Search tips
Search criteria

Results 1-25 (406427)

Clipboard (0)

Related Articles

1.  Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera 
Annals of Botany  2012;110(3):713-729.
Background and Aims
Oil-producing flowers related to oil-bee pollination are a major innovation in Neotropical and Mexican Iridaceae. In this study, phylogenetic relationships were investigated among a wide array of New World genera of the tribes Sisyrinchieae, Trimezieae and Tigridieae (Iridaceae: Iridoideae) and the evolution of floral glandular structures, which are predominantly trichomal elaiophores, was examined in relation to the diversification of New World Iridaceae.
Phylogenetic analyses based on seven molecular markers obtained from 97 species were conducted to produce the first extensive phylogeny of the New World tribes of subfamily Iridoideae. The resulting phylogenetic hypothesis was used to trace the evolutionary history of glandular structures present in the flowers of numerous species in each tribe. Hypotheses of differential diversification rates among lineages were also investigated using both topological and Binary-State Speciation and Extinction methods.
Key Results and Conclusions
Floral glandular structures and especially trichomal elaiophores evolved multiple times independently in the American tribes of Iridoideae. The distribution pattern of species displaying glandular trichomes across the phylogeny reveals lability in the pollination system and suggests that these structures may have played a significant role in the diversification of the Iridoideae on the American continent.
PMCID: PMC3400458  PMID: 22782239
Elaiophores; glandular trichomes; Iridoideae; nectaries; pollination systems; Sisyrinchieae; Tigridieae; Trimezieae
2.  Floral elaiophores in Lockhartia Hook. (Orchidaceae: Oncidiinae): their distribution, diversity and anatomy 
Annals of Botany  2013;112(9):1775-1791.
Background and Aims
A significant proportion of orchid species assigned to subtribe Oncidiinae produce floral oil as a food reward that attracts specialized bee pollinators. This oil is produced either by glabrous glands (epithelial elaiophores) or by tufts of secretory hairs (trichomal elaiophores). Although the structure of epithelial elaiophores in the Oncidiinae has been well documented, trichomal elaiophores are less common and have not received as much attention. Only trichomal elaiophores occur in the genus Lockhartia, and their distribution and structure are surveyed here for the first time.
Flowers of 16 species of Lockhartia were studied. The location of floral elaiophores was determined histochemically and their anatomical organization and mode of oil secretion was investigated by means of light microscopy, scanning electron microscopy and transmission electron microscopy.
Key Results and Conclusions –
All species of Lockhartia investigated have trichomal elaiophores on the adaxial surface of the labellum. Histochemical tests revealed the presence of lipoidal substances within the labellar trichomes. However, the degree of oil production and the distribution of trichomes differed between the three major groups of species found within the genus. All trichomes were unicellular and, in some species, of two distinct sizes, the larger being either capitate or apically branched. The trichomal cuticle was lamellate, and often appeared distended due to the subcuticular accumulation of oil. The labellar trichomes of the three species examined using transmission electron microscopy contained dense, intensely staining cytoplasm with apically located vacuoles. Oil-laden secretory vesicles fused with the plasmalemma and discharged their contents. Oil eventually accumulated between the cell wall and cuticle of the trichome and contained electron-transparent profiles or droplets. This condition is considered unique to Lockhartia among those species of elaiophore-bearing Oncidiinae studied to date.
PMCID: PMC3838557  PMID: 24169595
Anatomy; callus; elaiophore; Lockhartia; oil secretion; Oncidiinae; Orchidaceae; trichomes
3.  Pollination Biology of Jacaranda oxyphylla with an Emphasis on Staminode Function 
Annals of Botany  2008;102(5):699-711.
Background and Aims
Bignoniaceae is a Neotropical family with >100 genera, only two of which, Jacaranda and Digomphia, have a developed staminode. Jacaranda oxyphylla, whose flowers possess a conspicuous glandular staminode, is a zoophilous cerrado species. Here, the composition of the secretion of the glandular trichome and the influence of the staminode on the pollination biology and reproductive success of J. oxyphylla were studied.
The floral morphology, pollen viability, stigma receptivity, nectar volume and nectar concentration were studied. Compatibility system experiments were performed and floral visitors were observed and identified. Experiments comparing the effect of staminode presence and absence on pollen removal and pollen deposition efficiency were conducted in open-pollinated flowers. Histochemistry, thin-layer chromatography (TLC) and gas chromatography coupled to flame ionization detection (GC–FID) analyses were performed to determine the main chemical components of the staminode's glandular trichome secretion.
Key Results
Flower anthesis lasted 2 d and, despite the low frequency of flower visitation, pollination seemed to be effected mainly by medium-sized Eulaema nigrita and Bombus morio bees, by the small bee Exomalopsis fulvofasciata and occasionally by hummingbirds. Small bees belonging to the genera Ceratina, Augochlora and Trigona were frequent visitors, collecting pollen. Jacaranda oxyphylla is predominantly allogamous. Staminode removal resulted in fewer pollen grains deposited on stigmas but did not affect total pollen removal. The secretion of capitate glandular trichome occurs continually; the main chemical compounds detected histochemically were phenolic and terpenoid (essential oils and resins). Monoterpene cineole, pentacyclic triterpenes and steroids were identified by TLC and GC–FID.
The staminode of J. oxyphyllla is multifunctional and its importance for female reproductive success was attributed mainly to the secretion produced by capitate glandular trichomes. This secretion is involved in complex chemical interactions with pollinating bees, including the solitary bees Euglossini. These bees are common pollinators of various species of Jacaranda.
PMCID: PMC2712375  PMID: 18765441
Bignoniaceae; Jacaranda oxyphylla; pollination; bee; staminode; glandular trichomes; reproductive success; terpenes; steroids; phenolics
4.  Radiation of Pollination Systems in the Iridaceae of sub-Saharan Africa 
Annals of Botany  2006;97(3):317-344.
• Background Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists.
• Scope Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen placement, in conjunction with changes in flower colour, scent and tube length.
• Conclusions Diversity of pollination systems explains in part the huge species diversity of Iridaceae in sub-Saharan Africa, and permits species packing locally. Pollination shifts are, however, seen as playing a secondary role in speciation by promoting reproductive isolation in peripheral, ecologically distinct populations in areas of diverse topography, climate and soils. Pollination of Iridaceae in Eurasia and the New World, where the family is also well represented, is poorly studied but appears less diverse, although pollination by both pollen- and oil-collecting bees is frequent and bird pollination rare.
PMCID: PMC2803647  PMID: 16377653
Floral form; fragrance chemistry; guilds; keystone species; nectar chemistry; Coleoptera; Hymenoptera; Lepidoptera; Nectarinia
5.  Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae 
Annals of Botany  2011;107(8):1323-1334.
Background and Aims
Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species.
Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods.
Key Results
Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera.
Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships.
PMCID: PMC3101150  PMID: 21610210
Cerrado; elaiophores; fatty acids; floral oils; floral rewards; gas chromatography; Malpighiaceae; oil-collecting bees; oil flowers; pollination shift; pollination syndromes; Pterandra pyroidea
6.  A pollinators' eye view of a shelter mimicry system 
Annals of Botany  2013;111(6):1155-1165.
Background and Aims
‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown.
Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis).
Key Results
Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent.
The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.
PMCID: PMC3662522  PMID: 23599249
Shelter mimicry; floral evolution; pollinator preferences; floral scents; floral colours; Iris atropurpurea; Oncocyclus
7.  Floral elaiophore structure in four representatives of the Ornithocephalus clade (Orchidaceae: Oncidiinae) 
Annals of Botany  2012;110(4):809-820.
Background and Aims
A significant number of species assigned to the Neotropical orchid sub-tribe Oncidiinae reward insect pollinators with oil produced in floral glands termed elaiophores. The latter may be glabrous (epithelial elaiophores) or hirsute (trichomal elaiophores). Although the detailed anatomy and ultrastructure of epithelial elaiophores have been studied for a number of genera, such as Oncidium Sw., Gomesa R. Br. and Trichocentrum Poepp. & Endl., hitherto, trichomal elaiophores have been investigated only for a single species of Oncidiinae, Ornithocephalus ciliatus Lindl. Furthermore, this is the only representative of the Ornithocephalus clade to be investigated to date. Here, an examination is made of the elaiophore anatomy and ultrastructure of a further four species currently assigned to this clade (Ornithocephalus gladiatus Hook., Phymatidium falcifolium Lindl., Zygostates grandiflora (Lindl.) Mansf. and Zygostates lunata Lindl.) and the results compared with those obtained for other Oncidiinae.
Elaiophore structure was examined for all species at three stages of flower development: closed bud, first day of anthesis and final stage of anthesis, using light microscopy, fluorescence microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry.
Key Results
Elaiophores of O. gladiatus occur upon the lateral lobes of the labellum and display characters intermediate between those of typical epithelial and trichomal elaiophores, in that they are largely glabrous, consisting mainly of cuboidal epidermal cells, but bear short, unicellular hairs proximally. By contrast, the elaiophores of all the other species investigated occur on the callus and are of the trichomal type. In P. falcifolium, these unicellular hairs are capitate. In all species, oil secretion commenced at the closed floral bud stage. Ultrastructurally, the mainly trichomal elaiophores of the four representatives of the Ornithocephalus clade closely resembled the epithelial elaiophores of other Oncidiinae, in that their cells displayed an organelle complement typical of lipid-secreting cells. However, in some taxa, a number of noteworthy characters were present. For example, the elaiophore cuticle of O. gladiatus and P. falcifolium was bi-layered, the outer layer being lamellate, the inner reticulate. The cuticle of Z. grandiflora and Z. lunata was also lamellate, but here, a reticulate layer was absent. Accumulation of secreted oil resulted in the localized distension of the cuticle. Cuticular cracks and pores, however, were absent from all species. The walls of the secretory cells of Z. grandiflora were also atypical in that they had short protuberances or ingrowths, and contained cavities which are thought to be involved in the secretory process.
Of the species investigated, most displayed similar anatomical organization, their trichomal elaiophores occurring on the labellar callus. They, thus, differ from many other members of the Oncidiinae, where epithelial elaiophores are found either on the callus, or on the lateral lobes of the labellum. However, ultrastructurally, all elaiophores, whether those of representatives of the Ornithocephalus clade, or those of other oil-secreting Oncidiinae, possessed a similar complement of organelles, regardless of whether the elaiophores were trichomal or epithelial. In view of the latter, and the similar chemical composition of oils derived from all Oncidiinae investigated to date, it is probable that position and type of elaiophore, and possibly the structure of the overlying cuticle, play an important role in pollinator selection in these oil-secreting orchids.
PMCID: PMC3423815  PMID: 22805528
Anatomy; elaiophore; histochemistry; lipid secretion; micromorphology; oil glands; Oncidiinae; trichome; ultrastructure
8.  Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species 
Annals of Botany  2012;110(1):125-138.
Background and Aims
Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected.
Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods.
Key Results
Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied.
Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees.
PMCID: PMC3380597  PMID: 22634256
Colour hexagon; oil secretion; correlated evolution; flower and vegetative scent; headspace analysis; GC-MS; Lysimachia; multidimensional scaling; oil-bee Macropis; phylogeny; spectral photometry
9.  Trichome structure and evolution in Neotropical lianas 
Annals of Botany  2013;112(7):1331-1350.
Background and Aims
Trichomes are epidermal outgrowths generally associated with protection against herbivores and/or desiccation that are widely distributed from ferns to angiosperms. Patterns of topological variation and morphological evolution of trichomes are still scarce in the literature, preventing valid comparisons across taxa. This study integrates detailed morphoanatomical data and the evolutionary history of the tribe Bignonieae (Bignoniaceae) in order to gain a better understanding of current diversity and evolution of trichome types.
Two sampling schemes were used to characterize trichome types: (1) macromorphological characterization of all 105 species currently included in Bignonieae; and (2) micromorphological characterization of 16 selected species. Individual trichome morphotypes were coded as binary in each vegetative plant part, and trichome density and size were coded as multistate. Ancestral character state reconstructions were conducted using maximum likelihood (ML) assumptions.
Key Results
Two main functional trichome categories were found: non-glandular and glandular. In glandular trichomes, three morphotypes were recognized: peltate (Pg), stipitate (Sg) and patelliform/cupular (P/Cg) trichomes. Non-glandular trichomes were uniseriate, uni- or multicellular and simple or branched. Pg and P/Cg trichomes were multicellular and non-vascularized with three clearly distinct cell layers. Sg trichomes were multicellular, uniseriate and long-stalked. ML ancestral character state reconstructions suggested that the most recent common ancestor (MRCA) of Bignonieae probably had non-glandular, Pg and P/Cg trichomes, with each trichome type presenting alternative histories of appearance on the different plant parts. For example, the MRCA of Bignonieae probably had non-glandular trichomes on the stems, prophylls, petiole, petiolule and leaflet veins while P/Cg trichomes were restricted to leaflet blades. Sg trichomes were not present in the MRCA of Bignonieae independently of the position of these trichomes. These trichomes had at least eight independent origins in tribe.
The patterns of trichome evolution indicate that most morphotypes are probably homologous in Bignonieae and could be treated under the same name based on its morphological similarity and common evolutionary history, in spite of the plethora of names that have been previously designated in the literature. The trichome descriptions presented here will facilitate comparisons across taxa, allowing inferences on the relationsthips between trichome variants and future studies about their functional properties.
PMCID: PMC3806532  PMID: 24081281
Bignoniaceae; Brazil; EFNs; extrafloral nectaries; glands; insect–plant interactions; morphological evolution; trichomes; vines
10.  Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae) 
Annals of Botany  2013;113(2):357-371.
Background and Aims
Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences.
Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia.
Key Results
Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types.
The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.
PMCID: PMC3890393  PMID: 24323246
Biogeography; diversification; edaphic factors; Iridaceae; Lapeirousia; phylogenetics; pollinator; shift; speciation
11.  Light, Conventional and Environmental Scanning Electron Microscopy of the Trichomes of Cucurbita pepo subsp. pepo var. styriaca and Histochemistry of Glandular Secretory Products 
Annals of Botany  2004;94(4):515-526.
• Background and Aims In the present study, the differences between glandular and non-glandular trichomes, the secretory process and the method of secretion were studied. Previous studies on leaves of Styrian oil pumpkin (Cucurbia pepo var. styriaca) plants have shown that four morphologically and ontogenetically independent glandular and non-glandular trichome types and one bristle hair type can be distinguished. The four types of trichomes can be categorized into three glandular trichome types: type I, a short-stalked trichome with four head cells including a ‘middle-cell’, two stalk cells and one basal cell; type II, a long-stalked trichome with two head cells, a ‘neck-cell’ region and a long stalk area; type IV, a ‘stipitate-capitate’ trichome with a mesophyll cell basement, a short stalk and a multicellular head; type III, a non-glandular ‘columnar-digit’ trichome, which consists of two head cells continuous with three-celled stalk, and the basal cell.
• Methods The histochemical studies (the main classes of metabolite in secreted material of glandular trichomes) were conducted in fresh and fixed hand sections, using the following tests: Sudan black B, Nile blue A, osmium tetroxide, neutral red, Naturstoffreagent A, FSA (fuchsin–safranin–astra blue), NADI (naphthol + dimethylparaphenylenediamine) and ruthenium red. Each suggested differences in the intercalations during the ontogenetical development of each trichome during the development stage.
• Key Results The histochemical reactions revealed the main components of the materials secreted by all types of trichomes, which include lipids, flavones and terpenes and the different cell wall compositions. Glandular secretions were observed during environmental scanning electron microscopy (ESEM) and the trichomes compared with those seen by conventional scanning electron microscopy (CSEM).
• Conclusions Scanning electron microscopy and histochemical analysis demonstrated that each of the trichomes studied produced and released secretory products in a characteristic way.
PMCID: PMC4242234  PMID: 15306562
Cucurbita pepo subsp. pepo var. styriaca; Styrian oil pumpkin; Cucurbitaceae; glandular and non-glandular trichomes; histochemistry; morphology; secretory process; secretory products; conventional scanning electron microscopy (CSEM) and environmental scanning electron microscopy (ESEM); light microscopy (LM)
12.  Secretory Trichomes, a Substitutive Floral Nectar Source in Lundia A. DC. (Bignoniaceae), a Genus Lacking a Functional Disc 
Annals of Botany  2002;90(2):169-174.
This is the first report of corolla‐borne secretory trichomes that substitute in role for a non‐functional disc in a species of the neotropical genus Lundia A. DC. (Bignoniaceae). The floral biology and flowering phenology of Lundia cordata were investigated at two remnants of tropical rainforest in northeastern Brazil. This species is a typically ornithophilous liana, with reddish, tubular, scentless flowers. The flowers are resupinate, protandrous and last for 2 d. There is a vestigial non‐functional perigynous disc and nectar is secreted by glandular trichomes distributed along the internal surface of the corolla. The nectar is stored at the base of the corolla tube, thus showing secondary nectar presentation. The nectariferous trichomes are multi‐cellular, uniseriate, with a basal foot cell rooting in the epidermis, one neck cell, and a glandular head with 13 cells on average. Three species of hummingbirds (Amazilia fimbriata, Eupetomena macroura and Phaethornis pretrei) serve as pollinators. Phaethornis ruber, Xylocopa bees, wasps and diurnal moths are considered nectar thieves.
PMCID: PMC4240414  PMID: 12197514
Bignoniaceae; Lundia; pollination; nectariferous trichomes; hummingbirds; tropical rainforest; northeastern Brazil
13.  Changes in Leaf Trichomes and Epicuticular Flavonoids during Leaf Development in Three Birch Taxa 
Annals of Botany  2004;94(2):233-242.
• Background and Aims Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed.
• Methods Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography.
• Key Results Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1–2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g−1 d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount (µg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids.
• Conclusions Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.
PMCID: PMC4242156  PMID: 15238348
Birch; Betula pendula; Betula pubescens ssp.; pubescens; Betula pubescens ssp.; czerepanovii; glandular trichomes; non-glandular trichomes; flavonoid aglycones; leaf development
14.  The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees 
The interactions between bees that depend on floral oil for their larvae and flowers that offer oil involve an intricate mix of obligate and facultative mutualisms. Using recent phylogenies, new data on oil-offering Cucurbitaceae, and molecular-dating, we ask when and how often oil-offering flowers and oil-foraging bees evolved, and how frequently these traits were lost in the cause of evolution. Local phylogenies and an angiosperm-wide tree show that oil flowers evolved at least 28 times and that floral oil was lost at least 36–40 times. The oldest oil flower systems evolved shortly after the K/T boundary independently in American Malpighiaceae, tropical African Cucurbitaceae and Laurasian Lysimachia (Myrsinaceae); the ages of the South African oil flower/oil bee systems are less clear. Youngest oil flower clades include Calceolaria (Calceolariaceae), Iridaceae, Krameria (Krameriaceae) and numerous Orchidaceae, many just a few million years old. In bees, oil foraging evolved minimally seven times and dates back to at least 56 Ma (Ctenoplectra) and 53 Ma (Macropis). The co-occurrence of older and younger oil-offering clades in three of the four geographical regions (but not the Holarctic) implies that oil-foraging bees acquired additional oil hosts over evolutionary time. Such niche-broadening probably started with exploratory visits to flowers resembling oil hosts in scent or colour, as suggested by several cases of Muellerian or Batesian mimicry involving oil flowers.
PMCID: PMC2838259  PMID: 20047869
oil-offering flowers; oil-foraging bees; molecular clock dating; evolutionary gain; evolutionary loss; oil biochemistry
15.  Studies on diversity and evolution of Iridaceae species in southern Brazil 
Genetics and Molecular Biology  2012;35(4 Suppl):1027-1035.
Plants of the family Iridaceae are well represented in the grassland vegetation of southern Brazil, occurring in the Pampa and Atlantic Forest biomes. Nevertheless, little is known about the taxonomy and evolution of Iridaceae species in southern Brazil. The main goal of this review is to compile published information about South American Iridaceae, and to discuss the evolution and genetic diversity of the family presenting our own research data in the light of the published literature. The main focus is on the genera Calydorea, Cypella, Herbertia, and Sisyrinchium. Aspects of reproductive system and of pollinator attraction are also discussed.
PMCID: PMC3571435  PMID: 23412701
cytotaxonomy; molecular phylogenetics; Iridoideae; population genetics; diversity
16.  Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives 
Annals of Botany  2009;103(9):1501-1514.
Background and Aims
Ceropegia (Apocynaceae subfamily Asclepiadoideae) is a large, Old World genus of >180 species, all of which possess distinctive flask-shaped flowers that temporarily trap pollinators. The taxonomic diversity of pollinators, biogeographic and phylogenetic patterns of pollinator exploitation, and the level of specificity of interactions were assessed in order to begin to understand the role of pollinators in promoting diversification within the genus.
Flower visitor and pollinator data for approx. 60 Ceropegia taxa were analysed with reference to the main centres of diversity of the genus and to a cpDNA–nrDNA molecular phylogeny of the genus.
Key Results
Ceropegia spp. interact with flower-visiting Diptera from at least 26 genera in 20 families, of which 11 genera and 11 families are pollinators. Size range of flies was 0·5–4·0 mm and approx. 94 % were females. Ceropegia from particular regions do not use specific fly genera or families, though Arabian Peninsula species are pollinated by a wider range of Diptera families than those in other regions. The basal-most clade interacts with the highest diversity of Diptera families and genera, largely due to one hyper-generalist taxon, C. aristolochioides subsp. deflersiana. Species in the more-derived clades interact with a smaller diversity of Diptera. Approximately 60 % of taxa are so far recorded as interacting with only a single genus of pollinators, the remaining 40 % being less conservative in their interactions. Ceropegia spp. can therefore be ecological specialists or generalists.
The genus Ceropegia has largely radiated without evolutionary shifts in pollinator functional specialization, maintaining its interactions with small Diptera. Intriguing biogeographic and phylogenetic patterns may reflect processes of regional dispersal, diversification and subsequent specialization onto a narrower range of pollinators, though some of the findings may be caused by inconsistent sampling. Comparisons are made with other plant genera in the Aristolochiaceae and Araceae that have evolved flask-shaped flowers that trap female flies seeking oviposition sites.
PMCID: PMC2701756  PMID: 19339298
Apocynaceae; Asclepiadoideae; Brachystelma; Ceropegia; Diptera; flower evolution; generalization; mutualism; pollination; Riocreuxia; specialization; Stapeliinae
17.  The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators 
Annals of Botany  2012;111(3):395-407.
Background and Aims
The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented.
Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated.
Key Results
The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas.
Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.
PMCID: PMC3579445  PMID: 23275630
Endangered; Iris atropurpurea; pollination; pollinator effectiveness; Apis mellifera; night-sheltering; eucerine bees; solitary bees; pollen removal; pollen deposition; stigma receptivity; pollen viability
18.  Localization of Salvinorin A and Related Compounds in Glandular Trichomes of the Psychoactive Sage, Salvia divinorum 
Annals of Botany  2004;93(6):763-771.
• Background and Aims Salvia divinorum produces several closely related neoclerodane diterpenes. The most abundant of these, salvinorin A, is responsible for the psychoactive properties of the plant. To determine where these compounds occur in the plant, various organs, tissues and glandular secretions were chemically analysed. A microscopic survey of the S. divinorum plant was performed to examine the various types of trichomes present and to determine their distribution.
• Methods Chemical analyses were performed using thin layer chromatographic and histochemical techniques. Trichomes were examined using conventional light microscopy and scanning electron microscopy.
• Key Results It was found that neoclerodane diterpenes are secreted as components of a resin that accumulates in peltate glandular trichomes, specifically in the subcuticular space that exists between the trichome head cells and the cuticle that encloses them. Four main types of trichomes were observed: peltate glandular trichomes, short‐stalked capitate glandular trichomes, long‐stalked capitate glandular trichomes and non‐glandular trichomes. Their morphology and distribution is described. Peltate glandular trichomes were only found on the abaxial surfaces of the leaves, stems, rachises, bracts, pedicles and calyces. This was consistent with chemical analyses, which showed the presence of neoclerodane diterpenes in these organs, but not in parts of the plant where peltate glandular trichomes are absent.
• Conclusions Salvinorin A and related compounds are secreted as components of a complex resin that accumulates in the subcuticular space of peltate glandular trichomes.
PMCID: PMC4242294  PMID: 15087301
Salvia divinorum; Labiatae; diviner’s sage; salvinorin A; salvinorins; neoclerodane diterpenes; trichomes; thin layer chromatography; histochemistry; morphology
19.  Floral convergence in Oncidiinae (Cymbidieae; Orchidaceae): an expanded concept of Gomesa and a new genus Nohawilliamsia 
Annals of Botany  2009;104(3):387-402.
Floral morphology, particularly the angle of lip attachment to the column, has historically been the fundamental character used in establishing generic limits in subtribe Oncidiinae (Orchidaceae), but it has also been long recognized that reliance on this character alone has produced a highly artificial set of genera. In essence, lip/column relationships reflect syndromes associated with pollinator preferences; most genera of Oncidiinae as previously defined have consisted of a single floral type. Here, the degree to which this has influenced generic delimitation in Brazilian members of the largest genus of Oncidiinae, Oncidium, which previous molecular (DNA) studies have demonstrated to be polyphyletic, is evaluated.
Phylogenetic analyses of the following multiple DNA regions were used: the plastid psbA-trnH intergenic spacer, matK exon and two regions of ycf1 exon and nuclear ribosomal DNA, comprised of the two internal transcribed spacers, ITS1 and ITS2, and the 5·8S gene. Results from all regions analysed separately indicated highly similar relationships, so a combined matrix was analysed.
Key Results
Nearly all species groups of Brazilian Oncidium are only distantly related to the type species of the genus, O. altissimum, from the Caribbean. There are two exceptions to this geographical rule: O. baueri is related to the type group and O. orthostates, an isolated species that lacks the defining tabula infrastigmata of Oncidium, is not exclusively related to any previously described genus in the subtribe. Several well-supported subclades can be observed in these results, but they do not correspond well to sections of Oncidium as previously circumscribed or to segregate genera as defined by several recent authors. In spite of their floral differences, these groups of Oncidium, formerly treated as O. sections Barbata, Concoloria pro parte, Crispa, Ranifera, Rhinocerotes, Rostrata (only O. venustum), Synsepala, Verrucituberculata pro parte and Waluewa, form a well-supported clade with Gomesa (including Rodrigueziella and Rodrigueziopsis) embedded in it. Two often recognized segregate genera, Baptistonia and Ornithophora, and the recently described Carriella are also embedded within the Brazilian clade. The level of variation within major subclades of the Gomesa clade is low and similar to that observed within other genera of Oncidiinae.
Convergence on a stereotypical syndrome of floral traits associated with pollination by oil-collecting bees has resulted in these characters not being reliable for producing monophyletic taxa, and the genus Oncidium, defined by these characters, is grossly polyphyletic. Vegetative and a few floral/inflorescence characters link these taxa with a mainly Brazilian distribution, and they were all transferred to Gomesa on this basis rather than separated from Gomesa based on their floral differences, which we hypothesize to be simple shifts in pollination strategies. Other authors have described a large number of new genera for these former members of Oncidium, but most of these are not supported by the results presented here (i.e. they are not monophyletic). A new genus, Nohawilliamsia, is described for O. orthostates because it does not fit in any currently recognized genus and is only distantly related to any other member of Oncidiinae.
PMCID: PMC2720657  PMID: 19346522
Baptistonia; Brazilian orchids; Carriella; deceit pollination; Gomesa; ITS; matK; oil-collecting bees; Oncidium; Oncidiinae; Orchidaceae
20.  Pollinarium Morphology and Floral Rewards inBrazilian Maxillariinae (Orchidaceae) 
Annals of Botany  2004;93(1):39-51.
• Background and Aims There is strong support for the monophyly of the orchid subtribe Maxillariinae s.l., yet generic boundaries within it are unsatisfactory and need re‐evaluation. In an effort to assemble sets of morphological characters to distinguish major clades within this subtribe, the pollinarium morphology and floral rewards of representative Brazilian species of this subtribe were studied.
• Methods The study was based on fresh material from 60 species and seven genera obtained from cultivated specimens. Variation of pollinarium structure and floral rewards was assessed using a stereomicroscope and by SEM analysis.
• Key Results Four morphological types of pollinaria are described. Type 1 appears to be the most widespread and is characterized by a well‐developed tegula. Type 2 lacks a stipe and the pollinia are attached directly to the viscidium. Type 3 also lacks a stipe, and the viscidium is rigid and dark. In Type 4, the stipe consists of the whole median rostelar portion and, so far, is known only from Maxillaria uncata. Nectar, trichomes, wax‐like and resin‐like secretions are described as flower rewards for different groups of species within the genus Maxillaria. Data on the biomechanics and pollination biology are also discussed and illustrated. In Maxillariinae flowers with arcuate viscidia, the pollinaria are deposited on the scuttellum of their Hymenopteran pollinators. In contrast, some flowers with rounded to rectangular, pad‐like viscidia fix their pollinaria on the face of their pollinators.
• Conclusions Pollinarium morphology and floral features related to pollination in Brazilian Maxillariinae are more diverse than previously suggested. It is hoped that the data presented herein, together with other data sources such as vegetative traits and molecular tools, will be helpful in redefining and diagnosing clades within the subtribe Maxillariinae.
PMCID: PMC4242263  PMID: 14644913
Bifrenaria; flower morphology; Hylaeorchis; Maxillaria; Maxillariinae; Mormolyca; Orchidaceae; phylogeny; pollinarium; Scuticaria; Trigonidium; Xylobium
21.  Comparative labellar micromorphology of Zygopetalinae (Orchidaceae) 
Annals of Botany  2011;108(5):945-964.
Background and Aims
Molecular evidence indicates that the Neotropical sub-tribe Zygopetalinae is sister to Maxillariinae. Most members of the latter sub-tribe have deceit pollination strategies, but some species produce rewards such as nectar, pseudopollen, resin and wax, and are pollinated by a range of pollinators that include stingless bees (Meliponini), wasps and hummingbirds. By contrast, relatively little is known about the pollination of Zygopetalinae species. However, some are pollinated by fragrance-gathering, male euglossine bees or employ nectar deceit strategies. The aim of this study is to describe the labellar micromorphology of Zygopetalinae and to compare it with that of Maxillariinae sensu lato (s.l.) as part of an ongoing project to record the range of labellar characters found within the tribe Maxillarieae, and to assess whether these characters represent synapomorphies or homoplasies resulting from similar pollination pressures.
The labella of 31 species of Zygopetalinae, including Cryptarrhena R. Br. and representatives of the Zygopetalum, Huntleya and Warrea clades, were examined using light microscopy and scanning electron microscopy, and the range of labellar characters was recorded. These characters were subsequently compared with those of Maxillariinae s.l. which formed the subject of our previous investigations.
Key Results and Conclusions
The labellar micromorphology of Zygopetalinae is less diverse than that of Maxillariinae and does not reflect the currently accepted phylogeny of the former sub-tribe based on molecular studies. Instead, the relative uniformity in labellar micromorphology of Zygopetalinae is probably due to homoplasies resulting from similar pollinator pressures. Labellar trichomes are relatively uncommon in Zygopetalinae, but occur in certain members of both the Zygopetalum and Huntleya clades. Trichomes are unbranched, uniseriate and multicellular with rounded apices, or unbranched and unicellular, with tapering, pointed and flexuose apices. Hitherto, unicellular trichomes of this kind have been observed only for euglossophilous orchid taxa, and the adoption of a relatively limited range of pollination strategies by Zygopetalinae may have resulted in reduced investment in micromorphological labellar characters.
PMCID: PMC3177679  PMID: 21856635
Cryptarrhena; epidermis; homoplasy; Huntleya clade; labellum; Maxillariinae; papillae; trichomes; Warrea clade; Zygopetalum clade
22.  Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing 
BMC Genomics  2009;10:465.
Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species.
We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes.
The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua.
PMCID: PMC2763888  PMID: 19818120
23.  Labellar Micromorphology of Two Euglossine-pollinated Orchid Genera; Scuticaria Lindl. and Dichaea Lindl. 
Annals of Botany  2008;102(5):805-824.
Background and Aims
Until recently, there was no consensus regarding the phylogenetic relationships of the Neotropical orchid genera Scuticaria Lindl. and Dichaea Lindl. However, recent evidence derived from both gross morphological and molecular studies supports the inclusion of Scuticaria and Dichaea in sub-tribes Maxillariinae and Zygopetalinae, respectively. The present paper describes the labellar micromorphology of both genera and seeks to establish whether labellar characters support the assignment of Scuticaria and Dichaea to these sub-tribes.
The labella of four species of Scuticaria and 14 species of Dichaea were examined using light microscopy and scanning electron microscopy, and their micromorphology was compared with that of representative species of Maxillariinae sensu lato and Zygopetalinae (Huntleya clade).
Key Results and Conclusions
In most specimens of Scuticaria examined, the papillose labella bear uniseriate, multicellular, unbranched trichomes. However, in S. steelii (Lindl.) Lindl., branched hairs may also be present and some trichomes may fragment and form pseudopollen. Multicellular, leaf-like scales were also present in one species of Scuticaria. Similar, unbranched hairs are present in certain species of Maxillaria Ruiz & Pav. (Maxillariinae sensu stricto) and Chaubardia Rchb.f. (Huntleya clade). As yet, moniliform, pseudopollen-forming hairs have not been observed for Zygopetalinae, but their presence in Scuticaria steelii, Maxillaria and Heterotaxis Lindl. supports the placing of Scuticaria in Maxillariinae. As other genera are sampled, the presence of branched hairs, hitherto unknown for Maxillariinae sensu lato, may prove to be a useful character in taxonomy and phylogenetic studies. Euglossophily occurs in Dichaea, as well as Chondrorhyncha Lindl. and Pescatorea Rchb.f. (Huntleya clade), and all three genera tend to lack distinctive labellar features. Instead, lip micromorphology is relatively simple and glabrous or papillose. However, two of the Dichaea species examined bear unicellular, labellar trichomes very similar to those found in Bifrenaria Lindl. (pollinated by both euglossine bees and Bombus spp.), and this feature may have arisen by convergence in response to similar pollination pressures.
PMCID: PMC2712378  PMID: 18765439
Bifrenaria; Bifrenaria clade; Chaubardia; Chondrorhyncha; Dichaea; Dichaeinae; Heterotaxis; Huntleya clade; Huntleyinae; labellum; Maxillaria; Maxillariinae; papillae; Pescatorea; scales; Scuticaria; trichomes; Zygopetalinae
24.  An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications 
Annals of Botany  2012;109(1):127-134.
Background and Aims
Morphological, molecular and biogeographical information bearing on early evolution of the sunflower alliance of families suggests that the clade containing the extant daisy family (Asteraceae) differentiated in South America during the Eocene, although palaeontological studies on this continent failed to reveal conclusive support for this hypothesis. Here we describe in detail Raiguenrayun cura gen. & sp. nov., an exceptionally well preserved capitulescence of Asteraceae recovered from Eocene deposits of northwestern Patagonia, Argentina.
The fossil was collected from the 47·5 million-year-old Huitrera Formation at the Estancia Don Hipólito locality, Río Negro Province, Argentina.
Key Results
The arrangement of the capitula in a cymose capitulescence, the many-flowered capitula with multiseriate–imbricate involucral bracts and the pappus-like structures indicate a close morphological relationship with Asteraceae. Raiguenrayun cura and the associated pollen Mutisiapollis telleriae do not match exactly any living member of the family, and clearly represent extinct taxa. They share a mosaic of morphological features today recognized in taxa phylogenetically close to the root of Asteraceae, such as Stifftieae, Wunderlichioideae and Gochnatieae (Mutisioideae sensu lato) and Dicomeae and Oldenburgieae (Carduoideae), today endemic to or mainly distributed in South America and Africa, respectively.
This is the first fossil genus of Asteraceae based on an outstandingly preserved capitulescence that might represent the ancestor of Mutisioideae–Carduoideae. It might have evolved in southern South America some time during the early Palaeogene and subsequently entered Africa, before the biogeographical isolation of these continents became much more pronounced. The new fossil represents the first reliable point for calibration, favouring an earlier date to the split between Barnadesioideae and the rest of Asteraceae than previously thought, which can be traced back at least 47·5 million years. This is the oldest well dated member of Asteraceae and perhaps the earliest indirect evidence for bird pollination in the family.
PMCID: PMC3241571  PMID: 22179952
Compositae; capitulescence; fossil taxon; Raiguenrayun cura gen. & sp. nov.; Eocene; Patagonia; southern South America
25.  Response of Sunflower (Helianthus annuus L.) Leaf Surface Defenses to Exogenous Methyl Jasmonate 
PLoS ONE  2012;7(5):e37191.
Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.
PMCID: PMC3356381  PMID: 22623991

Results 1-25 (406427)