Search tips
Search criteria

Results 1-25 (916081)

Clipboard (0)

Related Articles

1.  Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress 
Anemia  2013;2013:617204.
Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility.
PMCID: PMC3876768  PMID: 24396593
2.  Glutathione Redox System in β-Thalassemia/Hb E Patients 
The Scientific World Journal  2013;2013:543973.
β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH)/glutathione disulfide (GSSG) and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body's first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.
PMCID: PMC3816076  PMID: 24223032
3.  Oxidative stress and antioxidant status in beta-thalassemia heterozygotes 
Several studies have evaluated the oxidant and antioxidant status of thalassemia patients but most focused mainly on the severe and intermediate states of the disease. Moreover, the oxidative status has not been evaluated for the different beta-thalassemia mutations.
To evaluate lipid peroxidation and Trolox equivalent antioxidant capacity in relation to serum iron and ferritin in beta thalassemia resulting from two different mutations (CD39 and IVS-I-110) compared to individuals without beta-thalassemia.
One hundred and thirty subjects were studied, including 49 who were heterozygous for beta-thalassemia and 81 controls. Blood samples were subjected to screening tests for hemoglobin. Allele-specific polymerase chain reaction was used to confirm mutations for beta-thalassemia, an analysis of thiobarbituric acid reactive species was used to determine lipid peroxidation, and Trolox equivalent antioxidant capacity evaluations were performed. The heterozygous beta-thalassemia group was also evaluated for serum iron and ferritin status.
Thiobarbituric acid reactive species (486.24 ± 119.64 ng/mL) and Trolox equivalent antioxidant capacity values (2.23 ± 0.11 mM/L) were higher in beta-thalassemia heterozygotes compared to controls (260.86 ± 92.40 ng/mL and 2.12 ± 0.10 mM/L, respectively; p-value < 0.01). Increased thiobarbituric acid reactive species values were observed in subjects with the CD39 mutation compared with those with the IVS-I-110 mutation (529.94 ± 115.60 ng/mL and 453.39 ± 121.10 ng/mL, respectively; p-value = 0.04). However, average Trolox equivalent antioxidant capacity values were similar for both mutations (2.20 ± 0.08 mM/L and 2.23 ± 0.12 mM/L, respectively; p-value = 0.39). There was no influence of serum iron and ferritin levels on thiobarbituric acid reactive species and Trolox equivalent antioxidant capacity values.
This study shows an increase of oxidative stress and antioxidant capacity in beta-thalassemia heterozygotes, mainly in carriers of the CD39 mutation.
PMCID: PMC3905823  PMID: 24478607
Oxidative stress; Beta-thalassemia; Lipid peroxidation; Beta-globins; Thiobarbituric acid reactive substances; Mutation
4.  Total Antioxidant Status in Patients with Major β-Thalassemia 
Iranian Journal of Pediatrics  2011;21(2):159-165.
Beta-thalassemia major is an autosomal recessive disease causing severe and hemolytic anemia, which begins about 2-6 months after birth. Iron overload, which arises from recurrent transfusion and ineffective erythropoiesis, can enhance oxidative stress in thalassemic patients. The aim of this study was to evaluate the serum total antioxidant capacity of patients with ß-Thalassemia major.
Sixty six Iranian patients with β-thalassemia major and 66 age-gender matched controls were evaluated for serum total antioxidant status (TAS), uric acid (UA), bilirubin and albumin. In addition, serum ferritin and transaminases were recorded in these subjects.
Significant increases of TAS, UA, and bilirubin were observed in the patient group, compared with the control group (P<0.01). Mean TAS and bilirubin in male patients was higher than in females (P=0.005 and P=0.008, respectively). There was also direct correlation between TAS and albumin (P<0.001), bilirubin (P<0.001) and UA (P=0.002).
Endogenous antioxidants such as ferritin, UA and bilirubin can result in increased level of TAS in the patients with Beta-thalassemia major. Compensatory excess of TAS to oxidative stress could also be the reason for difference between our findings and previous studies.
PMCID: PMC3446157  PMID: 23056782
β-Thalassemia Major; Oxidative Stress; Antioxidants; Ferritin; Uric Acid
5.  Oxidative stress and disturbance in antioxidant balance in beta thalassemia major 
Repeated blood transfusion in beta thalassemia major patients may lead to peroxidative tissue injury by secondary iron overload. In the present study, 72 children with beta thalassemia major were included. Serum levels of total lipid peroxides, Iron, Total Iron Binding Capacity, Copper, Zinc, Vitamin E, plasma Total Antioxidant Capacity, activity of Erythrocyte Superoxide Dismutase, were measured. The findings were compared with 72 age matched healthy controls irrespective of sex. A significant increase in the levels of lipid peroxide and Iron (p<0.001), whereas, significant decrease in the levels of vitamin-E, Total Antioxidant Capacity and Total Iron Binding Capacity (p<0.001) was observed. Serum Zinc was significantly increased (p<0.001) with significant decrease in the levels of copper (p<0.001). Non Significant increase in the activity of Erythrocyte Superoxide Dismutase (p>0.05) was found in the patients when compared with controls. This suggest that oxidative stress and reduced antioxidant defense mechanism play an important role in pathogenesis of beta thalassemia major.
PMCID: PMC3453139  PMID: 23105782
Beta thalassemia major; Oxidative stress; Antioxidants
6.  Glucose homeostasis in Egyptian children and adolescents with β-Thalassemia major: Relationship to oxidative stress 
Oxidative stress in children with β-thalassemia may contribute to shortened life span of erythrocytes and endocrinal abnormalities.
This study was aimed to evaluate glucose homeostasis in Egyptian children and adolescents with β-thalassemia major and its relation to oxidative stress.
Materials and Methods:
Sixty children and adolescents with β-thalassemia major were studied in comparison to 30 healthy age and sex-matched subjects. Detailed medical history, thorough clinical examination, and laboratory assessment of oral glucose tolerance test (OGTT), serum ferritin, alanine transferase (ALT), fasting insulin levels, plasma malondialdehyde (MDA) as oxidant marker and serum total antioxidants capacity (TAC) were performed. Patients were divided into two groups according to the presence of abnormal OGTT.
The prevalence of diabetes was 5% (3 of 60) and impaired glucose tolerance test (IGT) was 8% (5 of 60). Fasting blood glucose, 2-hour post-load plasma glucose, serum ferritin, ALT, fasting insulin level, homeostatic model assessment for insulin resistance index (HOMA-IR) and MDA levels were significantly elevated while TAC level was significantly decreased in thalassemic patients compared with healthy controls (P < 0.001 for each). The difference was more evident in patients with abnormal OGTT than those with normal oral glucose tolerance (P < 0.001 for each). We also observed that thalassemic patients not receiving or on irregular chelation therapy had significantly higher fasting, 2-h post-load plasma glucose, serum ferritin, ALT, fasting insulin, HOMA-IR, oxidative stress markers OSI and MDA levels and significantly lower TAC compared with either those on regular chelation or controls. HOMA-IR was positively correlated with age, serum ferritin, ALT, MDA, and negatively correlated with TAC.
The development of abnormal glucose tolerance in Egyptian children and adolescents with β--thalassemia is associated with alteration in oxidant-antioxidant status and increase in insulin resistance.
1- Glucose tolerance tests, HOMA-IR, and MDA should be an integral part of the long-term follow-up of children and adolescents with β-thalassemia major. 2- Regular iron chelation and antioxidant therapy should be advised for thalassemic patients to improve glucose hemostasis.
PMCID: PMC4056131  PMID: 24944927
β-thalassemic major; diabetes mellitus; insulin resistance; oxidative stress
7.  The Benefits of vitamin E on liver function and the hemopoietic System in thalassemia Patients 
β−Thalassemic children have oxidative stress and antioxidant deficiency even without iron overload status. In these patients, tissue damage due to oxidative stress may be occurred. Also, it seems that thalassemic patients have higher levels of ALT, AST therefore, the main aim of the present study was to determine the benefits of vitamin E as an antioxidant supplements in β-Thalassemia children.
Materials and Methods
This clinical trial was carried out on 45 beta-thalassemic patients undergoing occasional transfusions (24 males, 21 females), mean age 16± 8 years, admitted to Yazd and Shahid Sadoughi hospital in 2011. Fallowing three months treatment of vitaminE (vitamin E 400-600 unit/day),liver function test and hemopoitic system parameters were measured.
Fourty five patients with laboratory confirmation of β-Thalassemia were recruited following three months vitamin E supplementation, liver function test had higher improvement compared to hemopoitic system parameters , and also serum SGOT was significantly reduced (P-value<0.004 ).
It seems clear that treatments of β-thalassemic patients with vitamins E have benefits in promoting antioxidant status and may improve liver function test, as AST and ALT to decrease but this supplement is not effective for hemopoietic system variables.
PMCID: PMC3915432  PMID: 24575256
Vitamin E; Hemopoietic System; Liver Function Tests
8.  Therapeutic Value of Combined Therapy with Deferasirox and Silymarin on Iron Overload in Children with Beta Thalassemia 
Beta thalassemia is an inherited hemoglobin disorder resulting in a severe, chronic anemia requiring life-long blood transfusion that induces iron overload. Silymarin is a flavonoid complex isolated from Silybin marianum with a strong antioxidant activity, inducing an hepatoprotective action, and probably, a protective effect on iron overload. The aim of this work was to determine the silymarin value in improving iron chelation in thalassemic patients with iron overload treated with Deferasirox.
Patients and Methods
This study was conducted on 40 children with beta thalassemia major under follow-up at Hematology Unit, Pediatric Department, Tanta University Hospital with serum ferritin level more than 1000 ng/ml and was divided into two groups. Group IA: Received oral Deferasirox (Exjade) and silymarin for 6 months. Group IB: Received oral Deferasirox (Exjade) and placebo for 6 months and 20 healthy children serving as a control group in the period between April 2011 and August 2012 and was performed after approval from research ethical committee center in Tanta University Hospital and obtaining an informed written parental consent from all participants in this study.
Serum ferritin levels were markedly decreased in group IA cases compared with group IB (P= 0.001).
From this study we concluded that, silymarin in combination with Exjade can be safely used in the treatment of iron-loaded thalassemic patients as it showed good iron chelation with no sign of toxicity.
We recommend extensive multicenter studies in a large number of patients with longer duration of follow-up and more advanced techniques of assessment of iron status in order to clarify the exact role of silymarin in reducing iron overload in children with beta thalassemia.
PMCID: PMC3867224  PMID: 24363880
9.  Nutritional Biomarkers in Children and Adolescents with Beta-Thalassemia-Major: An Egyptian Center Experience 
BioMed Research International  2014;2014:261761.
Background and Aim. Trace elements and vitamins play a vital role in human body to perform its function properly. Thalassemic patients are at risk of micronutrient deficiency. This study estimated levels of vitamins A, C, E, B12, folic acid, total homocysteine (tHcy), and methylmalonic acid (MMA) along with trace elements, zinc, copper, and selenium in Beta-thalassemia-major patients. Methods. This study included 108 patients with Beta-thalassemia-major and 60 age and sex matched healthy children. Serum levels of vitamin A, E, C, tHcy, and MMA were estimated by high pressure liquid chromatography while serum levels of folic acid and B12 were estimated by thin layer chromatography. Serum zinc, copper, and selenium were determined by atomic absorption spectrometry. Results. There was a significant decrease of vitamins A, C, E, and B12 and trace elements zinc, copper, and selenium in thalassemic patients as compared to controls. tHcy and MMA were significantly elevated in patients. No significant correlations were found between the serum levels of the studied vitamins and trace elements as regards age, frequency of transfusion, duration of transfusion, and serum ferritin. Conclusion. The level of various nutritional biomarkers (vitamins A, C, E, and B12 and trace elements zinc, copper, selenium) was reduced in chronically transfused Egyptian thalassemic patient. These patients should have periodic nutritional evaluation and supplementation. Multicenter studies are highly recommended.
PMCID: PMC4000941  PMID: 24812610
10.  Factors regulating Hb F synthesis in thalassemic diseases 
The thalassemic syndromes originate from mutations of the globin genes that cause, besides the characteristic clinical picture, also an increased Hb F amount. It is not yet clear if there are more factors, besides the beta globin genotype, determining the Hb F production. We have tried to find out if there are relations between total Hb and Hb F, between erythropoietin (Epo) and Hb F, between Hb F and point mutations of the gamma gene promoters.
Materials and Methods
Hematologic parameters, iron status, alpha/non-alpha globin ratio, Epo level, and thalassemic defects of the alpha-, beta-, and gamma-globin genes were explored using standard methods in patients affected by thalassemic diseases. Ninety-five non thalassemic individuals have been examined as controls.
Two clinical variants of beta-thalassemia intermedia referred to as beta-thal int sub-silent and evident are associated with distinct sets of mutations of the beta-globin gene. Silent beta thal mutations are invariably associated with sub-silent beta thal int; beta° or severe beta+ thal mutations are associated with evident beta thal int (88%) and almost invariably (98%) with thalassemia major. A positive correlation was observed between the severity of the disease and the Hb F level, but no correlation was found between the Hb F and erythropoietin (Epo) level. The mutation Ggamma -158 C→T was detected in 26.9% of patients affected by beta-thal int sub-silent and evident, respectively, but only in 2% of patients with thalassemia major.
The severity of beta-thal int and the increased Hb F level are strictly dependent from the type of beta-globin gene mutations. No relation is found between Hb F synthesis and Epo secretion. The mutation Ggamma -158 C→T, common among patients affected by beta-thal int and very rare in thal major patients, does not seem, in this study, to influence the Hb F content in beta thal int patients.
PMCID: PMC101377  PMID: 11943067
11.  Oxidative Stress and β-Thalassemic Erythroid Cells behind the Molecular Defect 
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by the absence or reduced β-globin chain synthesis. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced red cell survival, which sustain anemia of β-thalassemia. The unbalance of alpha-gamma chain and the presence of pathological free iron promote a severe red cell membrane oxidative stress, which results in abnormal β-thalassemic red cell features. These cells are precociously removed by the macrophage system through two mechanisms: the removal of phosphatidylserine positive cells and through the natural occurring antibody produced against the abnormally clustered membrane protein band 3. In the present review we will discuss the changes in β-thalassemic red cell homeostasis related to the oxidative stress and its connection with production of microparticles and with malaria infection. The reactive oxygen species (ROS) are also involved in ineffective erythropoiesis of β-thalassemia through still partially known pathways. Novel cytoprotective systems such as ASHP, eIF2α, and peroxiredoxin-2 have been suggested to be important against ROS in β-thalassemic erythropoiesis. Finally, we will discuss the results of the major in vitro and in vivo studies with antioxidants in β-thalassemia.
PMCID: PMC3800594  PMID: 24205432
12.  Vascular Endothelial Growth Factor in Children with Thalassemia Major 
The β-Thalassemia syndromes are the most common hereditary chronic hemolytic anemia due to impaired globin chain synthesis. Vascular endothelial growth factor (VEGF) plays several roles in angiogenesis which is a crucial process in the pathogenesis of several inflammatory, autoimmune and malignant diseases. Endothelial damage and inflammation make a significant contribution to the pathophysiology of β-thalassemia.
: The aim of the study was to assess serum VEGF level in children with beta-thalassemia major as a marker of angiogenesis.
A total of 50 children entered the study, 40 patients with thalassemia major and 10 healthy controls. We used enzyme-linked immunosorbent assay for quantitative evaluation of VEGF.
VEGF level was significantly higher in patients with β-thalassemia major than healthy controls (p=0.001). VEGF level was also higher in splenectomised thalassemic patients than non splenectomised ones (p=0.001). There were a positive correlation between VEGF and chelation starting age (p=0.008), and a negative correlation between VEGF and frequency of blood transfusion (p=0.002).
Thalassemia patients, especially splenectomized, have elevated serum levels of VEGF. Early chelation and regular blood transfusion help to decrease serum VEGF and the risk of angiogenesis.
PMCID: PMC3684348  PMID: 23795282
13.  Assessment of Thyroid Function in Children Aged 1-13 Years with Beta-Thalassemia Major 
Iranian Journal of Pediatrics  2011;21(1):77-82.
Hypothyroidism usually appears in the second decade of life and is thought to be associated with iron overload in patients with thalassemia major. This study aimed to evaluate thyroid dysfunctions in patients with beta-thalassemia major and to see if they appear in the earlier period of life.
Thyroid function and iron load status were evaluated in 90 children with a mean age of 7.17±3.78 years with beta-thalassemia major by measuring serum free thyroxin (FT4), serum free triiodothyronine (FT3), total thyroxin (T3), serum total triiodothyronine (T4), thyroid-stimulating hormone (TSH) and ferritin levels from serum of patients admitted to the Pediatric Department, Faculty of Medicine University of Dicle between March 2005 and July 2009. A control group formed from an age-sex matched healthy children with a mean age of 6.98±3.66 years was also included. A standard thyrotropin releasing hormone test was applied to 3 patients who had high TSH levels and were classified as subclinical primer hypothyroidism. The study was designed according to the Declaration of Helsinki and informed consent was obtained from the parents of all participants.
All thyroid parameters in patients were in the normal ranges compared with the controls except three of them which had high TSH levels. Serum ferritin level (2703±1649 ng/mL) in patients was significantly higher than in controls (81.5±15.5 ng/mL).
The work implies that hypothyroidism could be even seen in the first decade of life in patients with beta-thalassemia major in spite of improved hematological cares.
PMCID: PMC3446112  PMID: 23056768
Beta-Thalassemia; Hypothyroidism; Iron Overload; Chelation Therapy; Splenectomy
14.  Prevalence of glutathione S-transferase gene deletions and their effect on sickle cell patients 
Glutathione S-transferase gene deletions are known detoxification agents and cause oxidative damage. Due to the different pathophysiology of anemia in thalassemia and sickle cell disease, there are significant differences in the pathophysiology of iron overload and iron-related complications in these disorders.
The aim of this study was to estimate the frequency of the GSTM1 and GSTT1 genotypes in sickle cell disease patients and their effect on iron status.
Forty sickle cell anemia and sixty sickle ß-thalassemia patients and 100 controls were evaluated to determine the frequency of GST gene deletions. Complete blood counts were performed by an automated cell analyzer. Hemoglobin F, hemoglobin A, hemoglobin A2 and hemoglobin S were measured and diagnosis of patients was achieved by high performance liquid chromatography with DNA extraction by the phenol-chloroform method. The GST null genotype was determined using multiplex polymerase chain reaction and serum ferritin was measured using an ELISA kit. Statistical analysis was by EpiInfo and GraphPad statistics software.
An increased frequency of the GSTT1 null genotype (p-value = 0.05) was seen in the patients. The mean serum ferritin level was higher in patients with the GST genotypes than in controls; this was statistically significant for all genotypes except GSTM1, however the higher levels of serum ferritin were due to blood transfusions in patients.
GST deletions do not play a direct role in iron overload of sickle cell patients.
PMCID: PMC3459392  PMID: 23049400
Glutathione transferase; Anemia; Sickle cell; Hemoglobinopathies; Polymerase chain reaction
15.  Regulation of Iron Absorption in Hemoglobinopathies 
Current molecular medicine  2008;8(7):646-662.
Beta-thalassemia and sickle cell anemia (SCD) represent the most common hemoglobinopathies caused, respectively, by deficient production or alteration of the beta chain of hemoglobin (Hb). Patients affected by the most severe form of thalassemia suffer from profound anemia that requires chronic blood transfusions and chelation therapies to prevent iron overload. However, patients affected by beta-thalassemia intermedia, a milder form of the disease that does not require chronic blood transfusions, eventually also show elevated body iron content due to increased gastrointestinal iron absorption. Even SCD patients might require blood transfusions and iron chelation to prevent deleterious and painful vaso-occlusive crises and complications due to iron overload. Although definitive cures are presently available, such as bone marrow transplantation (BMT), or are in development, such as correction of the disease through hematopoietic stem cell beta-globin gene transfer, they are potentially hazardous procedures or too experimental to provide consistently safe and predictive clinical outcomes. Therefore, studies that aim to better understand the pathophysiology of the hemoglobinopathies might provide further insight and new drugs to dramatically improve the understanding and current treatment of these diseases. This review will describe how recent discoveries on iron metabolism and erythropoiesis could lead to new therapeutic strategies and better clinical care of these diseases, thereby yielding a much better quality of life for the patients.
PMCID: PMC3722362  PMID: 18991651
Hemoglobinopathies; iron metabolism; erythropoiesis; mouse models; hemochromatosis; hepcidin; ferroportin
16.  Multiple transfused thalassemia major: Ocular manifestations in a hospital-based population 
Indian Journal of Ophthalmology  2010;58(2):125-130.
To study the ocular manifestations in multiple transfused beta-thalassemia major patients and assess the ocular side-effects of iron chelating agents.
Materials and Methods:
In this prospective observational study, 45 multiple transfused beta-thalassemia major children between six months and 21 years of age were enrolled and assigned groups according to the treatment regimens suggested. Group A received only blood transfusions, Group B blood transfusions with subcutaneous desferrioxamine, Group C blood transfusions with desferrioxamine and oral deferriprone and Group D blood transfusions with deferriprone. Ocular status at the time of enrolment was documented. Subjects were observed quarterly for one year for changes in ocular status arising due to the disease process and due to iron chelation therapy. Children with hemoglobinopathies other than beta-thalassemia major, congenital ocular anomalies and anemia due to other causes were excluded.
Ocular involvement was observed in 58% of patients. Lenticular opacities were the most common ocular finding (44%), followed by decreased visual acuity (33%). An increased occurrence of ocular changes was observed with increase of serum ferritin and serum iron levels as well as with higher number of blood transfusions received. Desferrioxamine seemed to have a protective influence on retinal pigment epithelium (RPE) mottling. Occurrence of lenticular opacities and RPE degeneration correlated positively with use of desferrioxamine and deferriprone respectively. Follow-up of patients for one year did not reveal any change in ocular status.
Regular ocular examinations can aid in preventing, delaying or ameliorating the ocular complications of thalassemia.
PMCID: PMC2854443  PMID: 20195035
Desferrioxamine; deferriprone; iron overload; thalassemia
17.  Molecular analysis of the beta-thalassemia phenotype associated with inheritance of hemoglobin E (alpha 2 beta2(26)Glu leads to Lys). 
Journal of Clinical Investigation  1981;68(1):118-126.
Inheritance of the gene for betaE-globin is associated with hypochromia and microcytosis, reminiscent of typical heterozygous beta-thalassemia. Patients with hemoglobin (Hb)E-beta-thalassemia exhibit clinical phenotypes of severe beta-thalassemia, a circumstance not encountered in other compound heterozygous states for structural beta-chain mutations and beta-thalassemia. We have analyzed the kinetics of globin synthesis and the levels of globin messenger (m) RNA accumulation in patients with Hb E-beta-thalassemia and Hb E trait. The initial rate of beta-globin synthesis (betaE/alpha=0.20-0.34) was less than expected on the basis of gene dosage, or comparable studies of other compound heterozygous states for beta-thalassemia and structurally abnormal beta-chains. betaE-globin synthesis was not only reduced during short-term incubations (1-5 min), but also remained relatively unchanged during long-term pulse or chase incubations up to 5h. Analysis of globin mRNA by cell-free translation and molecular hybridization confirmed that the unexpectedly low levels of betaE-globin synthesis were associated with comparable reduction in the levels of beta-globin mRNA. In Hb E-beta-thalassemia the betaA + betaE (alpha globin nRNA ratio observed were substantially lower than those obtained from reticulocytes of patients with heterozygous beta-thalassemia, or Hb S-betaO-thalassemia, while in Hb E trait, the betaA + betaE/alpha mRNA ratio was in the ranged observed for beta-thalassemia trait. The betaE-globin gene specifies reduced accumulation of betaE-globin mRNA, a property characteristic of other forms of beta-thalassemia. The beta-thalassemia phenotype associated with inheritance of Hb E is thus determined at the level of beta-globin mRNA metabolism.
PMCID: PMC370779  PMID: 6166632
18.  Major Causes of Hospital Admission in Beta Thalassemia Major Patients in Southern Iran 
Iranian Journal of Pediatrics  2011;21(4):509-513.
Beta thalassemia major is a prevalent hereditary disease in Mediterranean region especially Iran. Early blood transfusion is necessary for most of the patients and frequent transfusion can cause various medical problems for the patients. The aim of this study was to find major causes of hospital admission in beta thalassemia major patients to reach the accurate preventive and therapeutic plans for these patients.
Four hundred twenty six patients were admitted to the Nemazee Hospital (the main University referral Hospital Center affiliated to Shiraz University of Medical Sciences in Fars Province, southern Iran) during 3 years period (January 2007 to January 2010). A questionnaire was filled containing age, gender, hemoglobin level, frequency of blood transfusions, deferoxamine injection, cause of hospital admission and hospital course.
The mean age of patients was 11.28 years. The mean serum ferritin level was 1820±749 µg/lit. Two hundred fifty five (59.75%) patients were male and 171 (40.25%) patients were female. The top five most prevalent causes of hospital admission were splenectomy (21.8%), infections (19.9%), congestive heart failure (19.0%), diabetes mellitus (13.4%), and Liver biopsy (11.5%). (P=0.0002)
Results of this study revealed that infections and complications due to iron overload are major causes of hospital admission in beta thalassemia major patients.
PMCID: PMC3446139  PMID: 23056840
Beta Thalassemia major; Hospitalization; Complication; Iran
19.  Reducing power and iron chelating property of Terminalia chebula (Retz.) alleviates iron induced liver toxicity in mice 
The 70% methanol extract of Terminalia chebula Retz. fruit (TCME) was investigated for its in vitro iron chelating property and in vivo ameliorating effect on hepatic injury of iron overloaded mice.
The effect of fruit extract on Fe2+-ferrozine complex formation and Fe2+ mediated pUC-18 DNA breakdown was studied in order to find the in vitro iron chelating activity. Thirty-six Swiss Albino mice were divided into six groups of: blank, patient control and treated with 50, 100, 200 mg/kg b.w. of TCME and desirox (standard iron chelator drug with Deferasirox as parent compound). Evaluations were made for serum markers of hepatic damage, antioxidant enzyme, lipid per oxidation and liver fibrosis levels. The reductive release of ferritin iron by the extract was further studied.
In vitro results showed considerable iron chelation with IC50 of 27.19 ± 2.80 μg/ml, and a significant DNA protection with [P]50 of 1.07 ± 0.03 μg/ml along with about 86% retention of supercoiled DNA. Iron-dextran injection (i.p.) caused significant increase in the levels of the serum enzymes, viz., alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), alkaline phosphatase (ALP) and Bilirubin, which were subsequently lowered by oral administration of 200 mg/kg b.w. dose of the fruit extract by 81.5%, 105.88%, 188.08% and 128.31%, respectively. Similarly, treatment with the same dose of the extract was shown to alleviate the reduced levels of liver antioxidant enzyme superoxide dismutase, catalase, glutathione S-transferase and non-enzymatic reduced glutathione, by 49.8%, 53.5%, 35.4% and 11% respectively, in comparison to the iron overloaded mice. At the same time, the fruit extract effectively lowered the iron-overload induced raised levels of lipid per oxidation, protein carbonyl, hydroxyproline and liver iron by 49%, 67%, 67% and 26%, respectively, with oral treatment of 200 mg/kg b.w. dose of TCME. The fruit extract also showed potential activity for reductive release of ferritin iron.
These findings suggest that Terminalia chebula extract may contain active substances capable of lessening iron overload induced toxicity, and hence possibly be useful as iron chelating drug for iron overload diseases.
PMCID: PMC3489879  PMID: 22938047
20.  Detection of Left Ventricular Regional Function in Asymptomatic Children with beta-Thalassemia Major by Longitudinal Strain and Strain Rate Imaging 
Turkish Journal of Hematology  2013;30(3):283-289.
Objective: Cardiac failure due to iron overload remains the most common cause of death in patients with beta-thalassemia major. This study aimed to evaluate myocardial function in children with beta-thalassemia major using standard echocardiography technique and strain rate imaging.
Materials and Methods: Conventional echocardiographic analysis, tissue velocity imaging, and strain/strain rate imaging of the left ventricle were evaluated in 48 children with beta-thalassemia major (19 girls, 29 boys; 8.39±4.05 years) and 22 healthy children (11 girls, 11 boys; 8±3.72 years).
Results: Conventional echocardiographic examinations revealed that beta-thalassemia patients had larger left ventricular end-systolic diameter, end-diastolic and end-systolic volume, left ventricular mass index, and mitral early/late diastolic flow velocity ratio (p<0.05). Strain and strain rate imaging study of the basal lateral wall of the left ventricle was higher in patients than in controls, at p=0.035 and p=0.008, respectively.
Conclusion: We found that superior systolic strain and strain rate imaging of the left ventricle indicated the presence of regional systolic function in the left ventricular wall. We suggest that left ventricle volume and mass index parameters might be more sensitive than the other conventional and strain/strain rate imaging parameters during childhood. However, the adulthood strain and strain rate imaging values may be lower than controls, exceeding the critical level of iron overload.
Conflict of interest:None declared.
PMCID: PMC3878538  PMID: 24385808
childhood; Regional left ventricular cardiac function; Strain; Strain rate imaging; Thalassemia
21.  Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men 
BMC Urology  2012;12:6.
Growing evidence indicates that oxidative stress can be a primary cause of male infertility. Non-enzymatic antioxidants play an important protective role against oxidative damages and lipid peroxidation. Human seminal plasma is a natural reservoir of antioxidants. The aim of this study was to determine glutathione (GSH) concentrations, trace element levels (zinc and selenium) and the lipid peroxidation end product, malondialdehyde (MDA), in the seminal plasma of men with different fertility potentials.
Semen samples from 60 fertile men (normozoospermics) and 190 infertile patients (74 asthenozoospermics, 56 oligozoospermics, and 60 teratozoospermics) were analyzed for physical and biochemical parameters. Zinc (Zn) and selenium (Se) levels were estimated by atomic absorption spectrophotometry. Total GSH (GSHt), oxidized GSH (GSSG), reduced GSH (GSHr) and MDA concentrations were measured spectrophotometrically.
Zn and Se concentrations in seminal plasma of normozoospermics were more elevated than the three abnormal groups. Nevertheless, only the Zn showed significant differences. On the other hand, Zn showed positive and significant correlations with sperm motility (P = 0.03, r = 0.29) and count (P < 0.01, r = 0.49); however Se was significantly correlated only with sperm motility (P < 0.01, r = 0.36). GSHt, GSSG and GSHr were significantly higher in normozoospermics than in abnormal groups. We noted a significant association between seminal GSHt and sperm motility (P = 0.03). GSSG was highly correlated to sperm motility (P < 0.001) and negatively associated to abnormal morphology (P < 0.001). GSHr was significantly associated to total sperm motility (P < 0.001) and sperm count (P = 0.01). MDA levels were significantly higher in the three abnormal groups than in normozoospermics. Rates of seminal MDA were negatively associated to sperm motility (P < 0.01; r = -0.24) and sperm concentration (P = 0.003; r = -0.35) Meanwhile, there is a positive correlation between seminal lipid peroxidation and the percentage of abnormal morphology (P = 0.008).
This report revealed that decreased seminal GSH and trace element deficiencies are implicated in low sperm quality and may be an important indirect biomarker of idiopathic male infertility. Our results sustain that the evaluation of seminal antioxidant status in infertile men is necessary and can be helpful in fertility assessment from early stages.
PMCID: PMC3349502  PMID: 22429816
Antioxidants; Idiopathic oligoasthenoteratozoospermia; Male infertility; Oxidative stress; Reactive oxygen species; Spermatozoa; Seminal plasma
22.  Protection against Oxidative Stress in Beta Thalassemia/Hemoglobin E Erythrocytes by Inhibitors of Glutathione Efflux Transporters 
PLoS ONE  2013;8(1):e55685.
In beta thalassemia/hemoglobin E (Hb E), abnormally high levels of oxidative stress account for accelerated senescence and increased destruction of erythrocytes. The present study aimed to investigate the role of glutathione efflux transporters, namely cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein 1 (MRP1), in the control of glutathione levels and protection against oxidative challenges in beta thalassemia/Hb E erythrocytes. We found that CFTR protein was expressed in the erythrocytes of beta thalassemia/Hb E patients. Treatments with GlyH-101 (50 µM), a small molecule CFTR inhibitor, and MK571 (50 µM), an MRP1 inhibitor, reduced H2O2-induced free radical generation in the erythrocytes by ∼80% and 50%, respectively. Furthermore, combined treatment with GlyH-101 and MK571 completely abolished the induction of reactive oxygen radicals. Increased oxidative stress in the erythrocytes following H2O2 challenges was accompanied by a decrease in intracellular level of reduced glutathione (GSH), which was prevented by treatments with GlyH-101 and MK571. CMFDA-based assays revealed that GlyH-101 and MK571 reduced H2O2-induced glutathione efflux from the erythrocytes by 87% and 66%, respectively. Interestingly, H2O2-induced osmotic tolerance of erythrocytes, a sign of erythrocyte aging, was ameliorated by treatment with GlyH-101. Our study indicates that oxidative stress induces glutathione efflux via CFTR and MRP1 in beta thalassemia/Hb E erythrocytes. Pharmacological inhibition of glutathione efflux represents a potential therapy to delay aging and premature destruction of erythrocytes in beta thalassemia/Hb E.
PMCID: PMC3561311  PMID: 23383265
23.  Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion 
In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox) providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA), presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams) and the role of T2* magnetic resonance imaging (MRI) to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions.
PMCID: PMC3905826  PMID: 24478610
Blood transfusion; Chelation therapy; Deferiprone; Deferasirox; Iron/metabolism; beta-Thalassemia; Iron overload; Iron chelating agents; Magnetic resonance imaging; Practice guidelines as topic; Protocols; Brazil
24.  Assessment Hepatomegaly and liver Enzymes in 100 Patients with beta Thalassemia Major in Mashhad, Iran 
Frequent blood transfusion in patients with beta thalassemia major can lead to iron overload especially in liver. Chronic iron overload could cause cirrhosis of the liver. Transfusion- transmitted hepatitis B and C also could develop cirrhosis in individuals.
Materials and Methods
The present cross- sectional descriptive study is to assess hepatomegaly and liver enzymes in 100 patients with beta thalassemia major, ages between 2-18 years old. The study was carried out retrospectively. One hundred medical records have chosen from 400 samples of thalassemia major patients, who are under a regular care of the department of sarvar clinic.
Out of these patients, 55% were male and 45% female. The mean age of thalassemia patients was 10.8± 4.4 years. The mean and S. D of hemoglobin, ferritin, deferoxamine dosage was 8.5 ± 1.5g/dl , 2183 ± 1528 ng , 30 ± 11.16 mg/kg, respectively. Forty six percent of them had hepatomegaly. The mean and S. D of AST and ALT were 95± 70 IU/L and 70 ±35U/L respectively. Splenectomy was performed on 44% of patient.
Hepatomegaly is one of the most common findings in the thalassemic patient that induced with hemosiderosis and hepatitis.
PMCID: PMC3915436  PMID: 24575259
Epidemiology; Hepatomegaly; Liver; beta-Thalassemia
25.  Growth Parameters and Vitamin D status in Children with Thalassemia Major in Upper Egypt 
The aim of this study is to assess the growth parameters, vitamin D, calcium, and phosphorous status in children with thalassemia major receiving packed red cells transfusion with chelation therapy.
Patients and Methods
In a case control study, 100 patients with beta thalassemia major (aged from 4 to 15 years) were compared with 100 sex- and age-matched children serves as a control group. Anthropometric measurement, Serum level of calcium, phosphorus and vitamin D (25 hydroxycholecalciferol) were estimated for all patients & controls.
49% of our patients had short stature. 47% were underweight. BMI of 43 (43%) patients were low. The mean total serum calcium (6.6±1.2 mg/dl) and 25-hydroxycholecalciferol (25-OH Vit D) (10.4±4.6 mcg/dl) levels were significantly lower in our patients than in controls (10.2±1.06 mg/dl and 40.2±12.3 mcg/dl, respectively); each P< 0.001.
Children with beta thalassemia major have delayed growth and metabolic abnormalities that signify the importance of therapeutic interventions. The presence of these abnormalities may be due to iron overload and poor nutritional support.
PMCID: PMC3915427  PMID: 24505537
Thalassemia major; Calcium; Growth; Vitamin D

Results 1-25 (916081)