PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (322184)

Clipboard (0)
None

Related Articles

1.  Phenols in Leaves and Bark of Fagus sylvatica as Determinants of Insect Occurrences 
Beech forests play an important role in temperate and north Mediterranean ecosystems in Greece since they occupy infertile montane soils. In the last glacial maximum, Fagus sylvatica (beech) was confined to Southern Europe where it was dominant and in the last thousand years has expanded its range to dominate central Europe. We sampled four different beech forest types. We found 298 insect species associated with beech trees and dead beech wood. While F. sylvatica and Quercus (oak) are confamilial, there are great differences in richness of the associated entomofauna. Insect species that inhabit beech forests are less than one fifth of those species living in oak dominated forests despite the fact that beech is the most abundant central and north European tree. There is a distinct paucity of monophagous species on beech trees and most insect species are shared between co-occurring deciduous tree species and beech. This lack of species is attributed to the vegetation history and secondary plant chemistry. Bark and leaf biophenols from beech indicate that differences in plant secondary metabolites may be responsible for the differences in the richness of entomofauna in communities dominated by beech and other deciduous trees.
doi:10.3390/ijms12052769
PMCID: PMC3116155  PMID: 21686149
Fagus sylvatica; entomofauna; phenolics; secondary plant chemistry; insect traps; clustering; discriminant analysis
2.  Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica) 
Oecologia  2010;164(4):1083-1094.
We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acerplatanoides) revealed a “home field advantage” of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself.
doi:10.1007/s00442-010-1699-9
PMCID: PMC2981742  PMID: 20596729
Biodiversity; Central Europe; Element ratio; Litter degradation; Litterbag
3.  Drought-Adaptation Potential in Fagus sylvatica: Linking Moisture Availability with Genetic Diversity and Dendrochronology 
PLoS ONE  2012;7(3):e33636.
Background
Microevolution is essential for species persistence especially under anticipated climate change scenarios. Species distribution projection models suggested that the dominant tree species of lowland forests in Switzerland, European beech (Fagus sylvatica L.), might disappear from most areas due to expected longer dry periods. However, if genotypes at the moisture boundary of the species climatic envelope are adapted to lower moisture availability, they can serve as seed source for the continuation of beech forests under changing climates.
Methodology/Principal Findings
With an AFLP genome scan approach, we studied neutral and potentially adaptive genetic variation in Fagus sylvatica in three regions containing a dry and a mesic site each (nind. = 241, nmarkers = 517). We linked this dataset with dendrochronological growth measures and local moisture availabilities based on precipitation and soil characteristics. Genetic diversity decreased slightly at dry sites. Overall genetic differentiation was low (Fst = 0.028) and Bayesian cluster analysis grouped all populations together suggesting high (historical) gene flow. The Bayesian outlier analyses indicated 13 markers with three markers differing between all dry and mesic sites and the others between the contrasting sites within individual regions. A total of 41 markers, including seven outlier loci, changed their frequency with local moisture availability. Tree height and median basal growth increments were reduced at dry sites, but marker presence/absence was not related to dendrochronological characteristics.
Conclusion and Their Significance
The outlier alleles and the makers with changing frequencies in relation to moisture availability indicate microevolutionary processes occurring within short geographic distances. The general genetic similarity among sites suggests that ‘preadaptive’ genes can easily spread across the landscape. Yet, due to the long live span of trees, fostering saplings originating from dry sites and grown within mesic sites might increase resistance of beech forests during the anticipated longer dry periods.
doi:10.1371/journal.pone.0033636
PMCID: PMC3308988  PMID: 22448260
4.  Impact of elevated atmospheric O3 on the actinobacterial community structure and function in the rhizosphere of European beech (Fagus sylvatica L.) 
Many bacteria belonging to the phylum of Actinobacteria are known as antagonists against phytpathogenic microbes. This study aimed to analyze the effect of ozone on the actinobacterial community of the rhizosphere of four years old European beech (Fagus sylvatica L.) trees during different time points of the vegetation period. Effects of ozone on the total community structure of Actinobacteria were studied based on the analysis of 16S rRNA gene amplicons. In addition effects of the ozone treatment on the diversity of potential biocontrol active Actionobacteria being able to produce antibiotics were characterized by using the type II polyketide synthases (PKS) genes as marker. Season as well as ozone treatments had a significant effect on parts of the actinobacterial rhizosphere community of European beech. However on the basis of the performed analysis, the diversity of Actinobacteria possessing type II PKS genes is neither affected by seasonal changes nor by the ozone treatments, indicating no influence of the investigated treatments on the biocontrol active part of the actinobacterial community.
doi:10.3389/fmicb.2014.00036
PMCID: PMC3920289  PMID: 24575080
European beech; Actinobacteria; biocontrol; polyketide synthase gene; ozone
5.  Different Atmospheric Methane-Oxidizing Communities in European Beech and Norway Spruce Soils▿ †  
Applied and Environmental Microbiology  2010;76(10):3228-3235.
Norway spruce (Picea abies) forests exhibit lower annual atmospheric methane consumption rates than do European beech (Fagus sylvatica) forests. In the current study, pmoA (encoding a subunit of membrane-bound CH4 monooxygenase) genes from three temperate forest ecosystems with both beech and spruce stands were analyzed to assess the potential effect of tree species on methanotrophic communities. A pmoA sequence difference of 7% at the derived protein level correlated with the species-level distance cutoff value of 3% based on the 16S rRNA gene. Applying this distance cutoff, higher numbers of species-level pmoA genotypes were detected in beech than in spruce soil samples, all affiliating with upland soil cluster α (USCα). Additionally, two deep-branching genotypes (named 6 and 7) were present in various soil samples not affiliating with pmoA or amoA. Abundance of USCα pmoA genes was higher in beech soils and reached up to (1.2 ± 0.2) × 108 pmoA genes per g of dry weight. Calculated atmospheric methane oxidation rates per cell yielded the same trend. However, these values were below the theoretical threshold necessary for facilitating cell maintenance, suggesting that USCα species might require alternative carbon or energy sources to thrive in forest soils. These collective results indicate that the methanotrophic diversity and abundance in spruce soils are lower than those of beech soils, suggesting that tree species-related factors might influence the in situ activity of methanotrophs.
doi:10.1128/AEM.02730-09
PMCID: PMC2869149  PMID: 20348309
6.  Spatial Patterns of Ectomycorrhizal Assemblages in a Monospecific Forest in Relation to Host Tree Genotype 
Ectomycorrhizas (EcM) are important for soil exploration and thereby may shape belowground interactions of roots. We investigated the composition and spatial structures of EcM assemblages in relation to host genotype in an old-growth, monospecific beech (Fagus sylvatica) forest. We hypothesized that neighboring roots of different beech individuals are colonized by similar EcM assemblages if host genotype had no influence on the fungal colonization and that the similarity would decrease with increasing distance of the sampling points. The alternative was that the EcM species showed preferences for distinct beech genotypes resulting in intraspecific variation of EcM-host assemblages. EcM species identities, abundance and exploration type as well as the genotypes of the colonized roots were determined in each sampling unit of a 1 L soil core (r = 0.04 m, depth 0.2 m). The Morisita-Horn similarity indices (MHSI) based on EcM species abundance and multiple community comparisons were calculated. No pronounced variation of MHSI with increasing distances of the sampling points within a plot was found, but variations between plots. Very high similarities and no between plot variation were found for MHSI based on EcM exploration types suggesting homogenous soil foraging in this ecosystem. The EcM community on different root genotypes in the same soil core exhibited high similarity, whereas the EcM communities on the root of the same tree genotype in different soil cores were significantly dissimilar. This finding suggests that spatial structuring of EcM assemblages occurs within the root system of an individual. This may constitute a novel, yet unknown mechanism ensuring colonization by a diverse EcM community of the roots of a given host individual.
doi:10.3389/fpls.2013.00103
PMCID: PMC3633777  PMID: 23630537
belowground interactions; community ecology; ectomycorrhiza; deciduous forest; intraspecific variation; interspecific variation
7.  Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest 
Oecologia  2009;160(2):279-288.
Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory–diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany’s largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory–tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies.
Electronic supplementary material
The online version of this article (doi:10.1007/s00442-009-1304-2) contains supplementary material, which is available to authorised users.
doi:10.1007/s00442-009-1304-2
PMCID: PMC3085765  PMID: 19238448
Diversity-functioning relationships; Leaf damage; Mines; Multitrophic interactions; Plant–animal interactions
8.  Introduction to Distribution and Ecology of Sterile Conks of Inonotus obliquus 
Mycobiology  2008;36(4):199-202.
Inonotus obliquus is a fungus that causes white heart rot on several broad-leaved species. This fungus forms typical charcoal-black, sterile conks (chaga) or cinder conks on infected stems of the birche (Betula spp). The dark brown pulp of the sterile conk is formed by a pure mycelial mass of fungus. Chaga are a folk remedy in Russia, reflecting the circumboreal distribution of I. obliquus in boreal forest ecosystems on Betula spp. and in meridional mountain forests on beech (Fagus spp.) in Russia, Scandinavia, Central Europe, and Eastern Europe. Distribution at lower latitudes in Western and Southern Europe, Northern America, Asia, Japan, and Korea is rare. Infected trees grow for many years without several symptoms of decline. The infection can penetrate through stem injuries with exterior sterile conks developing later. In the Czech Republic, cinder conk is found on birches inhabiting peat bogs and in mountain areas with a colder and more humid climate, although it is widespread in other broad leaved species over the Czech Republic. The most common hosts are B. pendula, B. pubescens, B. carpatica, and F. sylvatica. Less frequent hosts include Acer campestre, Acer pseudoplatanus, Alnus glutinosa, Alnus incana, Fraxinus excelsior, Quercus cerris, Q. petraea, Q. robur, Q. delachampii, and Ulmus sp.
doi:10.4489/MYCO.2008.36.4.199
PMCID: PMC3755195  PMID: 23997626
Betula spp.; Birch; Chaga; Cinder conk; Inonotus obliquus; Sterile conks
9.  Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica 
Biology Letters  2011;7(5):699-701.
Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant–plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech (Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant–plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.
doi:10.1098/rsbl.2011.0236
PMCID: PMC3169063  PMID: 21525055
elevation gradient; forest regeneration; stress gradient hypothesis
10.  Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia) 
Proteome Science  2013;11:2.
Background
Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees.
Results
Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified.
Conclusions
Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services.
doi:10.1186/1477-5956-11-2
PMCID: PMC3575302  PMID: 23317283
Beech bark disease; Beech scale; Disease resistance; Insect resistance; Fagus; Cryptococcus; Neonectria
11.  Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment 
Annals of Botany  2011;107(8):1405-1411.
Background and Aims
Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.
Methods
Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.
Key Results
The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.
Conclusions
Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations.
doi:10.1093/aob/mcr082
PMCID: PMC3101148  PMID: 21493641
Beech; carbon autonomy; CO2 enrichment; Fagus sylvatica; mast seeding; nitrogen; resource allocation; trade-off; vegetative growth
12.  Consistency of defoliation data of the national training courses for the forest condition survey in Germany from 1992 to 2012 
The consistency of visual assessment of tree defoliation, which represents the most widely used indicator for tree condition, has frequently been in the focus of scientific criticism. Thus, the objective of the present study was to examine the consistency of the defoliation data from the annual national training courses for the forest condition survey in Germany from 1992 to 2012. Defoliation assessments were carried out in stands of beech (Fagus sylvatica), oak (Quercus robur and Quercus petraea), Norway spruce (Picea abies), and pine (Pinus sylvestris). Among the observer teams, the absolute deviation from the observer mean of all years was ±4.4 % defoliation and the standard deviation of defoliation was ±5.5 %. On average, 94 % of the assessments were located within the ±10 % interval of deviation from the mean. Tree species-specific differences did not occur when all years were considered. A trend towards increasing consistency was observed from 1992 to 2012, in particular for oak and spruce. The deviation of defoliation assessments depended non-linearly on the level of defoliation with highest deviations at intermediate defoliations. In spite of high correlations and agreements among observers, systematic errors were determined in nearly every year. However, within-observer variances were higher than between-observer variances. The present study applied a three-way evaluation approach for the assessment of consistency and demonstrated that the visual defoliation assessment at the national training courses in general produced consistent data within Germany from 1992 to 2012.
doi:10.1007/s10661-013-3372-3
PMCID: PMC3857523  PMID: 23955498
Forest condition survey; Defoliation; Observer error; Harmonisation; Systematic error; Quality assurance
13.  Within-Population Genetic Structure in Beech (Fagus sylvatica L.) Stands Characterized by Different Disturbance Histories: Does Forest Management Simplify Population Substructure? 
PLoS ONE  2013;8(9):e73391.
The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L.) plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs). Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θST ranged from 0.025 to 0.124). The proportion of within-population genetic variation due to genetic substructuring (FCluPlot = 0.067) was higher than the differentiation among the 10 plots (FPlotTot = 0.045). Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i) genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii) indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.
doi:10.1371/journal.pone.0073391
PMCID: PMC3764177  PMID: 24039930
14.  Girdling Affects Ectomycorrhizal Fungal (EMF) Diversity and Reveals Functional Differences in EMF Community Composition in a Beech Forest▿ † 
The relationships between plant carbon resources, soil carbon and nitrogen content, and ectomycorrhizal fungal (EMF) diversity in a monospecific, old-growth beech (Fagus sylvatica) forest were investigated by manipulating carbon flux by girdling. We hypothesized that disruption of the carbon supply would not affect diversity and EMF species numbers if EM fungi can be supplied by plant internal carbohydrate resources or would result in selective disappearance of EMF taxa because of differences in carbon demand of different fungi. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Girdling did not affect root colonization but decreased EMF species richness of an estimated 79 to 90 taxa to about 40 taxa. Cenococcum geophilum, Lactarius blennius, and Tomentella lapida were dominant, colonizing about 70% of the root tips, and remained unaffected by girdling. Mainly cryptic EMF species disappeared. Therefore, the Shannon-Wiener index (H′) decreased but evenness was unaffected. H′ was positively correlated with glucose, fructose, and starch concentrations of fine roots and also with the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON), suggesting that both H′ and DOC/DON were governed by changes in belowground carbon allocation. Our results suggest that beech maintains numerous rare EMF species by recent photosynthate. These EM fungi may constitute biological insurance for adaptation to changing environmental conditions. The preservation of taxa previously not known to colonize beech may, thus, form an important reservoir for future forest development.
doi:10.1128/AEM.01703-09
PMCID: PMC2837996  PMID: 20097809
15.  Physical and Chemical Properties of Some Imported Woods and their Degradation by Termites 
The influence of physical and chemical properties of 20 species of imported wood on degradation of the wood by termites under field conditions was studied. The wood species studied were: Sycamore maple, Acer pseudoplatanus L. (Sapindales: Sapindaceae) (from two countries), Camphor, Dryobalanops aromatic C.F.Gaertner (Malvales: Dipterocarpaceae), Beech, Fagus grandifolia Ehrhart (Fagales: Fagaceae), F. sylvatica L. (from two countries), Oak, Quercus robur L., Ash, Fraxinus angustifolia Vahl (Lamiales: Oleaceae), F. excelsior L., Padauk, Pterocarpus soyauxii Taubert (Fabales: Fabaceae), (from two countries), Jamba, Xylia dolabrifiormis Roxburgh, Shorea laevis Ridley (Malvales: Dipterocarpaceae), S. macoptera Dyer, S. robusta Roth, Teak, Tectona grandis L.f. (Lamiales: Lamiaceae) (from five countries), and rubber tree, Hevea brasiliensis Müller Argoviensis (Malpighiales: Euphorbiaceae) from India. The termites present were: Odontotermes horni (Wasmann) (Isoptera: Termitidae), O. feae, O. wallonensis, and O. obeus (Rambur). A significant conelation was found between density, cellulose, lignin, and total phenolic contents of the wood and degradation by termites. The higher the density of the wood, the lower the degradation. Similarly, higher amount of lignin and total phenolic contents ensured higher resistance, whereas cellulose drives the termites towards the wood.
doi:10.1673/031.013.6301
PMCID: PMC3740926  PMID: 23906349
cellulose; density; lignin; total phenolic; wood resistance
16.  Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes 
Heredity  2011;108(3):322-331.
The study of the dispersal capability of a species can provide essential information for the management and conservation of its genetic variability. Comparison of gene flow rates among populations characterized by different management and evolutionary histories allows one to decipher the role of factors such as isolation and tree density on gene movements. We used two paternity analysis approaches and different strategies to handle the possible presence of genotyping errors to obtain robust estimates of pollen flow in four European beech (Fagus sylvatica L.) populations from Austria and France. In each country one of the two plots is located in an unmanaged forest; the other plots are managed with a shelterwood system and inside a colonization area (in Austria and France, respectively). The two paternity analysis approaches provided almost identical estimates of gene flow. In general, we found high pollen immigration (∼75% of pollen from outside), with the exception of the plot from a highly isolated forest remnant (∼50%). In the two unmanaged plots, the average within-population pollen dispersal distances (from 80 to 184 m) were higher than previously estimated for beech. From the comparison between the Austrian managed and unmanaged plots, that are only 500 m apart, we found no evidence that either gene flow or reproductive success distributions were significantly altered by forest management. The investigated phenotypic traits (crown area, height, diameter and flowering phenology) were not significantly related with male reproductive success. Shelterwood seems to have an effect on the distribution of within-population pollen dispersal distances. In the managed plot, pollen dispersal distances were shorter, possibly because adult tree density is three-fold (163 versus 57 trees per hectare) with respect to the unmanaged one.
doi:10.1038/hdy.2011.77
PMCID: PMC3282401  PMID: 21897442
genetic diversity; paternity analysis; neighbourhood model; reproductive success; null alleles; nuclear microsatellites
17.  Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation? 
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.
doi:10.3389/fpls.2013.00322
PMCID: PMC3747362  PMID: 24009616
Fagus sylvatica; Picea abies; root system stratification; fine root biomass (FRB); fine root length (FRL); fine root surface area index (RAI); specific root length (SRL); specific root surface area (SRA)
18.  Gap Dynamics and Structure of Two Old-Growth Beech Forest Remnants in Slovenia 
PLoS ONE  2013;8(1):e52641.
Context
Due to a long history of intensive forest exploitation, few European beech (Fagus sylvatica L.) old-growth forests have been preserved in Europe.
Material and Methods
We studied two beech forest reserves in southern Slovenia. We examined the structural characteristics of the two forest reserves based on data from sample plots and complete inventory obtained from four previous forest management plans. To gain a better understanding of disturbance dynamics, we used aerial imagery to study the characteristics of canopy gaps over an 11-year period in the Kopa forest reserve and a 20-year period in the Gorjanci forest reserve.
Results
The results suggest that these forests are structurally heterogeneous over small spatial scales. Gap size analysis showed that gaps smaller than 500 m2 are the dominant driving force of stand development. The percentage of forest area in canopy gaps ranged from 3.2 to 4.5% in the Kopa forest reserve and from 9.1 to 10.6% in the Gorjanci forest reserve. These forests exhibit relatively high annual rates of coverage by newly established (0.15 and 0.25%) and closed (0.08 and 0.16%) canopy gaps. New gap formation is dependant on senescent trees located throughout the reserve.
Conclusion
We conclude that these stands are not even-sized, but rather unevenly structured. This is due to the fact that the disturbance regime is characterized by low intensity, small-scale disturbances.
doi:10.1371/journal.pone.0052641
PMCID: PMC3538742  PMID: 23308115
19.  Bacterial degradation of lignified wood cell walls in anaerobic aquatic habitats. 
Test blocks of beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) were buried in fresh, brackish, and seawater anaerobic muds for periods ranging between 1 and 18 months. At appropriate time intervals the test blocks were recovered and examined for changes in weight and for bacterial attack of lignified wood cell walls. Only small weight losses occurred. Scanning electron microscopy studies revealed that there was extensive superficial bacterial erosion of beech wood cell walls. The decay patterns are illustrated by micrographs and discussed in relation to other types of bacterial attack.
Images
PMCID: PMC239341  PMID: 6639026
20.  Phosphite Protects Fagus sylvatica Seedlings towards Phytophthora plurivora via Local Toxicity, Priming and Facilitation of Pathogen Recognition 
PLoS ONE  2014;9(1):e87860.
Phytophthora plurivora causes severe damage on Fagus sylvatica and is responsible for the extensive decline of European Beech throughout Europe. Unfortunately, no effective treatment against this disease is available. Phosphite (Phi) is known to protect plants against Phytophthora species; however, its mode of action towards P. plurivora is still unknown. To discover the effect of Phi on root infection, leaves were sprayed with Phi and roots were subsequently inoculated with P. plurivora zoospores. Seedling physiology, defense responses, colonization of root tissue by the pathogen and mortality were monitored. Additionally the Phi concentration in roots was quantified. Finally, the effect of Phi on mycelial growth and zoospore formation was recorded. Phi treatment was remarkably efficient in protecting beech against P. plurivora; all Phi treated plants survived infection. Phi treated and infected seedlings showed a strong up-regulation of several defense genes in jasmonate, salicylic acid and ethylene pathways. Moreover, all physiological parameters measured were comparable to control plants. The local Phi concentration detected in roots was high enough to inhibit pathogen growth. Phi treatment alone did not harm seedling physiology or induce defense responses. The up-regulation of defense genes could be explained either by priming or by facilitation of pathogen recognition of the host.
doi:10.1371/journal.pone.0087860
PMCID: PMC3905044  PMID: 24489973
21.  Seasonal dynamics of arboreal spider diversity in a temperate forest 
Ecology and Evolution  2012;2(4):768-777.
Measuring and estimating biodiversity patterns is a fundamental task of the scientist working to support conservation and inform management decisions. Most biodiversity studies in temperate regions were often carried out over a very short period of time (e.g., a single season) and it is often—at least tacitly—assumed that these short-term findings are representative of long-term general patterns. However, should the studied biodiversity pattern in fact contain significant temporal dynamics, perhaps leading to contradictory conclusions. Here, we studied the seasonal diversity dynamics of arboreal spider communities dwelling in 216 European beeches (Fagus sylvatica L.) to assess the spider community composition in the following seasons: two cold seasons (I: November 2005–January 2006; II: February–April) and two warm seasons (III: May–July; IV: August–October). We show that the usually measured diversity of the warm season community (IV: 58 estimated species) alone did not deliver a reliable image of the overall diversity present in these trees, and therefore, we recommend it should not be used for sampling protocols aimed at providing a full picture of a forest's biodiversity in the temperate zones. In particular, when the additional samplings of other seasons (I, II, III) were included, the estimated species richness nearly doubled (108). Community I possessed the lowest diversity and evenness due to the harsh winter conditions: this community was comprised of one dominant species together with several species low in abundance. Similarity was lowest (38.6%) between seasonal communities I and III, indicating a significant species turnover due to recolonization, so that community III had the highest diversity. Finally, using nonparametric estimators, we found that further sampling in late winter (February–April) is most needed to complete our inventory. Our study clearly demonstrates that seasonal dynamics of communities should be taken into account when studying biodiversity patterns of spiders, and probably forest arthropods in general.
doi:10.1002/ece3.221
PMCID: PMC3399199  PMID: 22837825
Araneae; canopy fogging; European beech; recolonization; species richness estimation; true diversity
22.  Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding? 
Oecologia  2009;161(1):99-111.
Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) ‘below-ground overyielding’ of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m−2 in the species-poor to species-rich stands, with 63–77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that ‘below-ground overyielding’ in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.
doi:10.1007/s00442-009-1352-7
PMCID: PMC2700871  PMID: 19415337
Below-ground; Biodiversity; Niche complementarity
23.  Mechanical behaviour analyses of sap ascent in vascular plants 
Journal of Biological Physics  2010;36(4):355-363.
A pure mechanical anisotropic model of a tree trunk has been developed based on the 3D finite element method. It simulates the microscopic structure of vessels in the trunk of a European beech (Fagus sylvatica) in order to study and analyse its mechanical behaviour with different configurations of pressures in the conduits of xylem and phloem. The dependence of the strains at the inner bark was studied when sap pressure changed. The comparison with previously published experimental data leads to the conclusion that a great tensile stress—or ‘negative pressure’—must exist in the water column in order to achieve the measured strains if only the mechanical point of view is taken into account. Moreover, the model can help to design experiments where qualitatively knowing the strains and the purely mechanical behaviour of the tree is required.
doi:10.1007/s10867-010-9189-1
PMCID: PMC2923702  PMID: 21886343
Mechanics of a trunk; Finite element; Biomechanics; Sap pressure; Sap ascent; Strains in a trunk; Negative pressure; Cavitation; Water column stress
24.  Food Preferences of Winter Bird Communities in Different Forest Types 
PLoS ONE  2012;7(12):e53121.
Food availability for forest birds is a function of habitat type, forest management regime, and season. In winter, it is also impacted by variations in the weather. In the current study we assessed the food preferences of wild bird populations in two types of forest (spruce and beech) during the months of November 2010 to April 2011 in the Schwäbische Alb Biodiversity Exploratory, south-western Germany. Our aim was to investigate whether local bird communities preferred fat-rich, carbohydrate-rich or wild fruits and to determine how forest structure, seasonality and local weather conditions affected food preferences. We found higher bird activity in beech forests for the eleven resident species. We observed a clear preference for fat-rich food for all birds in both forest types. Snow cover affected activity at food stations but did not affect food preferences. Periods of extreme low temperatures increased activity.
doi:10.1371/journal.pone.0053121
PMCID: PMC3534035  PMID: 23300878
25.  Establishment success of sooty beech scale insects, Ultracoelostoma sp., on different host tree species in New Zealand 
The sooty beech scale insect (Ultracoelostoma sp.) (Hemiptera: Margarodidae) exhibits a highly patchy distribution at local and regional scales. A major factor driving this common distributional phenomenon in other phloem-feeding insects is aggregation and local adaptation. The aim of this study was to determine if Ultracoelostoma was locally adapted to its natal host trees, by contrasting the establishment rates of first instar “crawlers” in reciprocal transfers to natal versus novel hosts. Although there are two closely-related species of sooty beech scale insect, the morphological characters of crawlers in this study were intermediate between those of U. assimile and U. brittini. However, all of the voucher specimens examined had consistent morphology, indicating that they belong to one species which we refer to as Ultracoelostoma sp. Reciprocal transfers of crawlers were carried out between individual red beech (Nothofagus fusca), as well as between mountain beech (N. solandri) and red beech trees, to ascertain if insects had become locally adapted to their individual host tree or to host species. In total, 480 crawlers were placed in enclosures on their natal and novel host trees, of which only 32 (6.7 %) became established. No evidence for local adaptation, either to individual host trees or to host tree species, was found. There was also no difference in crawler establishment between natal and novel hosts. However, crawlers originating from mountain beech trees had significantly higher establishment rates on both natal mountain beech and novel red beech hosts, than did crawlers originating from red beech trees. The superior ability of mountain beech crawlers to become established, even on novel red beech trees, suggests that scale insects on mountain beech trees have higher individual fitness (possibly due to maternal effects mediated by differences in host nutritional quality, defensive compounds or growth rate). This increased fitness may result in crawlers being better provisioned to search for appropriate establishment sites. The results of this study indicate that beech scale insects perform better on mountain beech at this site, although crawlers did not preferentially establish on mountain beech.
doi:10.1673/2006_06_29.1
PMCID: PMC2990322  PMID: 19537979
honeydew; host preference; local adaptation; Ultracoelostoma assimile; Ultracoelostoma brittini; Nothofagus fusca; Nothofagus solandri

Results 1-25 (322184)