Search tips
Search criteria

Results 1-25 (1115623)

Clipboard (0)

Related Articles

1.  Drosophila ref(2)P is required for the parkin-mediated suppression of mitochondrial dysfunction in pink1 mutants 
Cell Death & Disease  2013;4(10):e873-.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.
PMCID: PMC3920958  PMID: 24157867
Drosophila; mitochondria; Parkinson's disease; stress; unfolded proteins
Nature communications  2012;3:1240.
Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyze the autophagic degradation of different types of aggregates of synphilin-1 (Sph1), a protein often found in pathogenic protein inclusions. We show that small Sph1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in Sph1 necessary for its own basal and inducible aggrephagy, and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favors the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se but on their dynamic properties in the aggregate.
PMCID: PMC3526956  PMID: 23212369
autophagy; protein aggregates; aggresomes; synphilin-1; protein mobility; ubiquitination
3.  Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila☆ 
Febs Letters  2014;588(3):408-413.
•Atg9 and Atg18 are required for autophagy upstream of Atg8a, unlike Atg2.•Atg9 accumulates on Ref(2)P aggregates in Atg8a, Atg7 and Atg2 mutants.•Ultrastructurally, Atg9 vesicles cluster around Ref(2)P aggregates in stalled PAS.•Atg9 does not accumulate on Ref(2)P upon loss of Atg18 or Vps34, while FIP200 does.•Atg18 simultaneously interacts with both Atg9 and Ref(2)P.
The Atg2–Atg18 complex acts in parallel to Atg8 and regulates Atg9 recycling from phagophore assembly site (PAS) during autophagy in yeast. Here we show that in Drosophila, both Atg9 and Atg18 are required for Atg8a puncta formation, unlike Atg2. Selective autophagic degradation of ubiquitinated proteins is mediated by Ref(2)P/p62. The transmembrane protein Atg9 accumulates on refractory to Sigma P (Ref(2)P) aggregates in Atg7, Atg8a and Atg2 mutants. No accumulation of Atg9 is seen on Ref(2)P in cells lacking Atg18 or Vps34 lipid kinase function, while the Atg1 complex subunit FIP200 is recruited. The simultaneous interaction of Atg18 with both Atg9 and Ref(2)P raises the possibility that Atg18 may facilitate selective degradation of ubiquitinated protein aggregates by autophagy.
Structured summary of protein interactions
Ref(2)Pphysically interacts with Atg18 by anti tag coimmunoprecipitation (View interaction) Atg18physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) CG8678physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) Atg18physically interacts with atg9 by anti tag coimmunoprecipitation (View interaction)
PMCID: PMC3928829  PMID: 24374083
Atg, autophagy-related; PAS, phagophore assembly site; PI3P, phosphatidylinositol 3-phosphate; Ref(2)P, refractory to Sigma P; ULK, uncoordinated-51 like autophagy kinase; Vps, vacuolar protein sorting; WIPI, WD40 repeat domain phosphoinositide-interacting protein; Atg2; Atg7; Atg8a; Atg9; Atg18; Ref(2)P/p62
4.  The Salmonella Deubiquitinase SseL Inhibits Selective Autophagy of Cytosolic Aggregates 
PLoS Pathogens  2012;8(6):e1002743.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.
Author Summary
Ubiquitination can target substrates to a number of fates, including autophagy, the essential cellular process that allows cells to degrade cytosolic material. Although Salmonella enterica resides in a vacuolar compartment during infection, it translocates several virulence proteins into the host cell cytoplasm. We have found that intracellular Salmonella induces the formation of ubiquitinated aggregates near the Salmonella-containing vacuole and that these aggregates are recognised by the autophagy machinery. Salmonella inhibits this response through the action of a translocated enzyme, SseL, which deubiquitinates the aggregates and thereby decreases the recruitment of autophagy markers. We show that SseL alone can deubiquitinate known substrates that are degraded by autophagy, that it reduces autophagy in infected cells and that its activity can increase intracellular Salmonella replication. This is a new example of how a bacterium counteracts a cellular defence pathway through the action of a translocated virulence protein.
PMCID: PMC3375275  PMID: 22719249
5.  Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain 
The Journal of Cell Biology  2008;180(6):1065-1071.
p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.
PMCID: PMC2290837  PMID: 18347073
6.  Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates 
PLoS Genetics  2015;11(2):e1004987.
Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease.
Author Summary
Accumulation of misfolded proteins deposited in the form of inclusion bodies is a common pathological hallmark for many human genetic diseases, particularly for the neurodegenerative disorders. The aggregation of the disease related proteins suggests a failure of the cellular machineries that maintain the protein homeostasis or proteostasis. The cellular clearance pathways, e.g. autophagy-lysosomal pathway, may not be of high efficiency in the face of rapid formation of misfolded protein aggregates. Thus, understanding of intrinsic mechanism whereby autophagy offers protection to cells by removing toxic protein aggregates is important. Here we report that a signaling transduction event that chemically modifies autophagy receptor protein p62/SQSTM1 regulates the receptor’s binding affinity to small molecule called ubiquitin(essential for marking the protein for degradation), as well as the selective degradation of targeted proteins. Furthermore, we find that expression of Huntington’s disease (HD) associated protein aggregates (containing polyglutamine or polyQ expansion) triggers the same modification of p62, which is dependent on the length of the polyQ expansion, suggesting a protective response of the cell by activating autophagy toward degradation of toxic aggregates. The modification of p62 also occurs in HD model brains in an age-dependent manner. Our study sheds light on the regulation of selective autophagy and provides a rationale for targeting p62 modification to treat aggregate diseases including HD.
PMCID: PMC4344198  PMID: 25723488
7.  Lazarillo-related Lipocalins confer long-term protection against type I Spinocerebellar Ataxia degeneration contributing to optimize selective autophagy 
A diverse set of neurodegenerative disorders are caused by abnormal extensions of polyglutamine (poly-Q) stretches in various, functionally unrelated proteins. A common feature of these diseases is altered proteostasis. Autophagy induction is part of the endogenous response to poly-Q protein expression. However, if autophagy is not resolved properly, clearance of toxic proteins or aggregates cannot occur effectively. Likewise, excessive autophagy induction can cause autophagic stress and neurodegeneration. The Lipocalins ApoD, Glial Lazarillo (GLaz) and Neural Lazarillo (NLaz) are neuroprotectors upon oxidative stress or aging. In this work we test whether these Lipocalins also protect against poly-Q-triggered deterioration of protein quality control systems.
Using a Drosophila retinal degeneration model of Type-1 Spinocerebellar Ataxia (SCA1) combined with genetic manipulation of NLaz and GLaz expression, we demonstrate that both Lipocalins protect against SCA1 neurodegeneration. They are part of the endogenous transcriptional response to SCA1, and their effect is non-additive, suggesting participation in a similar mechanism. GLaz beneficial effects persist throughout aging, and appears when expressed by degenerating neurons or by retinal support and glial cells. GLaz gain-of-function reduces cell death and the extent of ubiquitinated proteins accumulation, and decreases the expression of Atg8a/LC3, p62 mRNA and protein levels, and GstS1 induction. Over-expression of GLaz is able to reduce p62 and ubiquitinated proteins levels when rapamycin-dependent and SCA1-dependent inductions of autophagy are combined. In the absence of neurodegeneration, GLaz loss-of-function increases Atg8a/LC3 mRNA and p62 protein levels without altering p62 mRNA levels. Knocking-down autophagy, by interfering with Atg8a or p62 expression or by expressing dominant-negative Atg1/ULK1 or Atg4a transgenes, rescues SCA1-dependent neurodegeneration in a similar extent to the protective effect of GLaz. Further GLaz-dependent improvement is concealed.
This work shows for the first time that a Lipocalin rescues neurons from pathogenic SCA1 degeneration by optimizing clearance of aggregation-prone proteins. GLaz modulates key autophagy genes and lipid-peroxide clearance responsive genes. Down-regulation of selective autophagy causes similar and non-additive rescuing effects. These data suggest that SCA1 neurodegeneration concurs with autophagic stress, and places Lazarillo-related Lipocalins as valuable players in the endogenous protection against the two major contributors to aging and neurodegeneration: ROS-dependent damage and proteostasis deterioration.
Electronic supplementary material
The online version of this article (doi:10.1186/s13024-015-0009-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4374295  PMID: 25888134
Autophagy; Neurodegeneration; Neuroprotection; Polyubiquitinated protein clearance; Drosophila; GLaz; NLaz; ApoD; GstS1; Atg1/ULK1; Atg4a; Atg8a/LC3; p62
8.  Neuronal Autophagy: Self-eating or Self-cannibalism in Alzheimer’s Disease 
Neurochemical Research  2013;38(9):1769-1773.
Autophagy is a major intracellular degeneration pathway involved in the elimination and recycling of damaged organelles and long-lived proteins by lysosomes. Many of the pathological factors, which trigger neurodegenerative diseases, can perturb the autophagy activity, which is associated with misfolded protein aggregates accumulation in these disorders. Alzheimer’s disease, the first neurodegenerative disorder between dementias, is characterized by two aggregating proteins, β-amyloid peptide (plaques) and τ-protein (tangles). In Alzheimer’s disease autophagosomes dynamically form along neurites within neuronal cells and in synapses but effective clearance of these structures needs retrograde transportation towards the neuronal soma where there is a major concentration of lysosomes. Maturation of autophago-lysosomes and their retrograde trafficking are perturbed in Alzheimer’s disease, which causes a massive concentration of autophagy elements along degenerating neurites. Transportation system is disturbed along defected microtubules in Alzheimer’s disease brains. τ-protein has been found to control the stability of microtubules, however, phosphorylation of τ-protein or an increase in the total level of τ-protein can cause dysfunction of neuronal cells microtubules. Current evidence has shown that autophagy is developing in Alzheimer’s disease brains because of ineffective degradation of autophagosomes, which hold amyloid precursor protein-rich organelles and secretases important for β-amyloid peptides generation from amyloid precursor. The combination of raised autophagy induction and abnormal clearance of β-amyloid peptide-generating autophagic vacuoles creates circumstances helpful for β-amyloid peptide aggregation and accumulation in Alzheimer’s disease. However, the key role of autophagy in Alzheimer’s disease development is still under consideration today. One point of view suggests that abnormal autophagy induction causes a concentration of autophagic vacuoles rich in amyloid precursor protein, β-amyloid peptide and the elements crucial for its formation, whereas other hypothesis points to marred autophagic clearance or even decrease in autophagic effectiveness playing a role in maturation of Alzheimer’s disease. In this review we present the recent evidence linking autophagy to Alzheimer’s disease and the role of autophagic regulation in the development of full-blown Alzheimer’s disease.
PMCID: PMC3732752  PMID: 23737325
Alzheimer’s disease; Autophagy; Amyloid precursor protein; β-Amyloid peptide; τ-Protein; Neuronal death
9.  SQSTM1/p62 Interacts with HDAC6 and Regulates Deacetylase Activity 
PLoS ONE  2013;8(9):e76016.
Protein aggregates can form in the cytoplasm of the cell and are accumulated at aggresomes localized to the microtubule organizing center (MTOC) where they are subsequently degraded by autophagy. In this process, aggregates are engulfed into autophagosomes which subsequently fuse with lysosomes for protein degradation. A member of the class II histone deacetylase family, histone deacetylase 6(HDAC6) has been shown to be involved in both aggresome formation and the fusion of autophagosomes with lysosomes making it an attractive target to regulate protein aggregation. The scaffolding protein sequestosome 1(SQSTM1)/p62 has also been shown to regulate accumulation and autophagic clearance of protein aggregates. Recent studies have revealed colocalization of HDAC6 and p62 to ubiquitinated mitochondria, as well as, ubiquitinated protein aggregates associated with the E3 ubiquitin ligase TRIM50. HDAC6 deacetylase activity is required for aggresome formation and can be regulated by protein interaction with HDAC6. Due to their colocalization at ubiquitinated protein aggregates, we sought to examine if p62 specifically interacted with HDAC6 and if so, if this interaction had any effect on HDAC6 activity and/or the physiological function of cortactin-F-actin assembly. We succeeded in identifying and mapping the direct interaction between HDAC6 and p62. We further show that this interaction regulates HDAC6 deacetylase activity. Data are presented demonstrating that the absence of p62 results in hyperactivation of HDAC6 and deacetylation of α-tubulin and cortactin. Further, upon induction of protein misfolding we show that p62 is required for perinuclear co-localization of cortactin-F-actin assemblies. Thus, our findings indicate that p62 plays a key role in regulating the recruitment of F-actin network assemblies to the MTOC, a critical cellular function that is required for successful autophagic clearance of protein aggregates.
PMCID: PMC3785417  PMID: 24086678
10.  Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species 
Journal of Cell Science  2014;127(6):1263-1278.
TAR DNA-binding protein (TDP-43, also known as TARDBP) is the major pathological protein in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Large TDP-43 aggregates that are decorated with degradation adaptor proteins are seen in the cytoplasm of remaining neurons in ALS and FTD patients post mortem. TDP-43 accumulation and ALS-linked mutations within degradation pathways implicate failed TDP-43 clearance as a primary disease mechanism. Here, we report the differing roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of TDP-43. We have investigated the effects of inhibitors of the UPS and autophagy on the degradation, localisation and mobility of soluble and insoluble TDP-43. We find that soluble TDP-43 is degraded primarily by the UPS, whereas the clearance of aggregated TDP-43 requires autophagy. Cellular macroaggregates, which recapitulate many of the pathological features of the aggregates in patients, are reversible when both the UPS and autophagy are functional. Their clearance involves the autophagic removal of oligomeric TDP-43. We speculate that, in addition to an age-related decline in pathway activity, a second hit in either the UPS or the autophagy pathway drives the accumulation of TDP-43 in ALS and FTD. Therapies for clearing excess TDP-43 should therefore target a combination of these pathways.
PMCID: PMC3953816  PMID: 24424030
TDP-43; ALS; Autophagy; Proteasome; Aggrephagy; UPS
11.  NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses 
PLoS Genetics  2013;9(1):e1003196.
Plant autophagy plays an important role in delaying senescence, nutrient recycling, and stress responses. Functional analysis of plant autophagy has almost exclusively focused on the proteins required for the core process of autophagosome assembly, but little is known about the proteins involved in other important processes of autophagy, including autophagy cargo recognition and sequestration. In this study, we report functional genetic analysis of Arabidopsis NBR1, a homolog of mammalian autophagy cargo adaptors P62 and NBR1. We isolated two nbr1 knockout mutants and discovered that they displayed some but not all of the phenotypes of autophagy-deficient atg5 and atg7 mutants. Like ATG5 and ATG7, NBR1 is important for plant tolerance to heat, oxidative, salt, and drought stresses. The role of NBR1 in plant tolerance to these abiotic stresses is dependent on its interaction with ATG8. Unlike ATG5 and ATG7, however, NBR1 is dispensable in age- and darkness-induced senescence and in resistance to a necrotrophic pathogen. A selective role of NBR1 in plant responses to specific abiotic stresses suggest that plant autophagy in diverse biological processes operates through multiple cargo recognition and delivery systems. The compromised heat tolerance of atg5, atg7, and nbr1 mutants was associated with increased accumulation of insoluble, detergent-resistant proteins that were highly ubiquitinated under heat stress. NBR1, which contains an ubiquitin-binding domain, also accumulated to high levels with an increasing enrichment in the insoluble protein fraction in the autophagy-deficient mutants under heat stress. These results suggest that NBR1-mediated autophagy targets ubiquitinated protein aggregates most likely derived from denatured or otherwise damaged nonnative proteins generated under stress conditions.
Author Summary
Autophagy is an evolutionarily conserved process that sequestrates and delivers cytoplasmic macromolecules and organelles to the vacuoles or lysosomes for degradation. In plants, autophagy is involved in supplying internal nutrients during starvation and in promoting cell survival during senescence and during biotic and abiotic stresses. Arabidopsis NBR1 is a homolog of mammalian autophagy cargo adaptors P62 and NBR1. Disruption of Arabidopsis NBR1 caused increased sensitivity to a spectrum of abiotic stresses but had no significant effect on plant senescence, responses to carbon starvation, or resistance to a necrotrophic pathogen. NBR1 contains an ubiquitin-binding domain, and the compromised stress tolerance of autophagy mutants was associated with increased accumulation of NBR1 and ubiquitin-positive cellular protein aggregates in the insoluble protein fraction under stress conditions. Based on these results, we propose that NBR1 targets ubiquitinated protein aggregates most likely derived from denatured and otherwise damaged nonnative proteins for autophagic clearance under stress conditions.
PMCID: PMC3547818  PMID: 23341779
12.  p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells 
Molecular Vision  2010;16:1399-1414.
The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. Recently, p62/sequestosome 1 (p62) has been shown to be a key player linking the proteasomal and lysosomal clearance systems. In the present study, the functional roles of p62 and HSP70 were evaluated in conjunction with proteasome inhibitor–induced autophagy in human RPE cells (ARPE-19).
The p62, HSP70, and ubiquitin protein levels and localization were analyzed by western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. The p62 and HSP70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay.
Proteasome inhibition evoked the accumulation of perinuclear aggregates that strongly colocalized with p62 and HSP70. The p62 perinuclear accumulation was time- and concentration-dependent after MG-132 proteasome inhibitor loading. The silencing of p62, rather than Hsp70, evoked suppression of autophagy, when related to decreased LC3-II levels after bafilomycin treatment. In addition, the p62 silencing decreased the ubiquitination level of the perinuclear aggregates. Recently, we showed that hsp70 mRNA depletion increased cell death in ARPE-19 cells. Here, we demonstrate that p62 mRNA silencing has similar effects on cellular viability.
Our findings open new avenues for understanding the mechanisms of proteolytic processes in retinal cells, and could be useful in the development of novel therapies targeting p62 and HSP70.
PMCID: PMC2913138  PMID: 20680098
13.  The two C. elegans ATG-16 homologs have partially redundant functions in the basal autophagy pathway 
Autophagy  2013;9(12):1965-1974.
The presence of multiple homologs of the same yeast ATG genes endows an extra layer of complexity on the autophagic machinery in higher eukaryotes. The physiological function of individual homologs in the autophagy pathway remains poorly understood. Here we characterized the function of the two atg16 homologs, atg-16.1 and atg-16.2, in the autophagy pathway in C. elegans. We showed that atg-16.2 mutants exhibit a stronger autophagic defect than atg-16.1 mutants. atg-16.2; atg-16.1 double mutants display a much more severe defect than either single mutant. ATG-16.1 and ATG-16.2 interact with themselves and each other and also directly associate with ATG-5. atg-16.1 mutant embryos exhibit a wild-type expression and distribution pattern of LGG-1/Atg8, while LGG-1 puncta are markedly fewer in number and weaker in intensity in atg-16.2 mutants. In atg-16.2; atg-16.1 double mutants, the lipidated form of LGG-1 accumulates, but LGG-1 puncta are completely absent. ATG-16.2 ectopically expressed on the plasma membrane provides novel sites of LGG-1 puncta formation. We also demonstrated that the C-terminal WD repeats are dispensable for the role of atg-16.2 in aggrephagy (the degradation of protein aggregates by autophagy). Genetic epistasis analysis placed atg-16.2 upstream of atg-2, epg-6, and atg-18. Our study indicated that C. elegans ATG-16s are involved in specifying LGG-1 puncta formation and the two ATG-16 homologs have partially redundant yet distinct functions in the aggrephagy pathway.
PMCID: PMC4028341  PMID: 24185444
atg-16.1; atg-16.2; aggrephagy; C. elegans
14.  The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration 
Neurobiology of disease  2010;43(1):17-28.
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease.
PMCID: PMC2998573  PMID: 20732422
autophagy; protein aggregates; neurodegeneration; ubiquitination; p62; ALFY; aggresome; neurons
15.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy 
The Journal of Cell Biology  2010;189(4):671-679.
Parkin catalyzes mitochondrial ubiquitination, recruiting autophagic components that clear damaged mitochondria. Defects in this pathway are implicated in Parkinson's disease.
Mutations in parkin, a ubiquitin ligase, cause early-onset familial Parkinson's disease (AR-JP). How parkin suppresses Parkinsonism remains unknown. Parkin was recently shown to promote the clearance of impaired mitochondria by autophagy, termed mitophagy. Here, we show that parkin promotes mitophagy by catalyzing mitochondrial ubiquitination, which in turn recruits ubiquitin-binding autophagic components, HDAC6 and p62, leading to mitochondrial clearance. During the process, juxtanuclear mitochondrial aggregates resembling a protein aggregate-induced aggresome are formed. The formation of these “mito-aggresome” structures requires microtubule motor-dependent transport and is essential for efficient mitophagy. Importantly, we show that AR-JP–causing parkin mutations are defective in supporting mitophagy due to distinct defects at recognition, transportation, or ubiquitination of impaired mitochondria, thereby implicating mitophagy defects in the development of Parkinsonism. Our results show that impaired mitochondria and protein aggregates are processed by common ubiquitin-selective autophagy machinery connected to the aggresomal pathway, thus identifying a mechanistic basis for the prevalence of these toxic entities in Parkinson's disease.
PMCID: PMC2872903  PMID: 20457763
16.  Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy 
Autophagy  2010;6(5):614-621.
The accumulation of ubiquitin-positive protein aggregates has been implicated in the pathogenesis of neurodegenerative diseases, heart disease and diabetes. Emerging evidence indicates that the autophagy lysosomal pathway plays a critical role in the clearance of ubiquitin aggregates, a process that is mediated by the ubiquitin binding protein p62. In addition to binding ubiquitin, p62 also interacts with LC3 and transports ubiquitin conjugates to autophagosomes for degradation. The exact regulatory mechanism of this process is still largely unknown. Here we report the identification of Keap1 as a binding partner for p62 and LC3. Keap1 inhibits Nrf2 by sequestering it in the cytosol and preventing its translocation to the nucleus and activation of genes involved in the oxidative stress response. In this study, we found that Keap1 interacts with p62 and LC3 in a stress-inducible manner, and that Keap1 colocalizes with LC3 and p62 in puromycin-induced ubiquitin aggregates. Moreover, p62 serves as a bridge between Keap1 and ubiquitin aggregates and autophagosomes. Finally, genetic ablation of Keap1 leads to the accumulation of ubiquitin aggregates, increased cytotoxicity of misfolded protein aggregates, and defective activation of autophagy. Therefore, this study assigns a novel positive role of Keap1 in upregulating p62-mediated autophagic clearance of ubiquitin aggregates.
PMCID: PMC4423623  PMID: 20495340
Keap1; p62; LC3; autophagy; ubiquitin; Nrf2; autophagosome; protein aggregates; oxidative stress
17.  Autophagy: A Critical Regulator of Cellular Metabolism and Homeostasis 
Molecules and Cells  2013;36(1):7-16.
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
PMCID: PMC3887921  PMID: 23708729
autophagy; innate immunity; metabolism; mitophagy; neurodegeneration; proteostasis
18.  Autophagy and misfolded proteins in neurodegeneration 
Experimental Neurology  2012;238(1):22-28.
The accumulation of misfolded proteins in insoluble aggregates within the neuronal cytoplasm is one of the common pathological hallmarks of most adult-onset human neurodegenerative diseases. The clearance of these misfolded proteins may represent a promising therapeutic strategy in these diseases. The two main routes for intracellular protein degradation are the ubiquitin–proteasome and the autophagy–lysosome pathways. In this review, we will focus on the autophagic pathway, by providing some examples of how impairment at different steps in this degradation pathway is related to different neurodegenerative diseases. We will also consider that upregulating autophagy may be useful in the treatment of some of these diseases. Finally, we discuss how antioxidants, which have been considered to be beneficial in neurodegenerative diseases, can block autophagy, thus potentially compromising their therapeutic potential.
Research highlights
►Autophagy compromise occurs in different neurodegenerative diseases. ►Upregulating autophagy may be useful in the treatment of some neurodegenerative diseases. ►Many different reactive oxygen species scavengers impair autophagy
PMCID: PMC3463804  PMID: 21095248
Autophagy; Neurodegeneration; Huntington's disease
19.  Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates 
Journal of cell science  2012;126(0 2):580-592.
Aggregation of misfolded proteins and the associated loss of neurons are considered as a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington’s disease, Alzheimer’s disease, Parkinson’s disease, Creutzfeld-Jacob disease and Pick’s disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognized various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner. We also show that optineurin depletion significantly increase protein aggregation in HeLa cells and morpholino-silencing of the optineurin ortholog in zebrafish causes the motor axonopathy phenotype similar to a zebrafish model of ALS. A more severe phenotype is observed when optineurin is depleted in zebrafish carrying ALS mutations. Furthermore, TANK1 binding kinase 1 (TBK1) is co-localized with optineurin on protein aggregates and is important in clearance of protein aggregates through the autophagy-lysosome pathway. TBK1 phosphorylates optineurin at position Ser-177 and regulates its ability to interact with autophagy modifiers. This study provides evidence for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophagic pathway.
PMCID: PMC3654196  PMID: 23178947
amyotrophic lateral sclerosis; Huntington disease; huntingtin; optineurin; phosphorylation; SOD1; TBK1; ubiquitin
20.  p62 Provides Dual Cytoprotection Against Oxidative Stress in the Retinal Pigment Epithelium 
Biochimica et biophysica acta  2014;1843(7):1248-1258.
As a signaling hub, p62/sequestosome plays important roles in cell signaling and degradation of misfolded proteins. p62 has been implicated as an adaptor protein to mediate autophagic clearance of insoluble protein aggregates in age-related diseases, including age-related macular degeneration (AMD), which is characterized by dysfunction of the retinal pigment epithelium (RPE). Our previous studies have shown that cigarette smoke (CS) induces oxidative stress and inhibits the proteasome pathway in cultured human RPE cells, suggesting that p62-mediated autophagy may become the major route to remove impaired proteins under such circumstances. In the present studies, we found that all p62 mRNA variants are abundantly expressed and upregulated by CS induced stress in cultured human RPE cells, yet isoform1 is the major translated form. We also show that p62 silencing exacerbated the CS induced accumulation of damaged proteins, both by suppressing autophagy and by inhibiting the Nrf2 antioxidant response, which in turn, increased protein oxidation. These effects of CS and p62 reduction were further confirmed in mice exposed to CS. We found that over-expression of p62 isoform1, but not its S403A mutant, which lacks affinity for ubiquitinated proteins, reduced misfolded proteins, yet simultaneously promoted an Nrf2-mediated antioxidant response. Thus, p62 provides dual, reciprocal enhancing protection to RPE cells from environmental stress induced protein misfolding and aggregation, by facilitating autophagy and the Nrf2 mediated antioxidant response, which might be a potential therapeutic target against AMD.
PMCID: PMC4019388  PMID: 24667411
Autophagy; aging; Nrf2; Oxidative stress; p62
21.  Regulators of Autophagosome Formation in Drosophila Muscles 
PLoS Genetics  2015;11(2):e1005006.
Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function.
Author Summary
Since the identification of the core autophagy genes in yeast, tissue culture cell lines have been the primary tool to evaluate the role and regulation of autophagy in higher organisms. However, since autophagy is a tissue-specific, context dependent process, stable cell lines can only give a limited view of the autophagic process. Here, we focus on the role of putative autophagy regulators in the specific context of the skeletal muscle, which has one of the most robust autophagy responses in mammals. We describe a fruitfly model of autophagy for skeletal muscles that integrates rapid genetic screening in primary cultured cells with robust in vivo validation in the larval muscle. We screened a set of genes previously linked to the autophagy pathway in humans, and identified both positive and negative regulators of autophagy. Our observation that genes involved in sugar metabolism impact muscle autophagy has important implications for both skeletal and cardiac myopathies associated with aberrant sugar storage. Surprisingly, we found that the proteasome is required to maintain autophagy in the muscle, suggesting that therapeutic treatments aiming to induce autophagy by proteasome inhibition must be carefully calibrated to ensure that the opposite phenotype does not occur.
PMCID: PMC4334200  PMID: 25692684
22.  E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses 
PLoS Genetics  2014;10(1):e1004116.
Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti-proteotoxic pathways and protein's propensity to aggregate under stress conditions is one of the critical factors for pathway selection of protein degradation.
Author Summary
Environmental stresses such as heat cause generation of misfolded and damaged proteins, which are highly toxic and must be efficiently removed. In plants, NBR1, the first isolated autophagy receptor with an ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting ubiquitinated protein aggregates under stress conditions for degradation by autophagy. To study how stress-induced misfolded and damaged proteins are detected and ubiquitinated in plant cells, we analyzed the chaperone-associated E3 ubiquitin ligase CHIP from Arabidopsis thaliana for its role in protection against proteotoxicity in plant stress responses. Disruption of Arabidopsis CHIP caused increased sensitivity to a spectrum of abiotic stresses as found in the Arabidopsis nbr1 mutants. Disruption of both Arabidopsis CHIP and NBR1 further compromised plant stress tolerance, indicating that their roles are additive. Furthermore, in the chip nbr1 double mutant, compromised heat tolerance was associated with increased accumulation of insoluble proteins derived mostly from heat-sensitive but biologically important proteins such as Rubisco activase, catalases and proteins required for protein synthesis and folding. Importantly, stress-induced protein aggregates were still highly ubiquitinated in the chip mutants. These results strongly suggest that CHIP and NBR1 function in two distinct but complementary anti-proteotoxic pathways in plant stress responses.
PMCID: PMC3907298  PMID: 24497840
23.  Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein 
The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of α-synuclein aggregates and Lewy bodies, often found in PD and other α-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of α-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in α-synuclein-expressing cells would increase the secretion of α-synuclein, subsequently affecting the α-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of α-synuclein. In a mixed culture of α-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular α-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of α-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated α-synuclein exocytosis, thereby promoting α-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.
PMCID: PMC3674407  PMID: 23661100
autophagy; neurodegeneration; protein aggregation; signal transduction
24.  Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease 
Human Molecular Genetics  2008;17(24):3897-3908.
The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, the genetic deficiency of the glycogen-degrading lysosomal enzyme acid-alpha glucosidase. Accumulation of lysosomal glycogen, presumably transported from the cytoplasm by the autophagic pathway, occurs in multiple tissues, but pathology is most severe in skeletal and cardiac muscle. Skeletal muscle pathology also involves massive autophagic buildup in the core of myofibers. To determine if glycogen reaches the lysosome via autophagy and to ascertain whether autophagic buildup in Pompe disease is a consequence of induction of autophagy and/or reduced turnover due to defective fusion with lysosomes, we generated muscle-specific autophagy-deficient Pompe mice. We have demonstrated that autophagy is not required for glycogen transport to lysosomes in skeletal muscle. We have also found that Pompe disease involves induction of autophagy but manifests as a functional deficiency of autophagy because of impaired autophagosomal–lysosomal fusion. As a result, autophagic substrates, including potentially toxic aggregate-prone ubiquitinated proteins, accumulate in Pompe myofibers and may cause profound muscle damage.
PMCID: PMC2638578  PMID: 18782848
25.  Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila 
BMC Cell Biology  2013;14:29.
Two pathways are responsible for the majority of regulated protein catabolism in eukaryotic cells: the ubiquitin-proteasome system (UPS) and lysosomal self-degradation through autophagy. Both processes are necessary for cellular homeostasis by ensuring continuous turnover and quality control of most intracellular proteins. Recent studies established that both UPS and autophagy are capable of selectively eliminating ubiquitinated proteins and that autophagy may partially compensate for the lack of proteasomal degradation, but the molecular links between these pathways are poorly characterized.
Here we show that autophagy is enhanced by the silencing of genes encoding various proteasome subunits (α, β or regulatory) in larval fat body cells. Proteasome inactivation induces canonical autophagy, as it depends on core autophagy genes Atg1, Vps34, Atg9, Atg4 and Atg12. Large-scale accumulation of aggregates containing p62 and ubiquitinated proteins is observed in proteasome RNAi cells. Importantly, overexpressed Atg8a reporters are captured into the cytoplasmic aggregates, but these do not represent autophagosomes. Loss of p62 does not block autophagy upregulation upon proteasome impairment, suggesting that compensatory autophagy is not simply due to the buildup of excess cargo. One of the best characterized substrates of UPS is the α subunit of hypoxia-inducible transcription factor 1 (HIF-1α), which is continuously degraded by the proteasome during normoxic conditions. Hypoxia is a known trigger of autophagy in mammalian cells, and we show that genetic activation of hypoxia signaling also induces autophagy in Drosophila. Moreover, we find that proteasome inactivation-induced autophagy requires sima, the Drosophila ortholog of HIF-1α.
We have characterized proteasome inactivation- and hypoxia signaling-induced autophagy in the commonly used larval Drosophila fat body model. Activation of both autophagy and hypoxia signaling was implicated in various cancers, and mutations affecting genes encoding UPS enzymes have recently been suggested to cause renal cancer. Our studies identify a novel genetic link that may play an important role in that context, as HIF-1α/sima may contribute to upregulation of autophagy by impaired proteasomal activity.
PMCID: PMC3700814  PMID: 23800266
Autophagy; Drosophila; HIF-1α/sima; Hypoxia; p62/Ref2P; Proteasome

Results 1-25 (1115623)