Search tips
Search criteria

Results 1-25 (1086375)

Clipboard (0)

Related Articles

1.  Increased Life Span due to Calorie Restriction in Respiratory-Deficient Yeast 
PLoS Genetics  2005;1(5):e69.
A model for replicative life span extension by calorie restriction (CR) in yeast has been proposed whereby reduced glucose in the growth medium leads to activation of the NAD+–dependent histone deacetylase Sir2. One mechanism proposed for this putative activation of Sir2 is that CR enhances the rate of respiration, in turn leading to altered levels of NAD+ or NADH, and ultimately resulting in enhanced Sir2 activity. An alternative mechanism has been proposed in which CR decreases levels of the Sir2 inhibitor nicotinamide through increased expression of the gene coding for nicotinamidase, PNC1. We have previously reported that life span extension by CR is not dependent on Sir2 in the long-lived BY4742 strain background. Here we have determined the requirement for respiration and the effect of nicotinamide levels on life span extension by CR. We find that CR confers robust life span extension in respiratory-deficient cells independent of strain background, and moreover, suppresses the premature mortality associated with loss of mitochondrial DNA in the short-lived PSY316 strain. Addition of nicotinamide to the medium dramatically shortens the life span of wild type cells, due to inhibition of Sir2. However, even in cells lacking both Sir2 and the replication fork block protein Fob1, nicotinamide partially prevents life span extension by CR. These findings (1) demonstrate that respiration is not required for the longevity benefits of CR in yeast, (2) show that nicotinamide inhibits life span extension by CR through a Sir2-independent mechanism, and (3) suggest that CR acts through a conserved, Sir2-independent mechanism in both PSY316 and BY4742.
Calorie restriction slows aging and increases life span in nearly every organism studied. The mechanism by which this occurs is one of the most important unanswered questions in biogerontology. One popular theory, based on work from the budding yeast Saccharomyces cerevisiae, proposes that calorie restriction works by causing a metabolic shift toward increased mitochondrial respiration, resulting in activation of a family of proteins known as Sirtuins. This study demonstrates that life span extension by calorie restriction does not require respiration and occurs even in cells completely lacking mitochondrial DNA. Interestingly, calorie restriction protects yeast cells against a severe longevity defect associated with absence of mitochondrial DNA, suggesting the possibility that the consequences of age-associated mitochondrial dysfunction might be alleviated or prevented by calorie restriction.
PMCID: PMC1287956  PMID: 16311627
2.  Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9 
PLoS Genetics  2008;4(1):e13.
Calorie restriction (CR), the only non-genetic intervention known to slow aging and extend life span in organisms ranging from yeast to mice, has been linked to the down-regulation of Tor, Akt, and Ras signaling. In this study, we demonstrate that the serine/threonine kinase Rim15 is required for yeast chronological life span extension caused by deficiencies in Ras2, Tor1, and Sch9, and by calorie restriction. Deletion of stress resistance transcription factors Gis1 and Msn2/4, which are positively regulated by Rim15, also caused a major although not complete reversion of the effect of calorie restriction on life span. The deletion of both RAS2 and the Akt and S6 kinase homolog SCH9 in combination with calorie restriction caused a remarkable 10-fold life span extension, which, surprisingly, was only partially reversed by the lack of Rim15. These results indicate that the Ras/cAMP/PKA/Rim15/Msn2/4 and the Tor/Sch9/Rim15/Gis1 pathways are major mediators of the calorie restriction-dependent stress resistance and life span extension, although additional mediators are involved. Notably, the anti-aging effect caused by the inactivation of both pathways is much more potent than that caused by CR.
Author Summary
Reduction in calorie intake is a well-established intervention that extends the life span of a variety of biological model organisms studied. Calorie restriction also delays and attenuates age-related changes in primates, although its longevity-promoting effect has not been demonstrated. Here, we utilized a single cell organism, baker's yeast, to examine the role of evolutionarily conserved genes in life span regulation and their involvement in calorie restriction. The yeast mutants lacking Ras2, Tor1, or Sch9 are long-lived. The anti-aging effect observed in these mutants depends on the protein Rim15 and several key regulators of gene expression that are essential in inducing cellular protection under stress. The beneficial effects of calorie restriction are much smaller in yeast that are missing these proteins, indicating their essential role in promoting longevity. Our study also showed that by combining the genetic manipulation and calorie restriction intervention, yeast can reach a life span ten times that of those grown under standard conditions. This extreme longevity requires Rim15 and also depends on other yet-to-be identified mechanisms. Our findings provided new leads that may help to elucidate the mechanisms underlying the anti-aging effect of calorie restriction in mammals.
PMCID: PMC2213705  PMID: 18225956
3.  Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous 
PLoS Biology  2015;13(1):e1002048.
Calorie-restriction extends lifespan in many multicellular organisms; here substances secreted by calorie-restricted yeast are found to induce longer life in other yeast cells, suggesting that cellular communication is a component of this phenomenon even in a single-celled organism.
In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.
Author Summary
Though calorie restriction extends lifespan and healthspan in multiple model organisms, the intrinsic mechanisms remain unclear. In budding yeast Saccharomyces cerevisiae, manipulation of nicotinamide adenine dinucleotide (NAD+)—a central metabolic cofactor—can restrict or extend replicative lifespan, suggesting that NAD+-dependent targets might be mediators of extended longevity. However, although treating cells with the NAD+ precursor nicotinamide riboside extends lifespan, intracellular NAD+ metabolites levels are not altered by glucose restriction. This suggests the potential involvement of extracellular factors in replicative lifespan extension. Here we show that though yeast cells display a longevity benefit upon glucose restriction, these cells surprisingly lose the longevity benefit if moved from their local environment to fresh glucose-restricted media. They are, however, able to regain the longevity benefit, despite the change in environment, if the new environment is supplemented with conditioned medium from glucose restricted cells. Our results suggest that calorie restriction-induced longevity is not cell autonomous and, instead, appears to be transmitted from cell to cell in S. cerevisiae via a dialyzable extracellular factor.
PMCID: PMC4310591  PMID: 25633578
4.  Tor1/Sch9-Regulated Carbon Source Substitution Is as Effective as Calorie Restriction in Life Span Extension 
PLoS Genetics  2009;5(5):e1000467.
The effect of calorie restriction (CR) on life span extension, demonstrated in organisms ranging from yeast to mice, may involve the down-regulation of pathways, including Tor, Akt, and Ras. Here, we present data suggesting that yeast Tor1 and Sch9 (a homolog of the mammalian kinases Akt and S6K) is a central component of a network that controls a common set of genes implicated in a metabolic switch from the TCA cycle and respiration to glycolysis and glycerol biosynthesis. During chronological survival, mutants lacking SCH9 depleted extracellular ethanol and reduced stored lipids, but synthesized and released glycerol. Deletion of the glycerol biosynthesis genes GPD1, GPD2, or RHR2, among the most up-regulated in long-lived sch9Δ, tor1Δ, and ras2Δ mutants, was sufficient to reverse chronological life span extension in sch9Δ mutants, suggesting that glycerol production, in addition to the regulation of stress resistance systems, optimizes life span extension. Glycerol, unlike glucose or ethanol, did not adversely affect the life span extension induced by calorie restriction or starvation, suggesting that carbon source substitution may represent an alternative to calorie restriction as a strategy to delay aging.
Author Summary
Studies using model organisms have pointed to the existence of evolutionarily conserved genes and signaling pathways that regulates life span. Changes in the activity of these genes/pathways have also been implicated in mediating the beneficial effect of calorie restriction, a well-recognized intervention that extends the life span from yeast to mammals. We investigated the global gene expression changes and identified genes involved in the metabolism of various kinds of carbon sources that are associated with longevity in the single cell organism, the baker's yeast. Although glucose and ethanol are common carbon sources for growth, they also have detrimental pro-aging effects in yeast. Long-lived yeast mutants actively utilize available glucose and ethanol and produce glycerol, which does not adversely affect the yeast life span extension. Our finding suggest that this “carbon source substitution” observed in long-lived yeast creates an environment mimicking calorie restriction, which together with the direct regulation of stress resistance systems optimizes life span extension. Findings using these simple genetic models will help to elucidate fundamental longevity regulatory mechanisms and identify similar pathways in mammals.
PMCID: PMC2669710  PMID: 19424415
5.  Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans 
PLoS Medicine  2007;4(3):e76.
Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.
Methods and Findings
The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 ± 1.0 y), overweight (body mass index, 27.8 ± 0.7 kg/m2) individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX), 12.5% CR + 12.5% increased energy expenditure (EE). In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, −135 ± 42 kcal/d, p = 0.002 and CREX, −117 ± 52 kcal/d, p = 0.008). Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05). In parallel, mitochondrial DNA content increased by 35% ± 5% in the CR group (p = 0.005) and 21% ± 4% in the CREX group (p < 0.004), with no change in the control group (2% ± 2%). However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid) cycle (citrate synthase), beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase), and electron transport chain (cytochrome C oxidase II) was unchanged. DNA damage was reduced from baseline in the CR (−0.56 ± 0.11 arbitrary units, p = 0.003) and CREX (−0.45 ± 0.12 arbitrary units, p = 0.011), but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling) induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.
The observed increase in muscle mitochondrial DNA in association with a decrease in whole body oxygen consumption and DNA damage suggests that caloric restriction improves mitochondrial function in young non-obese adults.
Anthony Civitarese and colleagues observed an increase in mitochondrial DNA in muscle and a decrease in whole body oxygen consumption in healthy adults who underwent caloric restriction.
Editors' Summary
Life expectancy (the average life span) greatly increased during the 20th century in most countries, largely due to improved hygiene, nutrition, and health care. One possible approach to further increase human life span is “caloric restriction.” A calorie-restricted diet provides all the nutrients necessary for a healthy life but minimizes the energy (calories) supplied in the diet. This type of diet increases the life span of mice and delays the onset of age-related chronic diseases such as heart disease and stroke. There are also hints that people who eat a calorie-restricted diet might live longer than those who overeat. People living in Okinawa, Japan, have a lower energy intake than the rest of the Japanese population and an extremely long life span. In addition, calorie-restricted diets beneficially affect several biomarkers of aging, including decreased insulin sensitivity (a precursor to diabetes). But how might caloric restriction slow aging? A major factor in the age-related decline of bodily functions is the accumulation of “oxidative damage” in the body's proteins, fats, and DNA. Oxidants—in particular, chemicals called “free radicals”—are produced when food is converted to energy by cellular structures called mitochondria. One theory for how caloric restriction slows aging is that it lowers free-radical production by inducing the formation of efficient mitochondria.
Why Was This Study Done?
Despite hints that caloric restriction might have similar effects in people as in rodents, there have been few well-controlled studies on the effect of good quality calorie-reduced diets in healthy people. It is also unknown whether an energy deficit produced by increasing physical activity while eating the same amount of food has the same effects as caloric restriction. Finally, it is unclear how caloric restriction alters mitochondrial function. The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) organization is investigating the effect of caloric restriction interventions on physiology, body composition, and risk factors for age-related diseases. In this study, the researchers have tested the hypothesis that short-term caloric deficit (with or without exercise) increases the efficiency of mitochondria in human muscle.
What Did the Researchers Do and Find?
The researchers enrolled 36 healthy overweight but non-obese young people into their study. One-third of them received 100% of their energy requirements in their diet; the caloric restriction (CR) group had their calorie intake reduced by 25%; and the caloric restriction plus exercise (CREX) group had their calorie intake reduced by 12.5% and their energy expenditure increased by 12.5%. The researchers found that a 25% caloric deficit for six months, achieved by diet alone or by diet plus exercise, decreased 24-hour whole body energy expenditure (i.e., overall calories burned for body function), which suggests improved mitochondrial function. Their analysis of genes involved in mitochondria formation indicated that CR and CREX both increased the number of mitochondria in skeletal muscle. Both interventions also reduced the amount of DNA damage—a marker of oxidative stress—in the participants' muscles.
What Do These Findings Mean?
These results indicate that a short-term caloric deficit, whether achieved by diet or by diet plus exercise, induces the formation of “efficient mitochondria” in people just as in rodents. The induction of these efficient mitochondria in turn reduces oxidative damage in skeletal muscles. Consequently, this adaptive response to caloric restriction might have the potential to slow aging and increase longevity in humans as in other animals. However, this six-month study obviously provides no direct evidence for this, and, by analogy with studies in rodents, an increase in longevity might require lifelong caloric restriction. The results here suggest that even short-term caloric restriction can produce beneficial physiological changes, but more research is necessary before it becomes clear whether caloric restriction should be recommended to healthy individuals.
Additional Information.
Please access these Web sites via the online version of this summary at
The CALERIE (Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy) Web site contains information on the study and how to participate
American Federation for Aging Research includes information on aging with pages on the biology of aging and on caloric restriction
The Okinawa Centenarian Study is a population-based study on long-lived elderly people in Okinawa, Japan
US Government information on nutrition
MedlinePlus encyclopedia pages on diet and calories
The Calorie Restriction Society, a nonprofit organization that provides information on life span and caloric restriction
Wikipedia pages on calorie restriction and on mitochondria (note: Wikipedia is an online encyclopedia that anyone can edit)
PMCID: PMC1808482  PMID: 17341128
6.  Pro-Aging Effects of Glucose Signaling through a G Protein-Coupled Glucose Receptor in Fission Yeast 
PLoS Genetics  2009;5(3):e1000408.
Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.
Author Summary
Lowering caloric intake by limiting glucose (the preferred carbon and energy source) increases life span in various species. Excess glucose can have deleterious effects, but it is not clear whether this is due to the caloric contribution of glucose or to some other effect. Glucose sensed by the cells activates signaling pathways that, in yeast, favor the metabolic machinery that makes energy (glycolysis) and cell growth. The sensing of glucose also reduces stress resistance and the ability to live long. Does glucose provoke a pro-aging effect as a result of its metabolic activity or by activating signaling pathways? Here we addressed this question by studying the role of a glucose-signaling pathway in the life span of the fission yeast S. pombe. Genetic inactivation of the glucose-signaling pathway prolonged life span in this yeast, while its constitutive activation shortened it and blocked the longevity effects of calorie restriction. The pro-aging effects of glucose signaling correlated with a decrease in mitochondrial respiration and an increase in reactive oxygen species production. Moreover, a strain without glucose metabolism is still sensitive to detrimental effects of glucose due to signaling. Our work shows that glucose signaling through the glucose receptor GIT3 constitutes the main cause responsible for the pro-aging effects of glucose in fission yeast.
PMCID: PMC2646135  PMID: 19266076
7.  Sir2-Independent Life Span Extension by Calorie Restriction in Yeast 
PLoS Biology  2004;2(9):e296.
Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes.
This study indicates that calorie restriction and Sir2 promote longevity in yeast through distinct pathways. This undermines the accepted view, and has implications for aging in higher organisms
PMCID: PMC514491  PMID: 15328540
8.  Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast 
eLife  null;4:e09709.
Silent information regulator 2 (Sir2), an NAD+-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H+-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2-S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a mechanism by which Sir2 contributes to lifespan extension.
eLife digest
We know that cutting calorie intake through a restricted diet can slow down the aging process and prolong the lives of many organisms ranging from yeast to mammals. Calorie restriction also has protective effects on various age-related diseases including neurodegenerative disorders, cardiovascular disease, and cancer. Many studies suggest that we may mimic the beneficial effects of calorie restriction by controlling the activities of some proteins involved in the aging process.
An enzyme called Sir2 is required for calorie restriction to be able to increase lifespan. This enzyme modifies proteins called histones, which are used to package DNA inside cells. In yeast, Sir2 modifies the histones in such a way that the genes contained in that section of DNA are inactivated (or ‘silenced’). As the yeast cells age, the activity of Sir2 declines, which allows these genes to become active and contribute to the aging process. However, when yeast cells are grown in the presence of little sugar—which mimics caloric restriction—Sir2 is activated and this restores gene silencing.
It is not clear how Sir2's ability to silence these genes contributes to prolonged lifespan. Kang et al. studied the role of Sir2 in yeast and observed that one of the genes that Sir2 inactivates is called PMA1. This gene encodes a protein that is known to restrict the lifespan of yeast cells. Further experiments show that other proteins attach or remove molecules called phosphate groups from Sir2 to regulate its activity. Sir2 is inactivated when a phosphate group is attached, and active in the absence of phosphate. Under a reduced diet, the proteins that add phosphate to Sir2 are inactive, which allows Sir2 to become active and reduce the expression of the PMA1 gene.
These results show that Sir2 fine-tunes the expression of PMA1 and other age-related genes and that the attachment of phosphate groups to Sir2 by other proteins interferes with this regulation. The next challenges will be to identify the proteins responsible for attaching phosphate groups to Sir2, and to find out how they work.
PMCID: PMC4586308  PMID: 26329457
Sir2; lifespan extension; dietary restriction; cAMP-PKA; CK2; phosphorylation; S. cerevisiae
9.  A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan 
PLoS Genetics  2013;9(3):e1003329.
Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics.
Author Summary
Although many aging regulators have been discovered, we are still uncovering how each contributes to the basic biology underlying cell lifespan and how certain longevity-promoting regimens, such as calorie restriction, manipulate the aging process across species. Since many cellular aging processes between human cells and budding yeast are related, we examined a collection of genetically diverse yeast and discovered that a genetic variant in vineyard yeast confers a 41% lifespan increase. The responsible sequence in the vineyard yeast reduces the amount of DNA replication that initiates at the ribosomal DNA (rDNA) locus, a chromosome-sized region of the genome that is dedicated to the production of ribosomal RNA required for protein synthesis and growth. Strikingly, we find that calorie restriction conditions also reduce rDNA replication, potentially promoting longevity by the same mechanism. While the rDNA has been previously linked to lifespan control, how this single locus affects global cell function has remained elusive. We find that a weakly replicating rDNA promotes DNA replication across the rest of the cell's genome, perhaps through the re-allocation of replication resources from decreased rDNA demand. Our findings suggest that the cell's inability to complete genome replication is one of the major impediments to yeast longevity.
PMCID: PMC3591295  PMID: 23505383
10.  Calories Do Not Explain Extension of Life Span by Dietary Restriction in Drosophila 
PLoS Biology  2005;3(7):e223.
Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species.
Experimental evidence reveals that specific nutritional components, rather than reducing calorie intake per se, are responsible for extending lifespan via dietary restriction in Drosophila melanogaster.
PMCID: PMC1140680  PMID: 16000018
The Journal of biological chemistry  2007;282(9):6161-6171.
Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC), is a novel metabolic longevity factor in the CR pathway. Deleting the LAT1 gene abolishes life span extension induced by CR. Over-expressing Lat1 extends life span and this life span extension is not further increased by CR. Similar to CR, life span extension by Lat1 over-expression largely requires mitochondrial respiration indicating mitochondrial metabolism plays an important role in CR. Interestingly, Lat1 over-expression does not require the Sir2 family to extend life span, suggesting Lat1 mediates a branch of the CR pathway that functions in parallel to the Sir2 family. Lat1 is also a limiting longevity factor in non-dividing cells in that over expressing Lat1 extends cell survival during prolonged culture at stationary phase. Our studies suggest that Lat1 over-expression extends life span by increasing metabolic fitness of the cell. CR may therefore also extend life span and ameliorate age-associated diseases by increasing metabolic fitness through regulating central metabolic enzymes.
PMCID: PMC2440684  PMID: 17200108
12.  Reducing Sphingolipid Synthesis Orchestrates Global Changes to Extend Yeast Lifespan 
Aging cell  2013;12(5):833-841.
Studies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish these goals are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway. Here we show that myriocin treatment induces global effects and changes expression of approximately forty percent of the yeast genome with 1252 genes up-regulated and 1497 down-regulated (p < 0.05) compared to untreated cells. These changes are due to modulation of evolutionarily conserved signaling pathways including activation of the Snf1/AMPK pathway and down-regulation of the Protein Kinase A (PKA) and Target of Rapamycin Complex 1 (TORC1) pathways. Many processes that enhance lifespan are regulated by these pathways in response to myriocin treatment including respiration, carbon metabolism, stress resistance, protein synthesis and autophagy. These extensive effects of myriocin match those of rapamycin and calorie restriction. Our studies in yeast together with other studies in mammals reveal the potential of myriocin or related compounds to lower the incidence of age-related diseases in humans and improve health span.
PMCID: PMC3773046  PMID: 23725375
TORC1; AMPK; S6 Kinase; aging; myriocin; sphingolipids
13.  Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi” 
Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by coordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose–response, challenges long-standing beliefs about the nature of the dose–response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysiruption with consequent impact on longevity processes.
PMCID: PMC3644272  PMID: 23618527
14.  The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction mediated life span extension in yeast 
Genes & development  2008;22(7):931-944.
Recent studies suggest that increased mitochondrial metabolism and the concomitant decrease in NADH levels mediate calorie restriction (CR)-induced life span extension. The mitochondrial inner membrane is impermeable to NAD and NADH and it is unclear how CR relays increased mitochondrial metabolism to multiple cellular pathways that reside in spatially distinct compartments. Here we show that the mitochondrial components of the malate-aspartate NADH shuttle (Mdh1, malate dehydrogenase and Aat1, asparate amino transferase) and the glycerol-3-phosphate shuttle (Gut2, glycerol-3-phosphate dehydrogenase) are novel longevity factors in the CR pathway in yeast. Over-expressing Mdh1, Aat1 and Gut2 extend life span and do not synergize with CR. Mdh1 and Aat1 over-expressions require both respiration and the Sir2 family to extend life span. The mdh1Δaat1Δ double mutation blocks CR-mediated life span extension and also prevents the characteristic decrease in the NADH levels in the cytosolic/nuclear pool, suggesting that the malate-aspartate shuttle plays a major role in the activation of the downstream targets of CR such as Sir2. Over-expression of the NADH shuttles may also extend life span by increasing the metabolic fitness of the cells. Together, these data suggest that CR may extend life span and ameliorate age-associated metabolic diseases by activating components of the NADH shuttles.
PMCID: PMC2279204  PMID: 18381895
calorie restriction (CR); Sir2; aging; NADH shuttles; respiration; metabolism
15.  Proteasomes, Sir2, and Hxk2 Form an Interconnected Aging Network That Impinges on the AMPK/Snf1-Regulated Transcriptional Repressor Mig1 
PLoS Genetics  2015;11(1):e1004968.
Elevated proteasome activity extends lifespan in model organisms such as yeast, worms and flies. This pro-longevity effect might be mediated by improved protein homeostasis, as this protease is an integral module of the protein homeostasis network. Proteasomes also regulate cellular processes through temporal and spatial degradation of signaling pathway components. Here we demonstrate that the regulatory function of the proteasome plays an essential role in aging cells and that the beneficial impact of elevated proteasome capacity on lifespan partially originates from deregulation of the AMPK signaling pathway. Proteasome-mediated lifespan extension activity was carbon-source dependent and cells with enhancement proteasome function exhibited increased respiratory activity and oxidative stress response. These findings suggested that the pro-aging impact of proteasome upregulation might be related to changes in the metabolic state through a premature induction of respiration. Deletion of yeast AMPK, SNF1, or its activator SNF4 abrogated proteasome-mediated lifespan extension, supporting this hypothesis as the AMPK pathway regulates metabolism. We found that the premature induction of respiration in cells with increased proteasome activity originates from enhanced turnover of Mig1, an AMPK/Snf1 regulated transcriptional repressor that prevents the induction of genes required for respiration. Increasing proteasome activity also resulted in partial relocation of Mig1 from the nucleus to the mitochondria. Collectively, the results argue for a model in which elevated proteasome activity leads to the uncoupling of Snf1-mediated Mig1 regulation, resulting in a premature activation of respiration and thus the induction of a mitohormetic response, beneficial to lifespan. In addition, we observed incorrect Mig1 localization in two other long-lived yeast aging models: cells that overexpress SIR2 or deleted for the Mig1-regulator HXK2. Finally, compromised proteasome function blocks lifespan extension in both strains. Thus, our findings suggest that proteasomes, Sir2, Snf1 and Hxk2 form an interconnected aging network that controls metabolism through coordinated regulation of Mig1.
Author Summary
Advanced cellular age is associated with decreased efficiency of the proteostasis network. The proteasome, a protease in the cytoplasm and nuclei of eukaryotic cells, is an important component of this network. Recent studies demonstrate that increased proteasome capacity has a positive impact on longevity. The underlying mechanisms, however, have not been fully identified. Here we report that proteasomes are involved in regulating the AMP-activated kinase (AMPK) pathway and thus participate in correct metabolic adaptation. We find that Mig1, a transcriptional repressor downstream of yeast AMPK, Snf1, is a proteasome target and a negative regulator of lifespan. Increased proteasome activity results in enhanced turnover and incorrect localization of Mig1. The reduced Mig1 levels result in the induction of respiration and upregulation of the oxidative stress response. Premature Mig1 inactivation is also observed in two additional long-lived strains that overexpress SIR2 or are deleted for HXK2 and lifespan extension in both strains requires correct proteasome function. Our results uncover an interconnected network comprised of the proteasome, Sir2 and AMPK/Hxk2 signaling that impacts longevity through regulation of Mig1 and modulates respiratory metabolism. Mechanistic information on the cross-communication between these pathways is expected to facilitate the identification of novel pro-aging interventions.
PMCID: PMC4309596  PMID: 25629410
16.  Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast 
Experimental gerontology  2013;48(10):1107-1119.
We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions.
PMCID: PMC3728276  PMID: 23337777
aging; autophagy; calorie restriction; leucine; respiration; Saccharomyces cerevisiae
17.  Identification of Potential Calorie Restriction-Mimicking Yeast Mutants with Increased Mitochondrial Respiratory Chain and Nitric Oxide Levels 
Journal of Aging Research  2011;2011:673185.
Calorie restriction (CR) induces a metabolic shift towards mitochondrial respiration; however, molecular mechanisms underlying CR remain unclear. Recent studies suggest that CR-induced mitochondrial activity is associated with nitric oxide (NO) production. To understand the role of mitochondria in CR, we identify and study Saccharomyces cerevisiae mutants with increased NO levels as potential CR mimics. Analysis of the top 17 mutants demonstrates a correlation between increased NO, mitochondrial respiration, and longevity. Interestingly, treating yeast with NO donors such as GSNO (S-nitrosoglutathione) is sufficient to partially mimic CR to extend lifespan. CR-increased NO is largely dependent on mitochondrial electron transport and cytochrome c oxidase (COX). Although COX normally produces NO under hypoxic conditions, CR-treated yeast cells are able to produce NO under normoxic conditions. Our results suggest that CR may derepress some hypoxic genes for mitochondrial proteins that function to promote the production of NO and the extension of lifespan.
PMCID: PMC3092605  PMID: 21584246
18.  Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation 
PLoS Genetics  2010;6(7):e1001024.
The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.
Author Summary
Model organisms have been instrumental in uncovering genes that function to control life span and to identify the molecular pathways whose role in aging is conserved between the evolutionarily distant unicellular yeast and mice. Because yeast are particularly amenable to genetics and genomics studies, they have been used widely as model system for aging research. Here we have exploited a powerful genomic tool, the yeast deletion collection, to screen a pool of non-essential deletion mutants (∼4,800) to identify novel genes involved in the regulation of yeast chronological life span. Our results show that normal life span depends on functional mitochondria and on the cell's ability to degrade cellular components and proteins by autophagy. Our data indicate that a cell signaling protein, CK2, and diverse cellular processes such as fatty acid metabolism, amino acid biosynthesis, and tRNA modification modulate yeast chronological aging. The high level of conservation of the novel life span regulatory genes uncovered in this study suggests that their role in longevity regulation might be conserved in higher eukaryotes.
PMCID: PMC2904796  PMID: 20657825
19.  Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice 
PeerJ  2015;3:e822.
Calorie restriction is known to extend lifespan among organisms by a debating mechanism underlying nitric oxide-driven mitochondrial biogenesis. We report here that nitric oxide generators including artemisinin, sodium nitroprusside, and L-arginine mimics calorie restriction and resembles hydrogen peroxide to initiate the nitric oxide signaling cascades and elicit the global antioxidative responses in mice. The large quantities of antioxidant enzymes are correlated with the low levels of reactive oxygen species, which allow the down-regulation of tumor suppressors and accessory DNA repair partners, eventually leading to the compromise of telomere shortening. Accompanying with the up-regulation of signal transducers and respiratory chain signatures, mitochondrial biogenesis occurs with the elevation of adenosine triphosphate levels upon exposure of mouse skeletal muscles to the mimetics of calorie restriction. In conclusion, calorie restriction-triggered nitric oxide provides antioxidative protection and alleviates telomere attrition via mitochondrial biogenesis, thereby maintaining chromosomal stability and integrity, which are the hallmarks of longevity.
PMCID: PMC4358698  PMID: 25780774
Artemisinin; Calorie restriction; Nitric oxide; Hydrogen peroxide; BRCA1; Telomere
20.  Effects of calorie restriction on life span of microorganisms 
Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism.
PMCID: PMC2944023  PMID: 20721547
Calorie restriction; Microorganisms; Mitochondrial respiration; Metabolism; Life span; Aging
21.  Newer antidiabetic drugs and calorie restriction mimicry 
De-acceleration of aging and delayed development of age-related morbidity accompanies the restriction of calories (without malnutrition) in laboratory mice, nematodes, yeast, fish, and dogs. Recent results from long-term longitudinal studies conducted on primates have suggested longevity benefits of a 30% restriction of calories in rhesus monkeys as well. Among calorie restricted rhesus monkeys one of the mechanisms for the improvement in lifespan was the reduction in the development of glucose intolerance and cardiovascular disease. Although there are no comparable human studies, it is likely that metabolic and longevity benefits will accompany a reduction in calories in humans as well. However, considering the difficulties in getting healthy adults to limit food intake science has focused on understanding the biochemical processes that accompany calorie restriction (CR) to formulate drugs that would mimic the effects of CR without the need to actually restrict calories. Drugs in this emerging therapeutic field are called CR mimetics. Some of the currently used anti-diabetic agents may have some CR mimetic like effects. This review focuses on the CR mimetic properties of the currently available anti-diabetic agents.
PMCID: PMC4743377  PMID: 26904485
Alpha-glucosidase inhibitors; canagliflozin; dapagliflozin; dipeptidyl peptidase-4 inhibitors; exenatide; exenatide QW; glucagon like peptide-1 receptor agonists inhibitors; liraglutide; metformin; pioglitazone; sodium glucose co-transporter 2
22.  Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ 
Nature  2004;429(6993):771.
Calorie restriction extends lifespan in organisms ranging from yeast to mammals1. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction2. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-γ (peroxisome proliferator-activated receptor-γ), including genes mediating fat storage. Sirt1 represses PPAR-γ by docking with its cofactors NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors). Mobilization of fatty acids from white adipocytes upon fasting is compromised in Sirt1+/− mice. Repression of PPAR-γ by Sirt1 is also evident in 3T3-L1 adipocytes, where overexpression of Sirt1 attenuates adipogenesis, and RNA interference of Sirt1 enhances it. In differentiated fat cells, upregulation of Sirt1 triggers lipolysis and loss of fat. As a reduction in fat is sufficient to extend murine lifespan3, our results provide a possible molecular pathway connecting calorie restriction to life extension in mammals.
PMCID: PMC2820247  PMID: 15175761
23.  Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans 
Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood.
Using bacterial food deprivation as a means of DR in C. elegans, we show that transient DR confers long-term benefits including stress resistance and increased longevity. Consistent with studies in the fruit fly and in mice, we demonstrate that DR also enhances survival when initiated late in life. DR by bacterial food deprivation significantly increases life span in worms when initiated as late as 24 days of adulthood, an age at which greater than 50% of the cohort have died. These survival benefits are, at least partially, independent of food consumption, as control fed animals are no longer consuming bacterial food at this advanced age. Animals separated from the bacterial lawn by a barrier of solid agar have a life span intermediate between control fed and food restricted animals. Thus, we find that life span extension from bacterial deprivation can be partially suppressed by a diffusible component of the bacterial food source, suggesting a calorie-independent mechanism for life span extension by dietary restriction.
Based on these findings, we propose that dietary restriction by bacterial deprivation increases longevity in C. elegans by a combination of reduced food consumption and decreased food sensing.
PMCID: PMC2408926  PMID: 18457595
24.  Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae 
Nature  2003;423(6936):181-185.
Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide2. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.
PMCID: PMC4802858  PMID: 12736687
25.  Effects of calorie restriction and ω-3 dietary fat on aging in short-and long-lived rodents 
Age  1998;21(4):175-182.
Aging is accompanied by a steady increase in the incidence of spontaneous tumors and a decline in immune function. Calorie restriction (CR) or supplementation with ω-3 fats prolongs life span, suppresses tumorigenesis, and ameliorates immune function in a variety of experimental models. We suggest that decreased oxidant stress and upregulation of apoptosis mediate the effects of calorie restriction on immunity and longevity. CR prolongs life span in several animal models and our studies have examined the effects of CR on the immune system and on tumorigenesis. CR maintains naive T cells, prevents the rise in “double-negative” T cells, maintains lymphocyte responsiveness to mitogens, and preserves Dexamethasone induced apoptosis in spleen cells of MRL/Ipr mice. CR also modulates the expression of inflammatory mediators and cytokines. CR decreases the Sjögren’s syndrome-like chronic inflammation of salivary glands of B/W animals while increasing expression of the immunosuppressive cytokine TGFβ1 and decreasing expression of the pro-inflammatory cytokines IL-6 and TNFα. The autoimmune disease in the B/W mouse also affects the kidneys, and we find that renal expression of platelet derived growth factor-A, (PDGF-A) and thrombin receptor are decreased in CR animals. Similarly, CR decreases the expression and localization of plasminogen activator inhibitor type 1 in glomeruli of B/W animals. CR also modulates expression and function of androgen receptors and the binding of insulin to liver nuclei. Finally, CR suppresses the development of breast tumors in the Ras oncomouse. These effects of calorie restriction are paralleled in short-lived B/W animals fed diets supplemented with ω-3 fatty acids. Omega-3 fatty acids induce the expression of hepatic antioxidant enzymes, and enhance apoptosis in lymphocytes of B/W animals.
PMCID: PMC3455462  PMID: 23604378

Results 1-25 (1086375)