PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1054736)

Clipboard (0)
None

Related Articles

1.  Drosophila ref(2)P is required for the parkin-mediated suppression of mitochondrial dysfunction in pink1 mutants 
Cell Death & Disease  2013;4(10):e873-.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.
doi:10.1038/cddis.2013.394
PMCID: PMC3920958  PMID: 24157867
Drosophila; mitochondria; Parkinson's disease; stress; unfolded proteins
2.  MOLECULAR DETERMINANTS OF SELECTIVE CLEARANCE OF PROTEIN INCLUSIONS BY AUTOPHAGY 
Nature communications  2012;3:1240.
Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyze the autophagic degradation of different types of aggregates of synphilin-1 (Sph1), a protein often found in pathogenic protein inclusions. We show that small Sph1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in Sph1 necessary for its own basal and inducible aggrephagy, and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favors the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se but on their dynamic properties in the aggregate.
doi:10.1038/ncomms2244
PMCID: PMC3526956  PMID: 23212369
autophagy; protein aggregates; aggresomes; synphilin-1; protein mobility; ubiquitination
3.  Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila☆ 
Febs Letters  2014;588(3):408-413.
Highlights
•Atg9 and Atg18 are required for autophagy upstream of Atg8a, unlike Atg2.•Atg9 accumulates on Ref(2)P aggregates in Atg8a, Atg7 and Atg2 mutants.•Ultrastructurally, Atg9 vesicles cluster around Ref(2)P aggregates in stalled PAS.•Atg9 does not accumulate on Ref(2)P upon loss of Atg18 or Vps34, while FIP200 does.•Atg18 simultaneously interacts with both Atg9 and Ref(2)P.
The Atg2–Atg18 complex acts in parallel to Atg8 and regulates Atg9 recycling from phagophore assembly site (PAS) during autophagy in yeast. Here we show that in Drosophila, both Atg9 and Atg18 are required for Atg8a puncta formation, unlike Atg2. Selective autophagic degradation of ubiquitinated proteins is mediated by Ref(2)P/p62. The transmembrane protein Atg9 accumulates on refractory to Sigma P (Ref(2)P) aggregates in Atg7, Atg8a and Atg2 mutants. No accumulation of Atg9 is seen on Ref(2)P in cells lacking Atg18 or Vps34 lipid kinase function, while the Atg1 complex subunit FIP200 is recruited. The simultaneous interaction of Atg18 with both Atg9 and Ref(2)P raises the possibility that Atg18 may facilitate selective degradation of ubiquitinated protein aggregates by autophagy.
Structured summary of protein interactions
Ref(2)Pphysically interacts with Atg18 by anti tag coimmunoprecipitation (View interaction) Atg18physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) CG8678physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) Atg18physically interacts with atg9 by anti tag coimmunoprecipitation (View interaction)
doi:10.1016/j.febslet.2013.12.012
PMCID: PMC3928829  PMID: 24374083
Atg, autophagy-related; PAS, phagophore assembly site; PI3P, phosphatidylinositol 3-phosphate; Ref(2)P, refractory to Sigma P; ULK, uncoordinated-51 like autophagy kinase; Vps, vacuolar protein sorting; WIPI, WD40 repeat domain phosphoinositide-interacting protein; Atg2; Atg7; Atg8a; Atg9; Atg18; Ref(2)P/p62
4.  The Salmonella Deubiquitinase SseL Inhibits Selective Autophagy of Cytosolic Aggregates 
PLoS Pathogens  2012;8(6):e1002743.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.
Author Summary
Ubiquitination can target substrates to a number of fates, including autophagy, the essential cellular process that allows cells to degrade cytosolic material. Although Salmonella enterica resides in a vacuolar compartment during infection, it translocates several virulence proteins into the host cell cytoplasm. We have found that intracellular Salmonella induces the formation of ubiquitinated aggregates near the Salmonella-containing vacuole and that these aggregates are recognised by the autophagy machinery. Salmonella inhibits this response through the action of a translocated enzyme, SseL, which deubiquitinates the aggregates and thereby decreases the recruitment of autophagy markers. We show that SseL alone can deubiquitinate known substrates that are degraded by autophagy, that it reduces autophagy in infected cells and that its activity can increase intracellular Salmonella replication. This is a new example of how a bacterium counteracts a cellular defence pathway through the action of a translocated virulence protein.
doi:10.1371/journal.ppat.1002743
PMCID: PMC3375275  PMID: 22719249
5.  Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain 
The Journal of Cell Biology  2008;180(6):1065-1071.
p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.
doi:10.1083/jcb.200711108
PMCID: PMC2290837  PMID: 18347073
6.  Neuronal Autophagy: Self-eating or Self-cannibalism in Alzheimer’s Disease 
Neurochemical Research  2013;38(9):1769-1773.
Autophagy is a major intracellular degeneration pathway involved in the elimination and recycling of damaged organelles and long-lived proteins by lysosomes. Many of the pathological factors, which trigger neurodegenerative diseases, can perturb the autophagy activity, which is associated with misfolded protein aggregates accumulation in these disorders. Alzheimer’s disease, the first neurodegenerative disorder between dementias, is characterized by two aggregating proteins, β-amyloid peptide (plaques) and τ-protein (tangles). In Alzheimer’s disease autophagosomes dynamically form along neurites within neuronal cells and in synapses but effective clearance of these structures needs retrograde transportation towards the neuronal soma where there is a major concentration of lysosomes. Maturation of autophago-lysosomes and their retrograde trafficking are perturbed in Alzheimer’s disease, which causes a massive concentration of autophagy elements along degenerating neurites. Transportation system is disturbed along defected microtubules in Alzheimer’s disease brains. τ-protein has been found to control the stability of microtubules, however, phosphorylation of τ-protein or an increase in the total level of τ-protein can cause dysfunction of neuronal cells microtubules. Current evidence has shown that autophagy is developing in Alzheimer’s disease brains because of ineffective degradation of autophagosomes, which hold amyloid precursor protein-rich organelles and secretases important for β-amyloid peptides generation from amyloid precursor. The combination of raised autophagy induction and abnormal clearance of β-amyloid peptide-generating autophagic vacuoles creates circumstances helpful for β-amyloid peptide aggregation and accumulation in Alzheimer’s disease. However, the key role of autophagy in Alzheimer’s disease development is still under consideration today. One point of view suggests that abnormal autophagy induction causes a concentration of autophagic vacuoles rich in amyloid precursor protein, β-amyloid peptide and the elements crucial for its formation, whereas other hypothesis points to marred autophagic clearance or even decrease in autophagic effectiveness playing a role in maturation of Alzheimer’s disease. In this review we present the recent evidence linking autophagy to Alzheimer’s disease and the role of autophagic regulation in the development of full-blown Alzheimer’s disease.
doi:10.1007/s11064-013-1082-4
PMCID: PMC3732752  PMID: 23737325
Alzheimer’s disease; Autophagy; Amyloid precursor protein; β-Amyloid peptide; τ-Protein; Neuronal death
7.  p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells 
Molecular Vision  2010;16:1399-1414.
Purpose
The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. Recently, p62/sequestosome 1 (p62) has been shown to be a key player linking the proteasomal and lysosomal clearance systems. In the present study, the functional roles of p62 and HSP70 were evaluated in conjunction with proteasome inhibitor–induced autophagy in human RPE cells (ARPE-19).
Methods
The p62, HSP70, and ubiquitin protein levels and localization were analyzed by western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. The p62 and HSP70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay.
Results
Proteasome inhibition evoked the accumulation of perinuclear aggregates that strongly colocalized with p62 and HSP70. The p62 perinuclear accumulation was time- and concentration-dependent after MG-132 proteasome inhibitor loading. The silencing of p62, rather than Hsp70, evoked suppression of autophagy, when related to decreased LC3-II levels after bafilomycin treatment. In addition, the p62 silencing decreased the ubiquitination level of the perinuclear aggregates. Recently, we showed that hsp70 mRNA depletion increased cell death in ARPE-19 cells. Here, we demonstrate that p62 mRNA silencing has similar effects on cellular viability.
Conclusions
Our findings open new avenues for understanding the mechanisms of proteolytic processes in retinal cells, and could be useful in the development of novel therapies targeting p62 and HSP70.
PMCID: PMC2913138  PMID: 20680098
8.  SQSTM1/p62 Interacts with HDAC6 and Regulates Deacetylase Activity 
PLoS ONE  2013;8(9):e76016.
Protein aggregates can form in the cytoplasm of the cell and are accumulated at aggresomes localized to the microtubule organizing center (MTOC) where they are subsequently degraded by autophagy. In this process, aggregates are engulfed into autophagosomes which subsequently fuse with lysosomes for protein degradation. A member of the class II histone deacetylase family, histone deacetylase 6(HDAC6) has been shown to be involved in both aggresome formation and the fusion of autophagosomes with lysosomes making it an attractive target to regulate protein aggregation. The scaffolding protein sequestosome 1(SQSTM1)/p62 has also been shown to regulate accumulation and autophagic clearance of protein aggregates. Recent studies have revealed colocalization of HDAC6 and p62 to ubiquitinated mitochondria, as well as, ubiquitinated protein aggregates associated with the E3 ubiquitin ligase TRIM50. HDAC6 deacetylase activity is required for aggresome formation and can be regulated by protein interaction with HDAC6. Due to their colocalization at ubiquitinated protein aggregates, we sought to examine if p62 specifically interacted with HDAC6 and if so, if this interaction had any effect on HDAC6 activity and/or the physiological function of cortactin-F-actin assembly. We succeeded in identifying and mapping the direct interaction between HDAC6 and p62. We further show that this interaction regulates HDAC6 deacetylase activity. Data are presented demonstrating that the absence of p62 results in hyperactivation of HDAC6 and deacetylation of α-tubulin and cortactin. Further, upon induction of protein misfolding we show that p62 is required for perinuclear co-localization of cortactin-F-actin assemblies. Thus, our findings indicate that p62 plays a key role in regulating the recruitment of F-actin network assemblies to the MTOC, a critical cellular function that is required for successful autophagic clearance of protein aggregates.
doi:10.1371/journal.pone.0076016
PMCID: PMC3785417  PMID: 24086678
9.  Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species 
Journal of Cell Science  2014;127(6):1263-1278.
ABSTRACT
TAR DNA-binding protein (TDP-43, also known as TARDBP) is the major pathological protein in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Large TDP-43 aggregates that are decorated with degradation adaptor proteins are seen in the cytoplasm of remaining neurons in ALS and FTD patients post mortem. TDP-43 accumulation and ALS-linked mutations within degradation pathways implicate failed TDP-43 clearance as a primary disease mechanism. Here, we report the differing roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of TDP-43. We have investigated the effects of inhibitors of the UPS and autophagy on the degradation, localisation and mobility of soluble and insoluble TDP-43. We find that soluble TDP-43 is degraded primarily by the UPS, whereas the clearance of aggregated TDP-43 requires autophagy. Cellular macroaggregates, which recapitulate many of the pathological features of the aggregates in patients, are reversible when both the UPS and autophagy are functional. Their clearance involves the autophagic removal of oligomeric TDP-43. We speculate that, in addition to an age-related decline in pathway activity, a second hit in either the UPS or the autophagy pathway drives the accumulation of TDP-43 in ALS and FTD. Therapies for clearing excess TDP-43 should therefore target a combination of these pathways.
doi:10.1242/jcs.140087
PMCID: PMC3953816  PMID: 24424030
TDP-43; ALS; Autophagy; Proteasome; Aggrephagy; UPS
10.  NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses 
PLoS Genetics  2013;9(1):e1003196.
Plant autophagy plays an important role in delaying senescence, nutrient recycling, and stress responses. Functional analysis of plant autophagy has almost exclusively focused on the proteins required for the core process of autophagosome assembly, but little is known about the proteins involved in other important processes of autophagy, including autophagy cargo recognition and sequestration. In this study, we report functional genetic analysis of Arabidopsis NBR1, a homolog of mammalian autophagy cargo adaptors P62 and NBR1. We isolated two nbr1 knockout mutants and discovered that they displayed some but not all of the phenotypes of autophagy-deficient atg5 and atg7 mutants. Like ATG5 and ATG7, NBR1 is important for plant tolerance to heat, oxidative, salt, and drought stresses. The role of NBR1 in plant tolerance to these abiotic stresses is dependent on its interaction with ATG8. Unlike ATG5 and ATG7, however, NBR1 is dispensable in age- and darkness-induced senescence and in resistance to a necrotrophic pathogen. A selective role of NBR1 in plant responses to specific abiotic stresses suggest that plant autophagy in diverse biological processes operates through multiple cargo recognition and delivery systems. The compromised heat tolerance of atg5, atg7, and nbr1 mutants was associated with increased accumulation of insoluble, detergent-resistant proteins that were highly ubiquitinated under heat stress. NBR1, which contains an ubiquitin-binding domain, also accumulated to high levels with an increasing enrichment in the insoluble protein fraction in the autophagy-deficient mutants under heat stress. These results suggest that NBR1-mediated autophagy targets ubiquitinated protein aggregates most likely derived from denatured or otherwise damaged nonnative proteins generated under stress conditions.
Author Summary
Autophagy is an evolutionarily conserved process that sequestrates and delivers cytoplasmic macromolecules and organelles to the vacuoles or lysosomes for degradation. In plants, autophagy is involved in supplying internal nutrients during starvation and in promoting cell survival during senescence and during biotic and abiotic stresses. Arabidopsis NBR1 is a homolog of mammalian autophagy cargo adaptors P62 and NBR1. Disruption of Arabidopsis NBR1 caused increased sensitivity to a spectrum of abiotic stresses but had no significant effect on plant senescence, responses to carbon starvation, or resistance to a necrotrophic pathogen. NBR1 contains an ubiquitin-binding domain, and the compromised stress tolerance of autophagy mutants was associated with increased accumulation of NBR1 and ubiquitin-positive cellular protein aggregates in the insoluble protein fraction under stress conditions. Based on these results, we propose that NBR1 targets ubiquitinated protein aggregates most likely derived from denatured and otherwise damaged nonnative proteins for autophagic clearance under stress conditions.
doi:10.1371/journal.pgen.1003196
PMCID: PMC3547818  PMID: 23341779
11.  The two C. elegans ATG-16 homologs have partially redundant functions in the basal autophagy pathway 
Autophagy  2013;9(12):1965-1974.
The presence of multiple homologs of the same yeast ATG genes endows an extra layer of complexity on the autophagic machinery in higher eukaryotes. The physiological function of individual homologs in the autophagy pathway remains poorly understood. Here we characterized the function of the two atg16 homologs, atg-16.1 and atg-16.2, in the autophagy pathway in C. elegans. We showed that atg-16.2 mutants exhibit a stronger autophagic defect than atg-16.1 mutants. atg-16.2; atg-16.1 double mutants display a much more severe defect than either single mutant. ATG-16.1 and ATG-16.2 interact with themselves and each other and also directly associate with ATG-5. atg-16.1 mutant embryos exhibit a wild-type expression and distribution pattern of LGG-1/Atg8, while LGG-1 puncta are markedly fewer in number and weaker in intensity in atg-16.2 mutants. In atg-16.2; atg-16.1 double mutants, the lipidated form of LGG-1 accumulates, but LGG-1 puncta are completely absent. ATG-16.2 ectopically expressed on the plasma membrane provides novel sites of LGG-1 puncta formation. We also demonstrated that the C-terminal WD repeats are dispensable for the role of atg-16.2 in aggrephagy (the degradation of protein aggregates by autophagy). Genetic epistasis analysis placed atg-16.2 upstream of atg-2, epg-6, and atg-18. Our study indicated that C. elegans ATG-16s are involved in specifying LGG-1 puncta formation and the two ATG-16 homologs have partially redundant yet distinct functions in the aggrephagy pathway.
doi:10.4161/auto.26095
PMCID: PMC4028341  PMID: 24185444
atg-16.1; atg-16.2; aggrephagy; C. elegans
12.  The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration 
Neurobiology of disease  2010;43(1):17-28.
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease.
doi:10.1016/j.nbd.2010.08.015
PMCID: PMC2998573  PMID: 20732422
autophagy; protein aggregates; neurodegeneration; ubiquitination; p62; ALFY; aggresome; neurons
13.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy 
The Journal of Cell Biology  2010;189(4):671-679.
Parkin catalyzes mitochondrial ubiquitination, recruiting autophagic components that clear damaged mitochondria. Defects in this pathway are implicated in Parkinson's disease.
Mutations in parkin, a ubiquitin ligase, cause early-onset familial Parkinson's disease (AR-JP). How parkin suppresses Parkinsonism remains unknown. Parkin was recently shown to promote the clearance of impaired mitochondria by autophagy, termed mitophagy. Here, we show that parkin promotes mitophagy by catalyzing mitochondrial ubiquitination, which in turn recruits ubiquitin-binding autophagic components, HDAC6 and p62, leading to mitochondrial clearance. During the process, juxtanuclear mitochondrial aggregates resembling a protein aggregate-induced aggresome are formed. The formation of these “mito-aggresome” structures requires microtubule motor-dependent transport and is essential for efficient mitophagy. Importantly, we show that AR-JP–causing parkin mutations are defective in supporting mitophagy due to distinct defects at recognition, transportation, or ubiquitination of impaired mitochondria, thereby implicating mitophagy defects in the development of Parkinsonism. Our results show that impaired mitochondria and protein aggregates are processed by common ubiquitin-selective autophagy machinery connected to the aggresomal pathway, thus identifying a mechanistic basis for the prevalence of these toxic entities in Parkinson's disease.
doi:10.1083/jcb.201001039
PMCID: PMC2872903  PMID: 20457763
14.  Autophagy and misfolded proteins in neurodegeneration 
Experimental Neurology  2012;238(1):22-28.
The accumulation of misfolded proteins in insoluble aggregates within the neuronal cytoplasm is one of the common pathological hallmarks of most adult-onset human neurodegenerative diseases. The clearance of these misfolded proteins may represent a promising therapeutic strategy in these diseases. The two main routes for intracellular protein degradation are the ubiquitin–proteasome and the autophagy–lysosome pathways. In this review, we will focus on the autophagic pathway, by providing some examples of how impairment at different steps in this degradation pathway is related to different neurodegenerative diseases. We will also consider that upregulating autophagy may be useful in the treatment of some of these diseases. Finally, we discuss how antioxidants, which have been considered to be beneficial in neurodegenerative diseases, can block autophagy, thus potentially compromising their therapeutic potential.
Research highlights
►Autophagy compromise occurs in different neurodegenerative diseases. ►Upregulating autophagy may be useful in the treatment of some neurodegenerative diseases. ►Many different reactive oxygen species scavengers impair autophagy
doi:10.1016/j.expneurol.2010.11.003
PMCID: PMC3463804  PMID: 21095248
Autophagy; Neurodegeneration; Huntington's disease
15.  Autophagy: A Critical Regulator of Cellular Metabolism and Homeostasis 
Molecules and Cells  2013;36(1):7-16.
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
doi:10.1007/s10059-013-0140-8
PMCID: PMC3887921  PMID: 23708729
autophagy; innate immunity; metabolism; mitophagy; neurodegeneration; proteostasis
16.  E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses 
PLoS Genetics  2014;10(1):e1004116.
Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti-proteotoxic pathways and protein's propensity to aggregate under stress conditions is one of the critical factors for pathway selection of protein degradation.
Author Summary
Environmental stresses such as heat cause generation of misfolded and damaged proteins, which are highly toxic and must be efficiently removed. In plants, NBR1, the first isolated autophagy receptor with an ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting ubiquitinated protein aggregates under stress conditions for degradation by autophagy. To study how stress-induced misfolded and damaged proteins are detected and ubiquitinated in plant cells, we analyzed the chaperone-associated E3 ubiquitin ligase CHIP from Arabidopsis thaliana for its role in protection against proteotoxicity in plant stress responses. Disruption of Arabidopsis CHIP caused increased sensitivity to a spectrum of abiotic stresses as found in the Arabidopsis nbr1 mutants. Disruption of both Arabidopsis CHIP and NBR1 further compromised plant stress tolerance, indicating that their roles are additive. Furthermore, in the chip nbr1 double mutant, compromised heat tolerance was associated with increased accumulation of insoluble proteins derived mostly from heat-sensitive but biologically important proteins such as Rubisco activase, catalases and proteins required for protein synthesis and folding. Importantly, stress-induced protein aggregates were still highly ubiquitinated in the chip mutants. These results strongly suggest that CHIP and NBR1 function in two distinct but complementary anti-proteotoxic pathways in plant stress responses.
doi:10.1371/journal.pgen.1004116
PMCID: PMC3907298  PMID: 24497840
17.  Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein 
The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of α-synuclein aggregates and Lewy bodies, often found in PD and other α-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of α-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in α-synuclein-expressing cells would increase the secretion of α-synuclein, subsequently affecting the α-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of α-synuclein. In a mixed culture of α-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular α-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of α-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated α-synuclein exocytosis, thereby promoting α-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.
doi:10.1038/emm.2013.45
PMCID: PMC3674407  PMID: 23661100
autophagy; neurodegeneration; protein aggregation; signal transduction
18.  Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease 
Human Molecular Genetics  2008;17(24):3897-3908.
The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, the genetic deficiency of the glycogen-degrading lysosomal enzyme acid-alpha glucosidase. Accumulation of lysosomal glycogen, presumably transported from the cytoplasm by the autophagic pathway, occurs in multiple tissues, but pathology is most severe in skeletal and cardiac muscle. Skeletal muscle pathology also involves massive autophagic buildup in the core of myofibers. To determine if glycogen reaches the lysosome via autophagy and to ascertain whether autophagic buildup in Pompe disease is a consequence of induction of autophagy and/or reduced turnover due to defective fusion with lysosomes, we generated muscle-specific autophagy-deficient Pompe mice. We have demonstrated that autophagy is not required for glycogen transport to lysosomes in skeletal muscle. We have also found that Pompe disease involves induction of autophagy but manifests as a functional deficiency of autophagy because of impaired autophagosomal–lysosomal fusion. As a result, autophagic substrates, including potentially toxic aggregate-prone ubiquitinated proteins, accumulate in Pompe myofibers and may cause profound muscle damage.
doi:10.1093/hmg/ddn292
PMCID: PMC2638578  PMID: 18782848
19.  Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila 
BMC Cell Biology  2013;14:29.
Background
Two pathways are responsible for the majority of regulated protein catabolism in eukaryotic cells: the ubiquitin-proteasome system (UPS) and lysosomal self-degradation through autophagy. Both processes are necessary for cellular homeostasis by ensuring continuous turnover and quality control of most intracellular proteins. Recent studies established that both UPS and autophagy are capable of selectively eliminating ubiquitinated proteins and that autophagy may partially compensate for the lack of proteasomal degradation, but the molecular links between these pathways are poorly characterized.
Results
Here we show that autophagy is enhanced by the silencing of genes encoding various proteasome subunits (α, β or regulatory) in larval fat body cells. Proteasome inactivation induces canonical autophagy, as it depends on core autophagy genes Atg1, Vps34, Atg9, Atg4 and Atg12. Large-scale accumulation of aggregates containing p62 and ubiquitinated proteins is observed in proteasome RNAi cells. Importantly, overexpressed Atg8a reporters are captured into the cytoplasmic aggregates, but these do not represent autophagosomes. Loss of p62 does not block autophagy upregulation upon proteasome impairment, suggesting that compensatory autophagy is not simply due to the buildup of excess cargo. One of the best characterized substrates of UPS is the α subunit of hypoxia-inducible transcription factor 1 (HIF-1α), which is continuously degraded by the proteasome during normoxic conditions. Hypoxia is a known trigger of autophagy in mammalian cells, and we show that genetic activation of hypoxia signaling also induces autophagy in Drosophila. Moreover, we find that proteasome inactivation-induced autophagy requires sima, the Drosophila ortholog of HIF-1α.
Conclusions
We have characterized proteasome inactivation- and hypoxia signaling-induced autophagy in the commonly used larval Drosophila fat body model. Activation of both autophagy and hypoxia signaling was implicated in various cancers, and mutations affecting genes encoding UPS enzymes have recently been suggested to cause renal cancer. Our studies identify a novel genetic link that may play an important role in that context, as HIF-1α/sima may contribute to upregulation of autophagy by impaired proteasomal activity.
doi:10.1186/1471-2121-14-29
PMCID: PMC3700814  PMID: 23800266
Autophagy; Drosophila; HIF-1α/sima; Hypoxia; p62/Ref2P; Proteasome
20.  The role of ubiquitin in autophagy-dependent protein aggregate processing 
Genes & cancer  2010;1(7):779-786.
The efficient management of misfolded protein aggregates is essential for cell viability and requires three interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic proteins aggregates to autophagy for clearance. Although autophagy is generally considered as non-selective degradative machinery, growing evidence supports the existence of a selective autophagy that specifically targets protein aggregates for clearance. This so-called “quality control autophagy” is established by specific ubiquitin E3 ligases, autophagic substrate ubiquitination, and specific ubiquitin binding proteins p62 and HDAC6. In this context, quality control autophagy is similar to the proteasome system and utilizes ubiquitin tags for substrate recognition and processing. Here I will discuss the recent progress towards understanding the molecular basis of this unique form of ubiquitin-dependent autophagy in protein aggregate clearance and its relevance to disease.
doi:10.1177/1947601910383277
PMCID: PMC2991150  PMID: 21113398
ubiquitin; autophagy; HDAC6; p62; actin
21.  The Role of Ubiquitin in Autophagy-Dependent Protein Aggregate Processing 
Genes & Cancer  2010;1(7):779-786.
The efficient management of misfolded protein aggregates is essential for cell viability and requires 3 interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic protein aggregates to autophagy for clearance. Although autophagy is generally considered as nonselective degradative machinery, growing evidence supports the existence of a selective autophagy that specifically targets protein aggregates for clearance. This “quality control autophagy” is established by specific ubiquitin E3 ligases, autophagic substrate ubiquitination, and specific ubiquitin-binding proteins p62 and HDAC6. In this context, quality control autophagy is similar to the proteasome system and utilizes ubiquitin tags for substrate recognition and processing. Here, I will discuss the recent progress toward understanding the molecular basis of this unique form of ubiquitin-dependent autophagy in protein aggregate clearance and its relevance to disease.
doi:10.1177/1947601910383277
PMCID: PMC2991150  PMID: 21113398
ubiquitin; autophagy; HDAC6; p62; actin
22.  Aggrephagy: Selective Disposal of Protein Aggregates by Macroautophagy 
Protein aggregation is a continuous process in our cells. Some proteins aggregate in a regulated manner required for different vital functional processes in the cells whereas other protein aggregates result from misfolding caused by various stressors. The decision to form an aggregate is largely made by chaperones and chaperone-assisted proteins. Proteins that are damaged beyond repair are degraded either by the proteasome or by the lysosome via autophagy. The aggregates can be degraded by the proteasome and by chaperone-mediated autophagy only after dissolution into soluble single peptide species. Hence, protein aggregates as such are degraded by macroautophagy. The selective degradation of protein aggregates by macroautophagy is called aggrephagy. Here we review the processes of aggregate formation, recognition, transport, and sequestration into autophagosomes by autophagy receptors and the role of aggrephagy in different protein aggregation diseases.
doi:10.1155/2012/736905
PMCID: PMC3320095  PMID: 22518139
23.  Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin) 
Molecular Cancer  2014;13:70.
Background
Macroautophagy is a catabolic process that can mediate cell death or survival. Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment (TR) is known to induce autophagy. Here we investigated whether SQSTM1/p62 (p62) overexpression, as a marker of autophagic flux, was related to aggressiveness of human prostate cancer (PCa) and whether autophagy regulated the treatment response in sensitive but not resistant PCa cell lines.
Methods
Immunostaining and immunoblotting analyses of the autophagic markers p62 [in PCa tissue microarrays (TMAs) and PCa cell lines] and LC3 (in PCa cell lines), transmission electron microscopy, and GFP-mCherry-LC3 were used to study autophagy induction and flux. The effect of autophagy inhibition using pharmacologic (3-methyladenine and chloroquine) and genetic [(short hairpin (sh)-mediated knock-down of ATG7 and LAMP2) and small interfering (si)RNA-mediated BECN1 knock-down] approaches on TR-induced cell death was assessed by clonogenic survival, sub-G1 DNA content, and annexinV/PI staining by flow cytometry. Caspase-8 activation was determined by immunoblotting.
Results
We found that increased cytoplasmic expression of p62 was associated with high-grade PCa, indicating that autophagy signaling might be important for survival in high-grade tumors. TR-resistant cells exhibited high autophagic flux, with more efficient clearance of p62-aggregates in four TR-resistant PCa cell lines: C4-2, LNCaP, DU145, and CWRv22.1. In contrast, autophagic flux was low in TR-sensitive PC3 cells, leading to accumulation of p62-aggregates. Pharmacologic (chloroquine or 3-methyladenine) and genetic (shATG7 or shLAMP2) inhibition of autophagy led to cell death in TR-resistant C4-2 cells. shATG7-expressing PC3 cells, were less sensitive to TR-induced cell death whereas those shLAMP2-expressing were as sensitive as shControl-expressing PC3 cells. Inhibition of autophagic flux using chloroquine prevented clearance of p62 aggregates, leading to caspase-8 activation and cell death in C4-2 cells. In PC3 cells, inhibition of autophagy induction prevented p62 accumulation and hence caspase-8 activation.
Conclusions
We show that p62 overexpression correlates with advanced stage human PCa. Pharmacologic and genetic inhibition of autophagy in PCa cell lines indicate that autophagic flux can determine the cellular response to TR by regulating caspase-8 activation. Thus, combining various autophagic inhibitors may have a differential impact on TR-induced cell death.
doi:10.1186/1476-4598-13-70
PMCID: PMC3998041  PMID: 24655592
Autophagy; p62/SQSTM1; Caspase-8; Prostate cancer; Apo2L/TRAIL; Dulanermin
24.  Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy☆ 
Neurobiology of Aging  2013;34(11):2585-2603.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.
doi:10.1016/j.neurobiolaging.2013.05.026
PMCID: PMC3748343  PMID: 23810450
Spinal and bulbar muscular atrophy; Androgen receptor; Polyglutamine; CAG repeat; Motoneuron disease; Motoneuron; Neurodegeneration; Protein misfolding; Chaperones; HspB8
25.  Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster 
Cell Death and Differentiation  2012;19(8):1308-1316.
Protein misfolding has a key role in several neurological disorders including Parkinson's disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control.
doi:10.1038/cdd.2012.5
PMCID: PMC3392634  PMID: 22301916
unfolded proteins; mitochondria; Drosophila; autophagy

Results 1-25 (1054736)