Search tips
Search criteria

Results 1-25 (758597)

Clipboard (0)

Related Articles

Nature communications  2012;3:1240.
Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyze the autophagic degradation of different types of aggregates of synphilin-1 (Sph1), a protein often found in pathogenic protein inclusions. We show that small Sph1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in Sph1 necessary for its own basal and inducible aggrephagy, and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favors the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se but on their dynamic properties in the aggregate.
PMCID: PMC3526956  PMID: 23212369
autophagy; protein aggregates; aggresomes; synphilin-1; protein mobility; ubiquitination
2.  Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain 
The Journal of Cell Biology  2008;180(6):1065-1071.
p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.
PMCID: PMC2290837  PMID: 18347073
3.  The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration 
Neurobiology of disease  2010;43(1):17-28.
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease.
PMCID: PMC2998573  PMID: 20732422
autophagy; protein aggregates; neurodegeneration; ubiquitination; p62; ALFY; aggresome; neurons
4.  SQSTM1/p62 Interacts with HDAC6 and Regulates Deacetylase Activity 
PLoS ONE  2013;8(9):e76016.
Protein aggregates can form in the cytoplasm of the cell and are accumulated at aggresomes localized to the microtubule organizing center (MTOC) where they are subsequently degraded by autophagy. In this process, aggregates are engulfed into autophagosomes which subsequently fuse with lysosomes for protein degradation. A member of the class II histone deacetylase family, histone deacetylase 6(HDAC6) has been shown to be involved in both aggresome formation and the fusion of autophagosomes with lysosomes making it an attractive target to regulate protein aggregation. The scaffolding protein sequestosome 1(SQSTM1)/p62 has also been shown to regulate accumulation and autophagic clearance of protein aggregates. Recent studies have revealed colocalization of HDAC6 and p62 to ubiquitinated mitochondria, as well as, ubiquitinated protein aggregates associated with the E3 ubiquitin ligase TRIM50. HDAC6 deacetylase activity is required for aggresome formation and can be regulated by protein interaction with HDAC6. Due to their colocalization at ubiquitinated protein aggregates, we sought to examine if p62 specifically interacted with HDAC6 and if so, if this interaction had any effect on HDAC6 activity and/or the physiological function of cortactin-F-actin assembly. We succeeded in identifying and mapping the direct interaction between HDAC6 and p62. We further show that this interaction regulates HDAC6 deacetylase activity. Data are presented demonstrating that the absence of p62 results in hyperactivation of HDAC6 and deacetylation of α-tubulin and cortactin. Further, upon induction of protein misfolding we show that p62 is required for perinuclear co-localization of cortactin-F-actin assemblies. Thus, our findings indicate that p62 plays a key role in regulating the recruitment of F-actin network assemblies to the MTOC, a critical cellular function that is required for successful autophagic clearance of protein aggregates.
PMCID: PMC3785417  PMID: 24086678
5.  Autophagy and misfolded proteins in neurodegeneration 
Experimental Neurology  2012;238(1):22-28.
The accumulation of misfolded proteins in insoluble aggregates within the neuronal cytoplasm is one of the common pathological hallmarks of most adult-onset human neurodegenerative diseases. The clearance of these misfolded proteins may represent a promising therapeutic strategy in these diseases. The two main routes for intracellular protein degradation are the ubiquitin–proteasome and the autophagy–lysosome pathways. In this review, we will focus on the autophagic pathway, by providing some examples of how impairment at different steps in this degradation pathway is related to different neurodegenerative diseases. We will also consider that upregulating autophagy may be useful in the treatment of some of these diseases. Finally, we discuss how antioxidants, which have been considered to be beneficial in neurodegenerative diseases, can block autophagy, thus potentially compromising their therapeutic potential.
Research highlights
►Autophagy compromise occurs in different neurodegenerative diseases. ►Upregulating autophagy may be useful in the treatment of some neurodegenerative diseases. ►Many different reactive oxygen species scavengers impair autophagy
PMCID: PMC3463804  PMID: 21095248
Autophagy; Neurodegeneration; Huntington's disease
6.  Drosophila ref(2)P is required for the parkin-mediated suppression of mitochondrial dysfunction in pink1 mutants 
Cell Death & Disease  2013;4(10):e873-.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.
PMCID: PMC3920958  PMID: 24157867
Drosophila; mitochondria; Parkinson's disease; stress; unfolded proteins
7.  blue cheese Mutations Define a Novel, Conserved Gene Involved in Progressive Neural Degeneration 
A common feature of many human neurodegenerative diseases is the accumulation of insoluble ubiquitin-containing protein aggregates in the CNS. Although Drosophila has been helpful in understanding several human neurodegenerative disorders, a loss-of-function mutation has not been identified that leads to insoluble CNS protein aggregates. The study of Drosophila mutations may identify unique components that are associated with human degenerative diseases. The Drosophila blue cheese (bchs) gene defines such a novel degenerative pathway. bchs mutants have a reduced adult life span with the age-dependent formation of protein aggregates throughout the neuropil of the CNS. These inclusions contain insoluble ubiquitinated proteins and amyloid precursor-like protein. Progressive loss of CNS size and morphology along with extensive neuronal apoptosis occurs in aged bchs mutants. BCHS protein is widely expressed in the cytoplasm of CNS neurons and is present over the entire length of axonal projections. BCHS is nearly 3500 amino acids in size, with the last 1000 amino acids consisting of three functional protein motifs implicated in vesicle transport and protein processing. This region along with previously unidentified proteins encoded in the human, mouse, and nematode genomes shows striking homology along the full length of the BCHS protein. The high degree of conservation between Drosophila and human bchs suggests that study of the functional pathway of BCHS and associated mutant phenotype may provide useful insights into human neurodegenerative disorders.
PMCID: PMC1975817  PMID: 12598614
neurodegeneration; ubiquitin; APPL; protein aggregates; apoptosis; Drosophila
8.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy 
The Journal of Cell Biology  2010;189(4):671-679.
Parkin catalyzes mitochondrial ubiquitination, recruiting autophagic components that clear damaged mitochondria. Defects in this pathway are implicated in Parkinson's disease.
Mutations in parkin, a ubiquitin ligase, cause early-onset familial Parkinson's disease (AR-JP). How parkin suppresses Parkinsonism remains unknown. Parkin was recently shown to promote the clearance of impaired mitochondria by autophagy, termed mitophagy. Here, we show that parkin promotes mitophagy by catalyzing mitochondrial ubiquitination, which in turn recruits ubiquitin-binding autophagic components, HDAC6 and p62, leading to mitochondrial clearance. During the process, juxtanuclear mitochondrial aggregates resembling a protein aggregate-induced aggresome are formed. The formation of these “mito-aggresome” structures requires microtubule motor-dependent transport and is essential for efficient mitophagy. Importantly, we show that AR-JP–causing parkin mutations are defective in supporting mitophagy due to distinct defects at recognition, transportation, or ubiquitination of impaired mitochondria, thereby implicating mitophagy defects in the development of Parkinsonism. Our results show that impaired mitochondria and protein aggregates are processed by common ubiquitin-selective autophagy machinery connected to the aggresomal pathway, thus identifying a mechanistic basis for the prevalence of these toxic entities in Parkinson's disease.
PMCID: PMC2872903  PMID: 20457763
9.  Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease 
The Journal of Cell Biology  2007;179(3):485-500.
The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntington's disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.
PMCID: PMC2064794  PMID: 17984323
10.  p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells 
Molecular Vision  2010;16:1399-1414.
The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. Recently, p62/sequestosome 1 (p62) has been shown to be a key player linking the proteasomal and lysosomal clearance systems. In the present study, the functional roles of p62 and HSP70 were evaluated in conjunction with proteasome inhibitor–induced autophagy in human RPE cells (ARPE-19).
The p62, HSP70, and ubiquitin protein levels and localization were analyzed by western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. The p62 and HSP70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay.
Proteasome inhibition evoked the accumulation of perinuclear aggregates that strongly colocalized with p62 and HSP70. The p62 perinuclear accumulation was time- and concentration-dependent after MG-132 proteasome inhibitor loading. The silencing of p62, rather than Hsp70, evoked suppression of autophagy, when related to decreased LC3-II levels after bafilomycin treatment. In addition, the p62 silencing decreased the ubiquitination level of the perinuclear aggregates. Recently, we showed that hsp70 mRNA depletion increased cell death in ARPE-19 cells. Here, we demonstrate that p62 mRNA silencing has similar effects on cellular viability.
Our findings open new avenues for understanding the mechanisms of proteolytic processes in retinal cells, and could be useful in the development of novel therapies targeting p62 and HSP70.
PMCID: PMC2913138  PMID: 20680098
11.  The Role of Ubiquitin in Autophagy-Dependent Protein Aggregate Processing 
Genes & Cancer  2010;1(7):779-786.
The efficient management of misfolded protein aggregates is essential for cell viability and requires 3 interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic protein aggregates to autophagy for clearance. Although autophagy is generally considered as nonselective degradative machinery, growing evidence supports the existence of a selective autophagy that specifically targets protein aggregates for clearance. This “quality control autophagy” is established by specific ubiquitin E3 ligases, autophagic substrate ubiquitination, and specific ubiquitin-binding proteins p62 and HDAC6. In this context, quality control autophagy is similar to the proteasome system and utilizes ubiquitin tags for substrate recognition and processing. Here, I will discuss the recent progress toward understanding the molecular basis of this unique form of ubiquitin-dependent autophagy in protein aggregate clearance and its relevance to disease.
PMCID: PMC2991150  PMID: 21113398
ubiquitin; autophagy; HDAC6; p62; actin
12.  Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing 
Human Molecular Genetics  2009;18(21):4153-4170.
Aggregation and cleavage are two hallmarks of Tau pathology in Alzheimer disease (AD), and abnormal fragmentation of Tau is thought to contribute to the nucleation of Tau paired helical filaments. Clearance of the abnormally modified protein could occur by the ubiquitin–proteasome and autophagy–lysosomal pathways, the two major routes for protein degradation in cells. There is a debate on which of these pathways contributes to clearance of Tau protein and of the abnormal Tau aggregates formed in AD. Here, we demonstrate in an inducible neuronal cell model of tauopathy that the autophagy–lysosomal system contributes to both Tau fragmentation into pro-aggregating forms and to clearance of Tau aggregates. Inhibition of macroautophagy enhances Tau aggregation and cytotoxicity. The Tau repeat domain can be cleaved near the N terminus by a cytosolic protease to generate the fragment F1. Additional cleavage near the C terminus by the lysosomal protease cathepsin L is required to generate Tau fragments F2 and F3 that are highly amyloidogenic and capable of seeding the aggregation of Tau. We identify in this work that components of a selective form of autophagy, chaperone-mediated autophagy, are involved in the delivery of cytosolic Tau to lysosomes for this limited cleavage. However, F1 does not fully enter the lysosome but remains associated with the lysosomal membrane. Inefficient translocation of the Tau fragments across the lysosomal membrane seems to promote formation of Tau oligomers at the surface of these organelles which may act as precursors of aggregation and interfere with lysosomal functioning.
PMCID: PMC2758146  PMID: 19654187
13.  The selective macroautophagic degradation of aggregated proteins requires the phosphatidylinositol 3-phosphate binding protein Alfy 
Molecular cell  2010;38(2):265-279.
There is growing evidence that macroautophagic cargo is not limited to bulk cytosol in response to starvation, and can occur selectively for substrates including aggregated proteins. It remains unclear, however, if starvation-induced and selective macroautophagy share identical adapter molecules to capture their cargo. Here we report that Alfy, a phosphatidylinositol 3-phosphate binding protein, is central to the selective elimination of aggregated proteins. We report that the loss of Alfy inhibits the clearance of inclusions, with little to no effect on the starvation response. Alfy is recruited to intracellular inclusions and scaffolds a complex between p62(SQSTM1)-positive proteins and the autophagic effectors Atg5, Atg12, Atg16L and LC3. Alfy overexpression leads to elimination of aggregates in an Atg5-dependent manner, and likewise, to protection in a neuronal and Drosophila model of polyglutamine toxicity. We propose that Alfy plays a key role in selective macroautophagy, by bridging cargo to the molecular machinery that builds autophagosomes.
PMCID: PMC2867245  PMID: 20417604
14.  The role of ubiquitin in autophagy-dependent protein aggregate processing 
Genes & cancer  2010;1(7):779-786.
The efficient management of misfolded protein aggregates is essential for cell viability and requires three interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic proteins aggregates to autophagy for clearance. Although autophagy is generally considered as non-selective degradative machinery, growing evidence supports the existence of a selective autophagy that specifically targets protein aggregates for clearance. This so-called “quality control autophagy” is established by specific ubiquitin E3 ligases, autophagic substrate ubiquitination, and specific ubiquitin binding proteins p62 and HDAC6. In this context, quality control autophagy is similar to the proteasome system and utilizes ubiquitin tags for substrate recognition and processing. Here I will discuss the recent progress towards understanding the molecular basis of this unique form of ubiquitin-dependent autophagy in protein aggregate clearance and its relevance to disease.
PMCID: PMC2991150  PMID: 21113398
ubiquitin; autophagy; HDAC6; p62; actin
15.  Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein 
The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of α-synuclein aggregates and Lewy bodies, often found in PD and other α-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of α-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in α-synuclein-expressing cells would increase the secretion of α-synuclein, subsequently affecting the α-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of α-synuclein. In a mixed culture of α-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular α-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of α-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated α-synuclein exocytosis, thereby promoting α-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.
PMCID: PMC3674407  PMID: 23661100
autophagy; neurodegeneration; protein aggregation; signal transduction
16.  Autophagy and polyglutamine diseases 
Progress in Neurobiology  2012;97(2):67-82.
► The ubiquitin–proteasome system and autophagy are two main degradative pathways. ► Autophagy upregulation may protect against polyglutamine-expanded protein neurotoxicity. ► Autophagy compromise may occur in certain neurodegenerative diseases.
In polyglutamine diseases, an abnormally elongated polyglutamine tract results in protein misfolding and accumulation of intracellular aggregates. The length of the polyglutamine expansion correlates with the tendency of the mutant protein to aggregate, as well as with neuronal toxicity and earlier disease onset. Although currently there is no effective cure to prevent or slow down the progression of these neurodegenerative disorders, increasing the clearance of mutant proteins has been proposed as a potential therapeutic approach. The ubiquitin–proteasome system and autophagy are the two main degradative pathways responsible for eliminating misfolded and unnecessary proteins in the cell. We will review some of the studies that have proposed autophagy as a strategy to reduce the accumulation of polyglutamine-expanded protein aggregates and protect against mutant protein neurotoxicity. We will also discuss some of the currently known mechanisms that induce autophagy, which may be beneficial for the treatment of these and other neurodegenerative disorders.
PMCID: PMC3712188  PMID: 21930185
HD, Huntington's disease; SCA, spinocerebellar ataxia; DRPLA, Denatorubral-pallidoluysian atrophy; SBMA, spinal and bulbar muscular atropy; Htt, Huntingtin; UPS, ubiquitin–proteasome system; HDL-2, Huntington's disease-like 2; IBs, inclusion bodies; RNAi, RNA interference; Atg, autophagy-related genes; ER, endoplasmic reticulum; PI3K, phosphatidylinositol 3-kinase; JNK1, c-Jun N-terminal protein kinase 1; PE, phosphatidylethanolamine; SNAREs, soluble N-ethylmaleimide-sensitive factor attachment protein receptors; mTOR, mammalian target of rapamycin; PI-3-P, phosphatidylinositol-3-phosphate; ROS, reactive oxygen species; IP3, inositol-1,4,5-triphosphate; IP3R, IP3 receptors; cAMP, cyclic AMP; IMPase, inositol monophosphatase; GSK3β, glycogen synthase kinase-3 β; I1R, imidazoline-1-receptor; SMERs, small molecule enhancers of rapamycin; SMIRs, small molecule inhibitors of rapamycin; Polyglutamine diseases; Autophagy; Neurodegeneration; Huntington's disease
17.  The scaffold protein EPG-7 links cargo–receptor complexes with the autophagic assembly machinery 
The Journal of Cell Biology  2013;201(1):113-129.
To increase the efficiency of aggrephagy, specific scaffold proteins such as EPG-7 endow cargo specificity and link cargo–receptor complexes to the autophagic machinery.
The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several protein aggregates, including aggregates of the p62 homologue SQST-1, but has little effect on other autophagy-regulated processes. EPG-7 self-oligomerizes and is degraded by autophagy independently of SQST-1. SQST-1 directly interacts with EPG-7 and colocalizes with EPG-7 aggregates in autophagy mutants. Mutations in epg-7 impair association of SQST-1 aggregates with LGG-1/Atg8 puncta. EPG-7 interacts with multiple ATG proteins and colocalizes with ATG-9 puncta in various autophagy mutants. Unlike core autophagy genes, epg-7 is dispensable for starvation-induced autophagic degradation of substrate aggregates. Our results indicate that under physiological conditions a scaffold protein endows cargo specificity and also elevates degradation efficiency by linking the cargo–receptor complex with the autophagic machinery.
PMCID: PMC3613692  PMID: 23530068
18.  Mitochondria and Quality Control Defects in a Mouse Model of Gaucher Disease—Links to Parkinson’s Disease 
Cell Metabolism  2013;17(6):941-953.
Mutations in the glucocerebrosidase (gba) gene cause Gaucher disease (GD), the most common lysosomal storage disorder, and increase susceptibility to Parkinson’s disease (PD). While the clinical and pathological features of idiopathic PD and PD related to gba (PD-GBA) mutations are very similar, cellular mechanisms underlying neurodegeneration in each are unclear. Using a mouse model of neuronopathic GD, we show that autophagic machinery and proteasomal machinery are defective in neurons and astrocytes lacking gba. Markers of neurodegeneration—p62/SQSTM1, ubiquitinated proteins, and insoluble α-synuclein—accumulate. Mitochondria were dysfunctional and fragmented, with impaired respiration, reduced respiratory chain complex activities, and a decreased potential maintained by reversal of the ATP synthase. Thus a primary lysosomal defect causes accumulation of dysfunctional mitochondria as a result of impaired autophagy and dysfunctional proteasomal pathways. These data provide conclusive evidence for mitochondrial dysfunction in GD and provide insight into the pathogenesis of PD and PD-GBA.
Graphical Abstract
•Autophagic and proteasomal pathways are suppressed in gba knockout mice•α-Synuclein accumulates and forms deposits in gba knockout mouse brainstem•Neurons and astrocytes from gba knockout mice harbor dysfunctional mitochondria•Mitochondria do not recruit Parkin and accumulate in gba knockout neurons
PMCID: PMC3678026  PMID: 23707074
19.  Aggresomes: A Cellular Response to Misfolded Proteins  
The Journal of Cell Biology  1998;143(7):1883-1898.
Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
PMCID: PMC2175217  PMID: 9864362
ubiquitin; proteasome; intermediate filaments; protein aggregation; presenilin
20.  Aggrephagy: Selective Disposal of Protein Aggregates by Macroautophagy 
Protein aggregation is a continuous process in our cells. Some proteins aggregate in a regulated manner required for different vital functional processes in the cells whereas other protein aggregates result from misfolding caused by various stressors. The decision to form an aggregate is largely made by chaperones and chaperone-assisted proteins. Proteins that are damaged beyond repair are degraded either by the proteasome or by the lysosome via autophagy. The aggregates can be degraded by the proteasome and by chaperone-mediated autophagy only after dissolution into soluble single peptide species. Hence, protein aggregates as such are degraded by macroautophagy. The selective degradation of protein aggregates by macroautophagy is called aggrephagy. Here we review the processes of aggregate formation, recognition, transport, and sequestration into autophagosomes by autophagy receptors and the role of aggrephagy in different protein aggregation diseases.
PMCID: PMC3320095  PMID: 22518139
21.  Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways 
Human Molecular Genetics  2008;17(11):1540-1555.
Glial fibrillary acidic protein (GFAP) is the principle intermediate filament (IF) protein in astrocytes. Mutations in the GFAP gene lead to Alexander disease (AxD), a rare, fatal neurological disorder characterized by the presence of abnormal astrocytes that contain GFAP protein aggregates, termed Rosenthal fibers (RFs), and the loss of myelin. All GFAP mutations cause the same histopathological defect, i.e. RFs, though little is known how the mutations affect protein accumulation as well as astrocyte function. In this study, we found that GFAP accumulation induces macroautophagy, a key clearance mechanism for prevention of aggregated proteins. This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is in part responsible for the down-regulation of phosphorylated-mTOR and the subsequent activation of autophagy. Our study suggests that AxD mutant GFAP accumulation stimulates autophagy, in a manner regulated by p38 MAPK and mTOR signaling pathways. Autophagy, in turn, serves as a mechanism to reduce GFAP levels.
PMCID: PMC2902290  PMID: 18276609
22.  Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease 
The Journal of Cell Biology  2009;187(6):875-888.
Accumulation of autophagosomes because of impaired autophagy during valosin-containing protein (VCP)–linked dementia is explained by the absence or reduced activity of VCP.
Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM), Paget's disease of the bone, and frontotemporal dementia (IBMPFD). Patient muscle has degenerating fibers, rimmed vacuoles (RVs), and sarcoplasmic inclusions containing ubiquitin and TDP-43 (TARDNA-binding protein 43). In this study, we find that IBMPFD muscle also accumulates autophagosome-associated proteins, Map1-LC3 (LC3), and p62/sequestosome, which localize to RVs. To test whether VCP participates in autophagy, we silenced VCP or expressed adenosine triphosphatase–inactive VCP. Under basal conditions, loss of VCP activity results in autophagosome accumulation. After autophagic induction, these autophagosomes fail to mature into autolysosomes and degrade LC3. Similarly, IBMPFD mutant VCP expression in cells and animals leads to the accumulation of nondegradative autophagosomes that coalesce at RVs and fail to degrade aggregated proteins. Interestingly, TDP-43 accumulates in the cytosol upon autophagic inhibition, similar to that seen after IBMPFD mutant expression. These data implicate VCP in autophagy and suggest that impaired autophagy explains the pathology seen in IBMPFD muscle, including TDP-43 accumulation.
PMCID: PMC2806317  PMID: 20008565
23.  Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases 
Brain research reviews  2008;59(1):245-252.
A number of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine diseases, are characterized by the age-dependent formation of intracellular protein aggregates and neurodegeneration. Although there is some debate surrounding the role of these aggregates in neurotoxicity, the formation of aggregates is known to reflect the accumulation of misfolded and toxic proteins. The degradation of misfolded proteins occurs mainly via the ubiquitin–proteasome and autophagy pathways. In neuronal cells, polyglutamine protein inclusions are present predominantly in the nucleus, which is not accessible to autophagy. It remains unclear how the ubiquitin–proteasomal and autophagy pathways remove misfolded proteins in the different subcellular regions of neurons, where disease proteins become misfolded and aggregated in an age-dependent manner. Here we discuss the key findings to date about the roles of the ubiquitin–proteasome system and autophagy in polyglutamine diseases. Understanding how these two pathways function to clear mutant polyglutamine proteins will further the development of effective treatments for polyglutamine and other neurodegenerative diseases.
PMCID: PMC2577582  PMID: 18773920
Ubiquitin; Proteasome; Autophagy; Polyglutamine; Huntingtin; Neurodegeneration
24.  Selective Accumulation of Aggregation-Prone Proteasome Substrates in Response to Proteotoxic Stress▿ †  
Molecular and Cellular Biology  2009;29(7):1774-1785.
Conditions causing an increase in misfolded or aberrant proteins can impair the activity of the ubiquitin/proteasome system (UPS). This observation is of particular interest, given the fact that proteotoxic stress is closely associated with a large variety of disorders. Although impairment of the UPS appears to be a general consequence of proteotoxic insults, the underlying mechanisms remain enigmatic. Here, we show that heat shock-induced proteotoxic stress resulted in conjugation of ubiquitin to detergent-insoluble protein aggregates, which coincided with reduced levels of free ubiquitin and impediment of ubiquitin-dependent proteasomal degradation. Interestingly, whereas soluble proteasome substrates returned to normal levels after a transient accumulation, the levels of an aggregation-prone substrate remained high even when the free ubiquitin levels were restored. Consistently, overexpression of ubiquitin prevented accumulation of soluble but not aggregation-prone substrates in thermally stressed cells. Notably, cells were also unable to resume degradation of aggregation-prone substrates after treatment with the translation inhibitor puromycin, indicating that selective accumulation of aggregation-prone proteins is a consistent feature of proteotoxic stress. Our data suggest that the failure of the UPS to clear aggregated proteins in the aftermath of proteotoxic stress episodes may contribute to the selective deposition of aggregation-prone proteins in conformational diseases.
PMCID: PMC2655608  PMID: 19158272
25.  Signaling, Polyubiquitination, Trafficking, and Inclusions: Sequestosome 1/p62's Role in Neurodegenerative Disease 
Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome. P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases. Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.
PMCID: PMC1559922  PMID: 17047309

Results 1-25 (758597)