maintained in CR rodents. Elevations of TNF-α, TNF-receptor 1, cleaved caspase-8 and -3 were observed at advanced age in AL rats. These changes were prevented or mitigated by CR. Our results indicate that aging is associated with decreased IL-15 signaling in rat gastrocnemius muscle, which may contribute to sarcopenia partly through enhanced TNF-α-mediated apoptosis. Preservation of IL-15 signaling by CR may therefore represent a further mechanism contributing to the anti-aging effect of this dietary intervention in skeletal muscle.
PMCID: PMC2768529  PMID: 19396981
sarcopenia; interleukin-15; tumor necrosis factor-α; calorie restriction; apoptosis
25.  Renin-Angiotensin System Blockers Protect Pancreatic Islets against Diet-Induced Obesity and Insulin Resistance in Mice 
PLoS ONE  2013;8(7):e67192.
The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS) may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF) diet.
C57BL/6 mice fed a HF diet (8 weeks) were treated with aliskiren (50 mg/kg/day), enalapril (30 mg/kg/day) or losartan (10 mg/kg/day) for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis.
All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM) gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression.
Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7) /Mas receptor axis and adiponectin levels.
PMCID: PMC3718820  PMID: 23894285

Results 1-25 (1405396)