PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (881226)

Clipboard (0)
None

Related Articles

1.  Evidence for gene-gene epistatic interactions among susceptibility loci for systemic lupus erythematosus 
Arthritis and Rheumatism  2012;64(2):485-492.
Objective
Several confirmed genetic susceptibility loci for lupus have been described. To date, no clear evidence for genetic epistasis is established in lupus. We test for gene-gene interactions in a number of known lupus susceptibility loci.
Methods
Eighteen SNPs tagging independent and confirmed lupus susceptibility loci were genotyped in a set of 4,248 lupus patients and 3,818 normal healthy controls of European descent. Epistasis was tested using a 2-step approach utilizing both parametric and non-parametric methods. The false discovery rate (FDR) method was used to correct for multiple testing.
Results
We detected and confirmed gene-gene interactions between the HLA region and CTLA4, IRF5, and ITGAM, and between PDCD1 and IL21 in lupus patients. The most significant interaction detected by parametric analysis was between rs3131379 in the HLA region and rs231775 in CTLA4 (Interaction odds ratio=1.19, z-score= 3.95, P= 7.8×10−5 (FDR≤0.05), PMDR= 5.9×10−45). Importantly, our data suggest that in lupus patients the presence of the HLA lupus-risk alleles in rs1270942 and rs3131379 increases the odds of also carrying the lupus-risk allele in IRF5 (rs2070197) by 17% and 16%, respectively (P= 0.0028 and 0.0047).
Conclusion
We provide evidence for gene-gene epistasis in systemic lupus erythematosus. These findings support a role for genetic interaction contributing to the complexity of lupus heritability.
doi:10.1002/art.33354
PMCID: PMC3268866  PMID: 21952918
2.  A polymorphism within interleukin-21 receptor (IL21R) confers risk for systemic lupus erythematosus 
Arthritis and rheumatism  2009;60(8):2402-2407.
Objective
Interleukin (IL) 21 is a member of the type I cytokine superfamily that exerts a variety of effects on the immune system including B cell activation, plasma cell differentiation, and immunoglobulin production. The expression of IL21R is reduced in B cells from lupus patients, while IL21 serum levels are increased in both lupus patients and some lupus-murine models. We recently reported that polymorphisms within the IL21 gene are associated with increased susceptibility to lupus. Herein, we examined the genetic association between SNPs within IL21R and lupus.
Methods
We genotyped 17 SNPs in the IL21R gene in two large cohorts of lupus patients and ethnically-matched healthy controls. Genotyping was performed with the Illumina BeadStation 500GX instrument using Illumina Infinum II genotyping assays.
Results
We identified and confirmed the association between rs3093301 within the IL21R gene and lupus in two independent European-derived and Hispanic cohorts (meta analysis odds ratio= 1.16, 95% CI= 1.08-1.25, meta analysis p=1.0×10-4).
Conclusion
We identified IL21R as a novel susceptibility gene for lupus.
doi:10.1002/art.24658
PMCID: PMC2782592  PMID: 19644854
3.  Variants within MECP2, a key transcriptional regulator, are associated with increased susceptibility to lupus and differential gene expression in lupus patients 
Arthritis and rheumatism  2009;60(4):1076-1084.
Objective
Both genetic and epigenetic factors play an important role in the pathogenesis of lupus. Herein, we study methyl-CpG-binding protein 2 (MECP2) polymorphism in a large cohort of lupus patients and controls, and determine functional consequences of the lupus-associated MECP2 haplotype.
Methods
We genotyped 18 SNPs within MECP2, located on chromosome Xq28, in a large cohort of European-derived lupus patients and controls. We studied the functional effects of the lupus-associated MECP2 haplotype by determining gene expression profiles in B cell lines from female lupus patients with and without the lupus-associated MECP2 risk haplotype.
Results
We confirm, replicate, and extend the genetic association between lupus and genetic markers within MECP2 in a large independent cohort of European-derived lupus patients and controls (OR= 1.35, p= 6.65×10−11). MECP2 is a dichotomous transcriptional regulator that either activates or represses gene expression. We identified 128 genes that are differentially expressed in lupus patients with the disease-associated MECP2 haplotype; most (~81%) are upregulated. Genes that were upregulated have significantly more CpG islands in their promoter regions compared to downregulated genes. Gene ontology analysis using the differentially expressed genes revealed significant association with epigenetic regulatory mechanisms suggesting that these genes are targets for MECP2 regulation in B cells. Further, at least 13 of the 104 upregulated genes are interferon-regulated genes. The disease-risk MECP2 haplotype is associated with increased expression of the MECP2 transcriptional co-activator CREB1, and decreased expression of the co-repressor HDAC1.
Conclusion
Polymorphism in the MECP2 locus is associated with lupus and, at least in part, contributes to the interferon signature observed in lupus patients.
doi:10.1002/art.24360
PMCID: PMC2734382  PMID: 19333917
4.  Identification of novel genetic susceptibility loci in African-American lupus patients using a candidate gene association study 
Arthritis and rheumatism  2011;63(11):3493-3501.
Objective
Candidate gene and genome-wide association studies have identified several disease susceptibility loci in lupus patients. These studies have been largely performed in European-derived and Asian lupus patients. In this study, we examine if some of these same susceptibility loci increase lupus risk in African-American individuals.
Methods
Single nucleotide polymorphisms tagging 15 independent lupus susceptibility loci were genotyped in a set of 1,724 lupus patients and 2,024 normal healthy controls of African-American descent. The loci examined included: PTPN22, FCGR2A, TNFSF4, STAT4, CTLA4, PDCD1, PXK, BANK1, MSH5 (HLA region), CFB (HLA region), C8orf13-BLK region, MBL2, KIAA1542, ITGAM, and MECP2/IRAK1.
Results
We provide the first evidence for genetic association between lupus and five susceptibility loci in African-American patients (C8orf13-BLK, BANK1, TNFSF4, KIAA1542 andCTLA4; P values= 8.0 × 10−6, 1.9 × 10−5, 5.7 × 10−5, 0.00099, 0.0045, respectively). Further, we confirm the genetic association between lupus and five additional lupus susceptibility loci (ITGAM, MSH5, CFB, STAT4, and FCGR2A; P values= 7.5 × 10−11, 5.2 × 10−8, 8.7 × 10−7, 0.0058, and 0.0070, respectively), and provide evidence for a genome-wide significance for the association between ITGAM and MSH5 (HLA region) for the first time in African-American lupus patients.
Conclusion
These findings provide evidence for novel genetic susceptibility loci for lupus in African-Americans and demonstrate that the majority of lupus susceptibility loci examined confer lupus risk across multiple ethnicities.
doi:10.1002/art.30563
PMCID: PMC3205224  PMID: 21792837
5.  Genetically Determined Amerindian Ancestry Correlates with Increased Frequency of Risk Alleles for Systemic Lupus Erythematosus 
Arthritis and rheumatism  2010;62(12):3722-3729.
Objectives
To analyze if genetically determined Amerindian ancestry predicts the increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus.
Methods
Single nucleotide polymorphisms within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo normal healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation of the presence of risk alleles with ancestry was done using linear regression.
Results
A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4, STAT4, PDCD1, ITGAM, and IRF5 were associated with lupus in a Hispanic-Mestizo cohort enriched for European and Amerindian ancestry. In addition, two SNPs within the MHC region, previously associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression we predict an average increase of 2.34 risk alleles when comparing a lupus patient with 100% Amerindian ancestry to an SLE patient with 0% American Indian Ancestry (p<0.0001). SLE patients with 43% more Amerindian ancestry are predicted to carry one additional risk allele.
Conclusion
Amerindian ancestry increased the number of risk alleles for lupus.
doi:10.1002/art.27753
PMCID: PMC3078084  PMID: 20848568
6.  Differential effect of IL10 and TNFα genotypes on determining susceptibility to discoid and systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2005;64(11):1605-1610.
Objective: To ascertain the possible involvement of functional interleukin 10 (IL10) and tumour necrosis α (TNFα) cytokine promoter polymorphisms on the susceptibility to discoid and systemic lupus erythematosus (DLE, SLE), and their associations with immunological features.
Methods: Single nucleotide polymorphisms of the IL10 (–1082, –819, and –592) and TNFα (–308) genes were determined using allele specific probes in 248 lupus patients and 343 matched controls. To assess functional significance of genotypes, basal mRNA cytokine levels were quantified in 106 genotyped healthy controls by real time RT-PCR. Specific autoantibodies and cutaneous manifestations were analysed in SLE patients and associated with functional genotypes.
Results: After analysing the distribution of IL10 and TNFα transcript levels according to promoter genotypes in healthy individuals, patients and controls were classified into functional single and combined genotypes according to the expected high or low constitutive cytokine production. High TNFα genotypes (–308AA or AG) were associated with SLE independently of IL10 alleles, whereas the risk of developing DLE and the prevalence of discoid lesion in SLE were higher in the high IL10/low TNFα producer group (–1082GG/–308GG). Cytokine interaction also influences the appearance of autoantibodies. Antibodies against Sm are prevalent among low producer patients for both cytokines, a genotype not associated with lupus incidence, whereas low IL10/high TNFα patients have the highest frequency of antibodies to SSa and SSb.
Conclusions: IL10/TNFα interaction influences susceptibility to DLE and the appearance of specific autoantibodies in SLE patients, whereas high TNFα producer genotypes represent a significant risk factor for SLE.
doi:10.1136/ard.2004.035048
PMCID: PMC1755257  PMID: 15800006
7.  Association of STAT4 Polymorphism with Severe Renal Insufficiency in Lupus Nephritis 
PLoS ONE  2013;8(12):e84450.
Lupus nephritis is a cause of significant morbidity in systemic lupus erythematosus (SLE) and its genetic background has not been completely clarified. The aim of this investigation was to analyze single nucleotide polymorphisms (SNPs) for association with lupus nephritis, its severe form proliferative nephritis and renal outcome, in two Swedish cohorts. Cohort I (n = 567 SLE cases, n =  512 controls) was previously genotyped for 5676 SNPs and cohort II (n = 145 SLE cases, n = 619 controls) was genotyped for SNPs in STAT4, IRF5, TNIP1 and BLK.
Case-control and case-only association analyses for patients with lupus nephritis, proliferative nephritis and severe renal insufficiency were performed. In the case-control analysis of cohort I, four highly linked SNPs in STAT4 were associated with lupus nephritis with genome wide significance with p = 3.7×10−9, OR 2.20 for the best SNP rs11889341. Strong signals of association between IRF5 and an HLA-DR3 SNP marker were also detected in the lupus nephritis case versus healthy control analysis (p <0.0001). An additional six genes showed an association with lupus nephritis with p <0.001 (PMS2, TNIP1, CARD11, ITGAM, BLK and IRAK1). In the case-only meta-analysis of the two cohorts, the STAT4 SNP rs7582694 was associated with severe renal insufficiency with p  = 1.6×10−3 and OR 2.22. We conclude that genetic variations in STAT4 predispose to lupus nephritis and a worse outcome with severe renal insufficiency.
doi:10.1371/journal.pone.0084450
PMCID: PMC3873995  PMID: 24386384
8.  Population and family studies of three disease-related polymorphic genes in systemic lupus erythematosus. 
Journal of Clinical Investigation  1995;95(4):1766-1772.
The contribution to systemic lupus erythematosus (SLE) of three lupus-associated polymorphisms (involving the C4A2 complement component, Humhv3005 and the T cell antigen receptor alpha chain gene) are investigated in 81 individuals from 14 multiplex SLE families, 41 unrelated lupus patients, and 88 unrelated healthy controls. The results show a strong association between C4A deletion and SLE in these families. While the current study confirms the previously reported association between hv3005 deletion and sporadic SLE, the study fails to support this association in familial SLE patients. Moreover, no correlation is detected between the occurrence of hv3005 deletion and C4A null alleles in lupus patients, suggesting that the effects of these genetic polymorphisms on predisposition to lupus are independent. The previously reported lupus-associated T cell receptor (TCR) alpha chain polymorphism is not detected in any of the individuals studied here. The combined data suggest that C4A null alleles predispose strongly to development of lupus, whereas the influence of hv3005 deletion is relatively weak. The results also suggest that contributions of weak susceptibility genes such as hv3005 to disease predisposition may be obscured by the effects of stronger genetic factors and thus need to be examined in patients lacking these factors.
PMCID: PMC295700  PMID: 7706484
9.  Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2011;71(5):694-699.
Objectives
Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci.
Methods
A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex–gene interaction was further validated using parametric and nonparametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients.
Results
A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P = 4.52×10−8) A significant sex–gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men.
Conclusions
The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.
doi:10.1136/annrheumdis-2011-200385
PMCID: PMC3324666  PMID: 22110124
10.  Association between -1486 T>C and +1174 G>A single nucleotide polymorphisms in TLR9 gene and severity of lupus nephritis 
Indian Journal of Nephrology  2012;22(2):125-129.
Signaling through Toll-like receptor-9 (TLR9), a mediator of innate immune responses, could have a role in the pathogenesis of systemic lupus erythematosus (SLE). Some studies have shown an association between polymorphisms in the TLR9 gene and disease manifestations. We investigated whether two single nucleotide polymorphisms (-1486 T>C and +1174 G>A) in the TLR9 gene are associated with the risk of renal involvement in SLE. DNA samples from 112 SLE patients (62 with lupus nephritis) and 100 healthy controls were obtained. TLR9 polymorphisms (-1486 T>C and +1174 G>A) were analyzed by polymerase chain reaction–restriction fragment length polymorphism. Genotype and allelic frequencies were compared between lupus patients and healthy controls. Clinical and laboratory manifestations and activity scores on renal biopsy of patients with lupus nephritis were compared between various genotypes. There was no difference in the frequency of genotype or allele distribution at either of the two loci between lupus patients and controls and in lupus patients with or without nephritis. Patients with CC/CT genotype at the -1486 position had higher serum creatinine (P = 0.03) and Austin activity scores (P = 0.015). Patients with AA/AG genotype at +1174 position showed higher serum creatinine (P = 0.04), proteinuria (P = 0.011), anti-dsDNA titers (P < 0.001) and Austin activity scores (P = 0.003) than the GG genotype. Variations at the -1486 and +1174 positions of TLR9 gene are not associated with increased risk of SLE or that of kidney involvement in North Indians. CC/CT genotypes at -1486 and AA/AG at +1174 positions are associated with more severe kidney disease at presentation.
doi:10.4103/0971-4065.97133
PMCID: PMC3391810  PMID: 22787315
Genetics; lupus nephritis; systemic lupus erythematosus; toll-like receptor
11.  Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus 
Annals of the rheumatic diseases  2011;70(10):1752-1757.
Objective
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus.
Materials and methods
4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria.
Results
Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing.
Conclusion
Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
doi:10.1136/ard.2011.154104
PMCID: PMC3232181  PMID: 21719445
12.  IRF5 activation in monocytes of SLE patients is triggered by circulating autoantigens independent of type I IFN 
Arthritis and Rheumatism  2012;64(3):788-798.
Objective
Genetic variants of interferon regulatory factor 5 (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). IRF5 regulates the expression of proinflammatory cytokines and type I interferons (IFN) believed to be involved in SLE pathogenesis. The aim of this study was to determine the activation status of IRF5 by assessing its nuclear localization in immune cells of SLE patients and healthy donors, and to identify SLE triggers of IRF5 activation.
Methods
IRF5 nuclear localization in subpopulations of peripheral blood mononuclear cells (PBMC) from 14 genotyped SLE patients and 11 healthy controls was assessed using imaging flow cytometry. IRF5 activation and function were examined after ex vivo stimulation of healthy donor monocytes with SLE serum or components of SLE serum. Cellular localization was determined by ImageStream and cytokine expression by Q-PCR and ELISA.
Results
IRF5 was activated in a cell type-specific manner; monocytes of SLE patients had constitutively elevated levels of nuclear IRF5 compared to NK and T cells. SLE serum was identified as a trigger for IRF5 nuclear accumulation; however, neither IFNα nor SLE immune complexes could induce nuclear localization. Instead, autoantigens comprised of apoptotic/necrotic material triggered IRF5 nuclear accumulation in monocytes. Production of cytokines IFNα, TNFα and IL6 in monocytes stimulated with SLE serum or autoantigens was distinct yet correlated with the kinetics of IRF5 nuclear localization.
Conclusion
This study provides the first formal proof that IRF5 activation is altered in monocytes of SLE patients that is in part contributed by the SLE blood environment.
doi:10.1002/art.33395
PMCID: PMC3288585  PMID: 21968701
13.  1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data 
We hypothesize that imputation based on data from the 1000 Genomes Project can identify novel association signals on a genome-wide scale due to the dense marker map and the large number of haplotypes. To test the hypothesis, the Wellcome Trust Case Control Consortium (WTCCC) Phase I genotype data were imputed using 1000 genomes as reference (20100804 EUR), and seven case/control association studies were performed using imputed dosages. We observed two ‘missed' disease-associated variants that were undetectable by the original WTCCC analysis, but were reported by later studies after the 2007 WTCCC publication. One is within the IL2RA gene for association with type 1 diabetes and the other in proximity with the CDKN2B gene for association with type 2 diabetes. We also identified two refined associations. One is SNP rs11209026 in exon 9 of IL23R for association with Crohn's disease, which is predicted to be probably damaging by PolyPhen2. The other refined variant is in the CUX2 gene region for association with type 1 diabetes, where the newly identified top SNP rs1265564 has an association P-value of 1.68 × 10−16. The new lead SNP for the two refined loci provides a more plausible explanation for the disease association. We demonstrated that 1000 Genomes-based imputation could indeed identify both novel (in our case, ‘missed' because they were detected and replicated by studies after 2007) and refined signals. We anticipate the findings derived from this study to provide timely information when individual groups and consortia are beginning to engage in 1000 genomes-based imputation.
doi:10.1038/ejhg.2012.3
PMCID: PMC3376268  PMID: 22293688
genome-wide association study; the 1000 Genomes project; imputation
14.  Meta-analysis and Imputation Identifies a 109 kb Risk Haplotype Spanning TNFAIP3 Associated with Lupus Nephritis and Hematologic Manifestations 
Genes and immunity  2009;10(5):470-477.
TNFAIP3 encodes the ubiquitin modifying enzyme, A20, a key regulator of inflammatory signaling pathways. We previously reported association between TNFAIP3 variants and systemic lupus erythematosus (SLE). In order to further localize the risk variant(s), we performed a meta-analysis using genetic data available from two Caucasian case/control datasets (1453 total cases, 3381 total controls) and 713 SLE trio families. The best result was found at rs5029939 (P = 1.67 × 10−14, OR = 2.09, 95% CI 1.68–2.60). We then imputed SNPs from the CEU Phase II HapMap using genotypes from 431 SLE cases and 2155 controls. Imputation identified eleven SNPs in addition to three observed SNPs, which together, defined a 109 kb SLE risk segment surrounding TNFAIP3. When evaluating whether the rs5029939 risk allele was associated with SLE clinical manifestations, we observed that heterozygous carriers of the TNFAIP3 risk allele at rs5029939 have a two-fold increased risk of developing renal or hematologic manifestations compared to homozygous non-risk subjects. In summary, our study strengthens the genetic evidence that variants in the region of TNFAIP3 influence risk for SLE, particularly in patients with renal and hematologic manifestations, and narrows the risk effect to a 109 kb DNA segment that spans the TNFAIP3 gene.
doi:10.1038/gene.2009.31
PMCID: PMC2714405  PMID: 19387456
systemic lupus erythematosus; TNFAIP3; imputation; meta-analysis
15.  High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups 
Arthritis and rheumatism  2009;60(4):1085-1095.
Objective
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility.
Methods
Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated.
Results
We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4.
Conclusion
Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets.
doi:10.1002/art.24387
PMCID: PMC2776081  PMID: 19333953
16.  IRF5 SLE-Risk Haplotype is Associated with Asymptomatic Serologic Autoimmunity and Progression to Clinical Autoimmunity in Neonatal Lupus Mothers 
Arthritis and rheumatism  2012;64(10):3383-3387.
Objective
Genetic variation in interferon regulatory factor 5 (IRF5) has been associated with risk of developing systemic lupus erythematosus (SLE), and this association is largely dependent upon anti-Ro autoantibodies. We studied a unique cohort of anti-Ro positive individuals with diverse diagnoses to determine if IRF5 genotype associated with maternal diagnosis or progression of autoimmunity.
Methods
We genotyped haplotype-tagging polymorphisms in IRF5 in 93 European ancestry subjects recruited to the Research Registry for Neonatal Lupus who all had high titer anti-Ro autoantibodies and a child with neonatal lupus (NL), and allele frequencies were compared to non-autoimmune controls. The mothers diagnoses included SLE, Sjogren’s syndrome (SS), undifferentiated autoimmune syndrome (UAS), and asymptomatic.
Results
The SLE-risk haplotype of IRF5 was enriched in all anti-Ro positive subjects except those with SS (OR = 2.55, p=8.8×10−4). Even asymptomatic individuals with anti-Ro antibodies were enriched for the SLE-risk haplotype (OR=2.69, p=0.019). The same haplotype was more prevalent in subjects who were initially asymptomatic, but developed symptomatic SLE during follow up (OR=5.83, p=0.0024). Interestingly, SS was associated with two minor IRF5 haplotypes, and these same haplotypes were decreased in frequency in those with SLE and UAS.
Conclusions
The IRF5 SLE-risk haplotype was associated with anti-Ro antibodies in asymptomatic individuals as well as progression to SLE in asymptomatic anti-Ro positive individuals. SS in NL mothers was associated with different IRF5 haplotypes. These data suggest that IRF5 polymorphisms play a role in serologic autoimmunity in humans and may promote the progression to clinical autoimmunity.
doi:10.1002/art.34571
PMCID: PMC3449035  PMID: 22674082
systemic lupus erythematosus; interferon; autoantibodies; neonatal lupus; Sjogren’s syndrome
17.  Tissue plasminogen activator inhibitor in patients with systemic lupus erythematosus and thrombosis. 
BMJ : British Medical Journal  1990;300(6732):1099-1102.
OBJECTIVE--To examine the relations among tissue plasminogen activator antigen, plasminogen activator inhibitor, the lupus anticoagulant, and anticardiolipin antibodies in patients with systemic lupus erythematosus. DESIGN--Prospective study of blood samples (a) from selected patients with systemic lupus erythematosus whose disease was and was not complicated by a history of thrombosis or recurrent abortions, or both, and (b) from a series of healthy controls with a similar age and sex distribution. SETTING--University based medical clinic. SUBJECTS--23 Patients with definite systemic lupus erythematosus (American Rheumatism Association criteria), of whom 11 (eight women) aged 26-51 had a history of thrombosis or recurrent abortions, or both, and 12 (10 women) aged 23-53 had no such history. 15 Healthy subjects (10 women) aged 25-58 served as controls. MAIN OUTCOME MEASURES--Tissue plasminogen activator concentrations, plasminogen activator inhibitor activities, detection of the lupus anticoagulant, and values of anticardiolipin antibodies in the two groups of patients and in the patients with a history of thrombosis or abortions compared with controls. Other measurements included concentrations of proteins that are known to change during the acute phase of systemic lupus erythematosus--namely, fibrinogen, C3 and C4, and C reactive protein. RESULTS--Patients with a history of thrombosis or abortions, or both, had significantly higher values of tissue plasminogen activator and plasminogen activator inhibitor than patients with no such history. A significant correlation between tissue plasminogen activator and plasminogen activator inhibitor (r = 0.80) was found only in the patients with a history of complications of their disease. The lupus anticoagulant was detected in six of the 11 patients with a history of thrombosis or abortions when tested by measuring the activated partial thromboplastin time but was found in all 11 patients when tested by measuring the diluted activated partial thromboplastin time. Nine of these 11 patients had raised values of anticardiolipin antibodies. The findings showed no relation to the activity of the disease. CONCLUSIONS--A significant correlation between tissue plasminogen activator concentrations and plasminogen activator inhibitor activities was found only in patients whose systemic lupus erythematosus was complicated by a history of thrombosis or recurrent abortions. The findings show that these patients have raised plasminogen activator inhibitor activities, and the frequent association between these raised activities and the presence of the lupus anticoagulant suggests that the two may be linked.
PMCID: PMC1662822  PMID: 2111722
18.  STAT4 Associates with SLE Through Two Independent Effects that Correlate with Gene Expression and Act Additively with IRF5 to Increase Risk 
Annals of the rheumatic diseases  2008;68(11):10.1136/ard.2008.097642.
Objectives
To confirm and define the genetic association of STAT4 and systemic lupus erythematosus, investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5.
Methods
30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in 5 new sets of cases and controls for replication. STAT4 cDNA was analyzed by 5’-RACE PCR and sequencing. Expression levels were measured by quantitative PCR.
Results
In the fine-mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. We also detected transcription of alternative tissue-specific exons 1, indicating presence of tissue-specific promoters of potential importance in the expression of STAT4. No interaction with associated SNPs of IRF5 was observed using regression analysis.
Conclusions
These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. Our results also indicate that both genes STAT4 and IRF5 act additively to increase risk for SLE.
doi:10.1136/ard.2008.097642
PMCID: PMC3878433  PMID: 19019891
Association studies; systemic lupus erythematosus; STAT4 transcription factor; Interferon regulatory factor; genetic predisposition to disease
19.  Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein 
Annals of the Rheumatic Diseases  2012;71(7):1219-1226.
Objectives
To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE).
Methods
Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild type form were analysed for their effect on protein half-life using a protein stability assay, cycloheximide and western blot. CHiP-qPCR for detection of nuclear factor κ B (NFkB) binding.
Results
Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFκB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2 Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR=2.31 (95% CI 1.38 to 3.86). The 71Thr decreased BLK protein half-life.
Conclusions
These results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently, lead to reduced levels of BLK protein.
doi:10.1136/annrheumdis-2011-200987
PMCID: PMC3375585  PMID: 22696686
20.  The A-G polymorphism in exon 1 of the CTLA-4 gene is not associated with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  1999;58(3):193-195.
OBJECTIVES—Factors contributing to the development of systemic lupus erythematosus (SLE) remain largely unknown although are likely to include both environmental and genetic components. Studies on murine lupus have indicated a role for an antibody that blocks binding of cytotoxic T lymphocyte associated-4 (CTLA-4) to B7 on antigen presenting cells in the treatment of disease, suggesting that CTLA-4 may play an important part in the disease process. This study, therefore, investigated the frequency of a previously described A-G polymorphism in exon 1 of the CTLA-4 gene, the G allele of which has shown to be associated with both Graves' disease and type I diabetes, to determine whether this polymorphism was playing a part in the development of SLE.
METHODS—One hundred and twenty six SLE patients and 363 control subjects were genotyped for the A-G polymorphism in exon 1 of the CTLA-4 gene. Target DNA was amplified using the polymerase chain reaction and the resulting product was digested using the BbvI restriction enzyme.
RESULTS—No differences in allele or genotype frequencies were observed between patients with SLE and control subjects.
CONCLUSION—These data suggest that the A-G polymorphism in exon 1 of the CTLA-4 gene does not play a part in the genetic susceptibility to the development of SLE.

 Keywords: CTLA-4; systemic lupus erythematosus
PMCID: PMC1752847  PMID: 10364920
21.  Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population 
Arthritis Research & Therapy  2011;13(6):R186.
Introduction
Recent genome-wide and candidate gene association studies in large numbers of systemic lupus erythematosus (SLE) patients have suggested approximately 30 susceptibility genes. These genes are involved in three types of biological processes, including immune complex processing, toll-like receptor function and type I interferon production, and immune signal transduction in lymphocytes, and they may contribute to the pathogenesis of SLE. To better understand the genetic risk factors of SLE, we investigated the associations of seven SLE susceptibility genes in a Chinese population, including FCGR3A, FCGR2A, TNFAIP3, TLR9, TREX1, ETS1 and TNIP1.
Methods
A total of 20 SNPs spanning the seven SLE susceptibility genes were genotyped in a sample of 564 unrelated SLE patients and 504 unrelated healthy controls recruited from Yunnan, southwestern China. The associations of SNPs with SLE were assessed by statistical analysis.
Results
Five SNPs in two genes (TNFAIP3 and ETS1) were significantly associated with SLE (corrected P values ranging from 0.03 to 5.5 × 10-7). Through stratified analysis, TNFAIP3 and ETS1 showed significant associations with multiple SLE subphenotypes (such as malar rash, arthritis, hematologic disorder and antinuclear antibody) while TNIP1 just showed relatively weak association with onset age. The associations of the SNPs in the other four genes were not replicated.
Conclusions
The replication analysis indicates that TNFAIP3, ETS1 and TNIP1 are probably common susceptibility genes for SLE in Chinese populations, and they may contribute to the pathogenesis of multiple SLE subphenotypes.
doi:10.1186/ar3514
PMCID: PMC3334635  PMID: 22087647
22.  ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash, and immunologic manifestations in lupus patients with European ancestry 
Annals of the rheumatic diseases  2009;69(7):1329-1332.
Purpose
We hypothesized that the coding variant (R77H), rs1143679, within ITGAM could predict specific clinical manifestations associated with lupus.
Method
To assess genetic association, 2366 lupus cases and 2931 unaffected controls with European ancestry were analyzed. Lupus patients were coded by the presence or absence of individual ACR criteria. Logistic regression and Pearson chi-square tests were used to assess statistical significance.
Results
First, for overall case-control analysis, we detected highly significant (p=2.22×10−21, OR=1.73) association. Second, using case-only analysis we detected significant association with renal criteria (p=0.0003), discoid rash (p=0.02), and immunologic criteria (p=0.04). Third, we compared them with healthy controls, the association became stronger for renal (p=4.69×10−22, OR=2.15), discoid (p=1.77×10−14, OR=2.03), and immunologic (p=3.49×10−22, OR = 1.86) criteria. Risk allele frequency increased from 10.6% (controls) to 17.0% (lupus), 20.4% (renal), 18.1% (immunologic), and 19.5% (discoid).
Conclusion
These results demonstrated a strong association between the risk allele (A) at rs1143679 and renal disease, discoid rash, and immunological manifestations of lupus.
doi:10.1136/ard.2009.120543
PMCID: PMC2891778  PMID: 19939855
23.  Identification of Candidate Loci at 6p21 and 21q22 in a Genome-Wide Association Study of Cardiac Manifestations of Neonatal Lupus 
Arthritis and rheumatism  2010;62(11):3415-3424.
Objective
Cardiac manifestations of neonatal lupus, comprising atrioventricular conduction defects and cardiomyopathy, occur in fetuses exposed to anti-Ro/SSA antibodies, and carry substantial mortality. There is strong evidence of a genetic contribution to the risk. This study was undertaken to evaluate single-nucleotide polymorphisms (SNPs) for associations with cardiac neonatal lupus.
Methods
Children of European ancestry with cardiac neonatal lupus (n = 116) were genotyped using the Illumina 370K SNP platform and merged with 3,351 controls. Odds ratios (ORs) and 95% confidence intervals (95% CIs) for association with cardiac neonatal lupus were determined.
Results
The 17 most significant associations with cardiac neonatal lupus were found in the HLA region. The region near the MICB gene showed the strongest variant (rs3099844; Pdom = 4.52 × 10−10, OR 3.34 [95% CI 2.29–4.89]), followed by a missense variant within C6orf10 (rs7775397; Pdom = 1.35 × 10−9, OR 3.30), which lies between NOTCH4 and BTNL2, and several SNPs near the tumor necrosis factor α gene, including rs2857595 (Padd = 1.96 × 10−9, OR 2.37), rs2230365 (Padd = 1.00 × 10−3, OR 0.46), and rs3128982 (Padd = 6.40 × 10−6, OR 1.86). Outside the HLA region, an association was detected at 21q22, upstream of the transcription regulator ets-related isoform 1 (rs743446; P = 5.45 × 10−6, OR 2.40). HLA notwithstanding, no individual locus previously implicated in autoimmune diseases achieved genome-wide significance.
Conclusion
These results suggest that variation near genes related to inflammatory and apoptotic responses may promote cardiac injury initiated by passively acquired autoantibodies.
doi:10.1002/art.27658
PMCID: PMC3593718  PMID: 20662065
24.  Independent Replication and Metaanalysis of Association Studies Establish TNFSF4 as a Susceptibility Gene Preferentially Associated with the Subset of Anticentromere-positive Patients with Systemic Sclerosis 
The Journal of rheumatology  2012;39(5):997-1003.
Objective
Independent replication with large cohorts and metaanalysis of genetic associations are necessary to validate genetic susceptibility factors. The known tumor necrosis factor (ligand) superfamily, member 4 gene (TNFSF4) systemic lupus erythematosus (SLE) risk locus has been found to be associated with systemic sclerosis (SSc) in 2 studies, but with discrepancies between them for genotype-phenotype correlation. Our objective was to validate TNFSF4 association with SSc and determine the subset with the higher risk.
Methods
Known SLE and SSc TNFSF4 susceptibility variants (rs2205960, rs1234317, rs12039904, rs10912580, and rs844648) were genotyped in 1031 patients with SSc and 1014 controls of French white ancestry. Genotype-phenotype association analysis and metaanalysis of available data were performed, providing a population study of 4989 patients with SSc and 4661 controls, all of European white ancestry.
Results
Allelic and genotypic associations were observed for the 5 single-nucleotide polymorphisms (SNP) with the subset of patients with SSc who are positive for anticentromere antibodies (ACA) and only a trend for association with SSc and limited cutaneous SSc. Rs2205960 exhibited the strongest allelic association in ACA+ patients with SSc [p = 0.0015; OR 1.37 (1.12–1.66)], with significant intracohort association when compared to patients with SSc positive for ACA. Metaanalysis confirmed overall association with SSc but also raised preferential association with the ACA+ subset and strongest effect with rs2205960 [T allele p = 0.00013; OR 1.33 (1.15–1.54) and TT genotype p = 0.00046; OR 2.02 (1.36–2.98)].
Conclusion
We confirm TNFSF4 as an SSc susceptibility gene and rs2205960 as a putative causal variant with preferential association in the ACA+ SSc subphenotype. (First Release March 15 2012; J Rheumatol 2012;39:997–1003; doi:10.3899/jrheum.111270)
doi:10.3899/jrheum.111270
PMCID: PMC3687343  PMID: 22422496
SYSTEMIC SCLEROSIS; TNFSF4; AUTOIMMUNITY; AUTOANTIBODIES
25.  Association study of genetic variants of pro-inflammatory chemokine and cytokine genes in systemic lupus erythematosus 
BMC Medical Genetics  2006;7:48.
Background
Several lines of evidence suggest that chemokines and cytokines play an important role in the inflammatory development and progression of systemic lupus erythematosus. The aim of this study was to evaluate the relevance of functional genetic variations of RANTES, IL-8, IL-1α, and MCP-1 for systemic lupus erythematosus.
Methods
The study was conducted on 500 SLE patients and 481 ethnically matched healthy controls. Genotyping of polymorphisms in the RANTES, IL-8, IL-1α, and MCP-1 genes were performed using a real-time polymerase chain reaction (PCR) system with pre-developed TaqMan allelic discrimination assay.
Results
No significant differences between SLE patients and healthy controls were observed when comparing genotype, allele or haplotype frequencies of the RANTES, IL-8, IL-1α, and MCP-1 polymorphisms. In addition, no evidence for association with clinical sub-features of SLE was found.
Conclusion
These results suggest that the tested functional variation of RANTES, IL-8, IL-1α, and MCP-1 genes do not confer a relevant role in the susceptibility or severity of SLE in the Spanish population.
doi:10.1186/1471-2350-7-48
PMCID: PMC1488833  PMID: 16719905

Results 1-25 (881226)