Search tips
Search criteria

Results 1-25 (718512)

Clipboard (0)

Related Articles

1.  Genetic diversity of Rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant 
Brazilian Journal of Microbiology  2012;43(2):682-691.
The aim of this work was to characterize rhizobia isolated from the root nodules of cowpea (Vigna unguiculata) plants cultivated in Amazon soils samples by means of ARDRA (Amplified rDNA Restriction Analysis) and sequencing analysis, to know their phylogenetic relationships. The 16S rRNA gene of rhizobia was amplified by PCR (polymerase chain reaction) using universal primers Y1 and Y3. The amplification products were analyzed by the restriction enzymes HinfI, MspI and DdeI and also sequenced with Y1, Y3 and six intermediate primers. The clustering analysis based on ARDRA profiles separated the Amazon isolates in three subgroups, which formed a group apart from the reference isolates of Bradyrhizobium japonicum and Bradyrhizobium elkanii. The clustering analysis of 16S rRNA gene sequences showed that the fast-growing isolates had similarity with Enterobacter, Rhizobium, Klebsiella and Bradyrhizobium and all the slow-growing clustered close to Bradyrhizobium.
PMCID: PMC3768832  PMID: 24031880
BNF; bacteria; 16S rRNA; ARDRA; sequencing
2.  A SNP and SSR Based Genetic Map of Asparagus Bean (Vigna. unguiculata ssp. sesquipedialis) and Comparison with the Broader Species 
PLoS ONE  2011;6(1):e15952.
Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as ‘long beans’ or ‘asparagus beans’. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level.
PMCID: PMC3017092  PMID: 21253606
3.  In Vitro Replication of Cowpea Mosaic Virus RNA III. Template Recognition by Cowpea Mosaic Virus RNA Replicase 
Journal of Virology  1979;29(1):21-33.
Cowpea mosaic virus (CPMV) RNA replicase has been purified about 200-fold from CPMV-infected Vigna unguiculata leaves. Optimal reaction conditions for replicase activity have been established that allow RNA synthesis to proceed for at least 15 h. Using a polymerase assay under conditions optimal for CPMV RNA-directed RNA synthesis, all natural RNA species tested appeared to be able to direct the incorporation of labeled ribonucleotides, whereas synthetic homoribopolymers were either inactive or only slightly active. Using a nitrocellulose membrane filter assay to measure complex formation between the replicase preparation and various RNA species, all natural RNA species tested, except that of the comovirus radish mosaic virus, appeared to be unable to compete with 32P-labeled CPMV RNA in binding to replicase. We propose that CPMV replicase is actually template specific but does not display this property in a polymerase assay, since labile complexes between heterologous templates and replicase become stabilized by the formation of phosphodiester bonds. From homoribopolymer competition binding experiments we conclude that the polyadenylic acid on the CPMV genome might be a part of the replicase binding site.
PMCID: PMC353065  PMID: 16789172
4.  Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne 
Journal of Nematology  2013;45(4):272-278.
Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disinfestation (ASD) applications. Nematode juvenile (J2) numbers in soil and roots, egg production, and host plant root galling were evaluated on arugula (Eruca sativa, cv. Nemat), cowpea (Vigna unguiculata, cv. Iron & Clay), jack bean (Canavalia ensiformis, cv. Comum), two commercial mixtures of Indian mustard and white mustard (Brassica juncea & Sinapis alba, mixtures Caliente 61 and Caliente 99), pearl millet (Pennisetum glaucum, cv. Tifleaf III), sorghum-sudangrass hybrid (Sorghum bicolor × S. bicolor var. sudanense, cv. Sugar Grazer II), and three cultivars of sunflower (Helianthus annuus, cvs. 545A, Nusun 660CL, and Nusun 5672). Tomato (Solanum lycopersicum, cv. Rutgers) was included in all trials as a susceptible host to all three nematode species. The majority of cover crops tested were less susceptible than tomato to M. arenaria, with the exception of jack bean. Sunflower cv. Nusun 5672 had fewer M. arenaria J2 isolated from roots than the other sunflower cultivars, less galling than tomato, and fewer eggs than tomato and sunflower cv. 545A. Several cover crops did not support high populations of M. incognita in roots or exhibit significant galling, although high numbers of M. incognita J2 were isolated from the soil. Arugula, cowpea, and mustard mixture Caliente 99 did not support M. incognita in soil or roots. Jack bean and all three cultivars of sunflower were highly susceptible to M. javanica, and all sunflower cultivars had high numbers of eggs isolated from roots. Sunflower, jack bean, and both mustard mixtures exhibited significant galling in response to M. javanica. Arugula, cowpea, and sorghum-sudangrass consistently had low numbers of all three Meloidogyne species associated with roots and are good selections for use in ASD for root-knot nematode control. The remainder of crops tested had significant levels of galling, J2, and eggs associated with roots, which varied among the Meloidogyne species tested.
PMCID: PMC3873904  PMID: 24379486
Anaerobic soil disinfestation; ASD; Brassica juncea & Sinapis alba; Canavalia ensiformis; cover crops; cowpea; Eruca sativa; Helianthus annuus; jack bean; management; Meloidogyne arenaria; M. incognita; M. javanica; mustard; pearl millet; Pennisetum glaucum; root-knot nematodes; sorghum-sudangrass; sunflower; Vigna unguiculata
5.  Validation of reference genes from Eucalyptus spp. under different stress conditions 
BMC Research Notes  2012;5:634.
The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Eucalyptus is a major source of cellulose for paper manufacturing, and its cultivation is limited by weather conditions, particularly water stress and low temperatures. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR) require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus.
Eucalyptus globulus Labill, Eucalyptus urograndis (hybrid from Eucalyptus urophylla S.T. Blake X Eucalyptus grandis Hill ex-Maiden) and E. uroglobulus (hybrid from E. urograndis X E. globulus) were subjected to different treatments, including water deficiency and stress recovery, low temperatures, presence or absence of light, and their respective controls. Except for treatment with light, which examined the seedling hypocotyl or apical portion of the stem, the expression analyses were conducted in the apical and basal parts of the stem. To select the best pair of genes, the bioinformatics tools GeNorm and NormFinder were compared. Comprehensive analyses that did not differentiate between species, treatments, or tissue types, showed that IDH (isocitrate dehydrogenase), SAND (SAND protein), ACT (actin), and A-Tub (α-tubulin) genes were the most stable. IDH was the most stable gene in all of the treatments.
Comparing these results with those of other studies on eucalyptus, we concluded that five genes are stable in different species and experimental conditions: IDH, SAND, ACT, A-Tub, and UBQ (ubiquitin). It is usually recommended a minimum of two reference genes is expression analysis; therefore, we propose that IDH and two others genes among the five identified genes in this study should be used as reference genes for a wide range of conditions in eucalyptus.
PMCID: PMC3542156  PMID: 23148685
Eucalyptus; Drought; Cold; Light; Reference genes
6.  Isolation and Characterization of Four Ascorbate Peroxidase cDNAs Responsive to Water Deficit in Cowpea Leaves 
Annals of Botany  2006;97(1):133-140.
• Background and Aims Abiotic stresses stimulate formation of active oxygen species in plant tissues. Among antioxidant mechanisms, H2O2 detoxication by ascorbate peroxidases (APX) plays an important role. Several APX isoforms exist in plant cells, and they have rarely been studied separately. The aim of this work was to study changes in cytosolic, peroxisomal, stromatic and thylakoid APX gene expression in response to progressive drought, rapid desiccation and application of exogenous abscisic acid in the leaves of cowpea (Vigna unguiculata) plants.
• Methods Two cowpea (V. unguiculata) cultivars, ‘EPACE-1’ which is drought-tolerant and ‘1183’which is drought-sensitive, were submitted to drought stress by withholding irrigation. Detached leaves were air-dried or treated with exogenous abscisic acid. APX cDNAs were isolated by PCR and cloned in plasmid vectors. Changes in gene expression were studied using reverse-transcription PCR.
• Key Results Four new V. unguiculata cDNAs encoding putative cytosolic, peroxisomal and chloroplastic (stromatic and thylakoidal) APX were isolated and characterized. In response to the different treatments, higher increases in steady-state transcript levels of the cytoplasmic and peroxisomal APX genes were observed in ‘1183’ compared with ‘EPACE-1’. On the other hand, the expression of the chloroplastic APX genes was stimulated earlier in the tolerant cultivar when submitted to progressive drought.
• Conclusions Water deficit induced differences in transcript accumulation of APX genes between the two cultivars that were related to their respective tolerance to drought. Chloroplastic APX genes responded early to progressive water deficit in the tolerant plant, suggesting a capacity to efficiently detoxify active oxygen species at their production site. The more sensitive ‘1183’ was also able to respond to drought by activating its whole set of APX genes.
PMCID: PMC2000772  PMID: 16311273
Active oxygen species; drought tolerance; ascorbate peroxidase; abscissic acid; gene expression; Vigna unguiculata
7.  Phylogeny and Virulence of Naturally Occurring Type III Secretion System-Deficient Pectobacterium Strains▿  
Applied and Environmental Microbiology  2009;75(13):4539-4549.
Pectobacterium species are enterobacterial plant-pathogenic bacteria that cause soft rot disease in diverse plant species. Previous epidemiological studies of Pectobacterium species have suffered from an inability to identify most isolates to the species or subspecies level. We used three previously described DNA-based methods, 16S-23S intergenic transcribed spacer PCR-restriction fragment length polymorphism analysis, multilocus sequence analysis (MLSA), and pulsed-field gel electrophoresis, to examine isolates from diseased stems and tubers and found that MLSA provided the most reliable classification of isolates. We found that strains belonging to at least two Pectobacterium clades were present in each field examined, although representatives of only three of five Pectobacterium clades were isolated. Hypersensitive response and DNA hybridization assays revealed that strains of both Pectobacterium carotovorum and Pectobacterium wasabiae lack a type III secretion system (T3SS). Two of the T3SS-deficient strains assayed lack genes adjacent to the T3SS gene cluster, suggesting that multiple deletions occurred in Pectobacterium strains in this locus, and all strains appear to have only six rRNA operons instead of the seven operons typically found in Pectobacterium strains. The virulence of most of the T3SS-deficient strains was similar to that of T3SS-encoding strains in stems and tubers.
PMCID: PMC2704834  PMID: 19411432
8.  Use of PCR and Reverse Line Blot Hybridization Macroarray Based on 16S-23S rRNA Gene Internal Transcribed Spacer Sequences for Rapid Identification of 34 Mycobacterium Species 
Journal of Clinical Microbiology  2006;44(10):3544-3550.
The aim of this study was to develop a PCR and reverse line blot hybridization (PCR-RLB) macroarray assay based on 16S-23S rRNA gene internal transcribed spacer sequences for the identification and differentiation of 34 mycobacterial species or subspecies. The performance of the PCR-RLB assay was assessed and validated by using 78 reference strains belonging to 55 Mycobacterium species, 219 clinical isolates which had been identified as mycobacteria by high-performance liquid chromatography or gas chromatography, three skin biopsy specimens from patients with suspected leprosy which had been shown to contain acid-fast bacilli, and isolates of 14 nonmycobacterial species. All mycobacteria were amplified in the PCR and hybridized with a genus-specific probe (probe MYC). The 34 species-specific probes designed in this study hybridized only with the corresponding Mycobacterium species. The mycobacterial PCR-RLB assay is an efficient tool for the identification of clinical isolates of mycobacteria; it can reliably identify mixed mycobacterial cultures and M. leprae in skin biopsy specimens.
PMCID: PMC1594812  PMID: 17021080
9.  Array-Based Identification of Species of the Genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus▿ †  
Journal of Clinical Microbiology  2006;44(12):4414-4424.
Some species of enterococci and streptococci are difficult to differentiate by phenotypic traits. The feasibility of using an oligonucleotide array for identification of 11 viridans group streptococci was previously established. The aim of this study was to expand the array to identify species of Abiotrophia (1 species), Enterococcus (18 species), Granulicatella (3 species), and Streptococcus (31 species and 6 subspecies). The method consisted of PCR amplification of the ribosomal DNA intergenic spacer (ITS) regions, followed by hybridization of the digoxigenin-labeled PCR products to a panel of oligonucleotide probes (16- to 30-mers) immobilized on a nylon membrane. Probes could be divided into three categories: species specific, group specific, and supplemental probes. All probes were designed either from the ITS regions or from the 3′ ends of the 16S rRNA genes. A collection of 312 target strains (162 reference strains and 150 clinical isolates) and 73 nontarget strains was identified by the array. Most clinical isolates were isolated from blood cultures or deep abscesses, and only those strains having excellent species identification with the Rapid ID 32 STREP system (bioMérieux Vitek, Taipei, Taiwan) were used for array testing. The test sensitivity and specificity of the array were 100% (312/312) and 98.6% (72/73), respectively. The whole procedure of array hybridization took about 8 h, starting from isolated colonies, and the hybridization patterns could be read by the naked eye. The oligonucleotide array is accurate for identification of the above microorganisms and could be used as a reliable alternative to phenotypic identification methods.
PMCID: PMC1698397  PMID: 17065265
10.  Intergenic Transcribed Spacer PCR Ribotyping for Differentiation of Saccharomyces Species and Interspecific Hybrids 
Journal of Clinical Microbiology  1998;36(4):1035-1038.
The taxonomy of the genus Saccharomyces has undergone significant changes recently with the use of genotypic rather than phenotypic methods for the identification of strains to the species level. The sequence of rRNA genes has been utilized for the identification of a variety of fungi to the species level. This methodology, applied to species of Saccharomyces, allows unknown Saccharomyces isolates to be assigned to the type strains. It was the aim of the present study to assess whether typing of the intergenic spacer region by using restriction fragment length polymorphisms of PCR products (intergenic transcribed spacer PCR [ITS-PCR] ribotyping) could distinguish among type strains of the 10 accepted species of Saccharomyces and further to assess if this method could distinguish strains that were interspecific hybrids. Cellular DNA, isolated after the lysis of protoplasts, was amplified by PCR using ITS1 and ITS4 primers, purified by liquid chromatography, and digested with restriction endonucleases. Ribotyping patterns using the restriction enzymes MaeI and HaeIII could distinguish all species of Saccharomyces from each other, as well as from Candida glabrata, Candida albicans, and Blastomyces dermatitidis. The only exception to this was the inability to distinguish between Saccharomyces bayanus and S. pastorianus (S. carlsbergensis). Furthermore, interspecific hybrids resulting from the mating of sibling species of Saccharomyces were shown to share the ITS-PCR ribotyping patterns of both parental species. It should now be possible, by this simple PCR-based technique, to accurately identify these strains to the species level, thereby allowing an increase in our understanding of the characteristics required by these interspecific hybrids for their particular ecological niches.
PMCID: PMC104684  PMID: 9542932
11.  A Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences 
The multi-copy internal transcribed spacer (ITS) region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML) and splits graph analyses to extract phylogenetic information from ~ 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteronia. Additional analyses compared sequence motifs in Acer and several hundred Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, and Sapindaceae ITS sequences in GenBank. We also assessed the effects of using smaller data sets of consensus sequences with ambiguity coding (accounting for within-species variation) instead of the full (partly redundant) original sequences. Neighbor-nets and bipartition networks were used to visualize conflict among character state patterns. Species clusters observed in the trees and networks largely agree with morphology-based classifications; of de Jong’s (1994) 16 sections, nine are supported in neighbor-net and bipartition networks, and ten by sequence motifs and the ML tree; of his 19 series, 14 are supported in networks, motifs, and the ML tree. Most nodes had higher bootstrap support with matrices of 105 or 40 consensus sequences than with the original matrix. Within-taxon ITS divergence did not differ between diploid and polyploid Acer, and there was little evidence of differentiated parental ITS haplotypes, suggesting that concerted evolution in Acer acts rapidly.
PMCID: PMC2674679  PMID: 19455198
Bipartition networks; large-scale maximum likelihood analyses; neighbor-nets; RAxML; ribosomal DNA; ITS sequence motifs
12.  Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms 
Genetic relationships among 104 accessions of Cucurbita pepo were assessed from polymorphisms in 134 SSR (microsatellite) and four SCAR loci, yielding a total of 418 alleles, distributed among all 20 linkage groups. Genetic distance values were calculated, a dendrogram constructed, and principal coordinate analyses conducted. The results showed 100 of the accessions as distributed among three clusters representing each of the recognized subspecies, pepo, texana, and fraterna. The remaining four accessions, all having very small, round, striped fruits, assumed central positions between the two cultivated subspecies, pepo and texana, suggesting that they are relicts of undescribed wild ancestors of the two domesticated subspecies. In both, subsp. texana and subsp. pepo, accessions belonging to the same cultivar-group (fruit shape) associated with one another. Within subsp. pepo, accessions grown for their seeds or that are generalists, used for both seed and fruit consumption, assumed central positions. Specialized accessions, grown exclusively for consumption of their young fruits, or their mature fruit flesh, or seed oil extraction, tended to assume outlying positions, and the different specializations radiated outward from the center in different directions. Accessions of the longest-fruited cultivar-group, Cocozelle, radiated bidirectionally, indicating independent selection events for long fruits in subsp. pepo probably driven by a common desire to consume the young fruits. Among the accessions tested, there was no evidence for crossing between subspecies after domestication.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-011-1752-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3284661  PMID: 22101929
13.  Variation of the Ribosomal Operon 16S-23S Gene Spacer Region in Representatives of Salmonella enterica Subspecies 
Journal of Bacteriology  1998;180(8):2144-2151.
The 16S-23S spacer regions of two ribosomal operons (rrnA and rrnE) have been sequenced in seven representatives of the Salmonella enterica subspecies. Isolated nucleotide substitutions were found at the same sites as in Escherichia coli but the number of polymorphic sites was much larger, as could be expected for a more heterogeneous species. Still, as in E. coli, most of the variation found was due to insertions and/or deletions affecting blocks of nucleotides generally located at equivalent regions of the putative secondary structure for both species. Isolated polymorphic sites generated phylogenetic trees generally consistent with the subspecies structure and the accepted relationships among the subspecies. However, the sequences of rrnE put subspecies I closer to E. coli K-12 than to the other S. enterica subspecies. The distribution of polymorphisms affecting blocks of nucleotides was much more random, and the presence of equivalent sequences in distantly related subspecies, and even in E. coli, could reflect relatively frequent horizontal transfer. The smallest 16S-23S spacers in other genera of the family Enterobacteriaceae were also sequenced. As expected, the level of variation was much larger. Still, the phylogenetic tree inferred is consistent with those of 16S rRNA or housekeeping genes.
PMCID: PMC107142  PMID: 9555898
14.  Influence of the Size of Indigenous Rhizobial Populations on Establishment and Symbiotic Performance of Introduced Rhizobia on Field-Grown Legumes † 
Indigenous rhizobia in soil present a competition barrier to the establishment of inoculant strains, possibly leading to inoculation failure. In this study, we used the natural diversity of rhizobial species and numbers in our fields to define, in quantitative terms, the relationship between indigenous rhizobial populations and inoculation response. Eight standardized inoculation trials were conducted at five well-characterized field sites on the island of Maui, Hawaii. Soil rhizobial populations ranged from 0 to over 3.5 × 104 g of soil-1 for the different legumes used. At each site, no less than four but as many as seven legume species were planted from among the following: soybean (Glycine max), lima bean (Phaseolus lunatus), cowpea (Vigna unguiculata), bush bean (Phaseolus vulgaris), peanut (Arachis hypogaea), Leucaena leucocephala, tinga pea (Lathyrus tingeatus), alfalfa (Medicago sativa), and clover (Trifolium repens). Each legume was (i) inoculated with an equal mixture of three effective strains of homologous rhizobia, (ii) fertilized at high rates with urea, or (iii) left uninoculated. For soybeans, a nonnodulating isoline was used in all trials as the rhizobia-negative control. Inoculation increased economic yield for 22 of the 29 (76%) legume species-site combinations. While the yield increase was greater than 100 kg ha-1 in all cases, in only 11 (38%) of the species-site combinations was the increase statistically significant (P ≤ 0.05). On average, inoculation increased yield by 62%. Soybean (G. max) responded to inoculation most frequently, while cowpea (V. unguiculata) failed to respond in all trials. Inoculation responses in the other legumes were site dependent. The response to inoculation and the competitive success of inoculant rhizobia were inversely related to numbers of indigenous rhizobia. As few as 50 rhizobia g of soil-1 eliminated inoculation response. When fewer than 10 indigenous rhizobia g of soil-1 were present, economic yield was significantly increased 85% of the time. Yield was significantly increased in only 6% of the observations when numbers of indigenous rhizobia were greater than 10 cells g of soil-1. A significant response to N application, significant increases in nodule parameters, and greater than 50% nodule occupancy by inoculant rhizobia did not necessarily coincide with significant inoculation responses. No less than a doubling of nodule mass and 66% nodule occupancy by inoculant rhizobia were required to significantly increase the yield of inoculated crops over that of uninoculated crops. However, lack of an inoculation response was common even when inoculum strains occupied the majority of nodules. In these trials, the symbiotic yield of crops was, on average, only 88% of the maximum yield potential, as defined by the fertilizer N treatment. The difference between the yield of N-fertilized crops and that of N2-fixing crops indicates a potential for improving inoculation technology, the N2 fixation capacity of rhizobial strains, and the efficiency of symbiosis. In this study, we show that the probability of enhancing yield with existing inoculation technology decreases dramatically with increasing numbers of indigenous rhizobia.
PMCID: PMC182659  PMID: 16348393
15.  Genetic Differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) Populations on Cultivated Cowpea and Wild Host Plants: Implications for Insect Resistance Management and Biological Control Strategies 
PLoS ONE  2014;9(3):e92072.
Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation −0.68%) or F-statistics (FSTLoc = −0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa.
PMCID: PMC3960178  PMID: 24647356
16.  Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes 
BMC Plant Biology  2011;11:127.
Cowpea (Vigna unguiculata) is an important crop in arid and semi-arid regions and is a good model for studying drought tolerance. MicroRNAs (miRNAs) are known to play critical roles in plant stress responses, but drought-associated miRNAs have not been identified in cowpea. In addition, it is not understood how miRNAs might contribute to different capacities of drought tolerance in different cowpea genotypes.
We generated deep sequencing small RNA reads from two cowpea genotypes (CB46, drought-sensitive, and IT93K503-1, drought-tolerant) that grew under well-watered and drought stress conditions. We mapped small RNA reads to cowpea genomic sequences and identified 157 miRNA genes that belong to 89 families. Among 44 drought-associated miRNAs, 30 were upregulated in drought condition and 14 were downregulated. Although miRNA expression was in general consistent in two genotypes, we found that nine miRNAs were predominantly or exclusively expressed in one of the two genotypes and that 11 miRNAs were drought-regulated in only one genotype, but not the other.
These results suggest that miRNAs may play important roles in drought tolerance in cowpea and may be a key factor in determining the level of drought tolerance in different cowpea genotypes.
PMCID: PMC3182138  PMID: 21923928
17.  Glutathione Reductase in Leaves of Cowpea: Cloning of Two cDNAs, Expression and Enzymatic Activity under Progressive Drought Stress, Desiccation and Abscisic Acid Treatment 
Annals of Botany  2006;98(6):1279-1287.
• Background and Aims Reactive oxygen species are frequently produced when plants are exposed to abiotic stresses. Among the detoxication systems, two enzymes, ascorbate peroxidase and glutathione reductase (GR) play key roles. GR has also a central role in keeping the reduced glutathione pool during stress thus allowing the adjustments on the cellular redox reactions. The aim of this work was to study the variations in cytosolic and dual-targeted GR gene expression in the leaves of cowpea plants submitted to progressive drought, rapid desiccation and application of exogenous abscisic acid (ABA).
• Methods Two cowpea (Vigna unguiculata) cultivars, one drought-resistant (‘EPACE-1’), the other drought-sensitive (‘1183’) were submitted to progressive drought stress by withholding irrigation. Cut-off leaves were air-dried or treated with exogenous ABA. Two GR cDNAs, one cytosolic, the other dual-targeted to chloroplasts and mitochondria were isolated by PCR and cloned in plasmid vectors. Reverse-transcription PCR was used to study the variations in GR gene expression.
• Key Results Two new cDNAs encoding a putative dual-targeted and a cytosolic GR were cloned and sequenced from leaves of V. unguiculata. Drought stress induced an up-regulation of the expression of the cytosolic GR gene directly related to the intensity of the stress in both cultivars. The expression of dual-targeted GR was up-regulated by the drought treatment in the susceptible cultivar only. Under a fast desiccation, the ‘1183’ cultivar responded later than the ‘EPACE-1’, although in ‘EPACE-1’ it was the cytosolic isoform which responded and in ‘1183’ the dual-targeted one. Exogenous ABA enhanced significantly the activity and expression levels of GR in both cultivars after treatment for 24 h.
• Conclusions These results demonstrate a noticeable activation in both cultivars of the antioxidant metabolism under a progressive water stress, which involves both GR genes in the case of the susceptible cultivar. Under a fast desiccation, the susceptible cultivar responded later than the resistant one, suggesting a weaker capacity of response versus the resistant one. Exogenous ABA probably acts on GR gene expression via a mediated signal transduction pathway.
PMCID: PMC2803587  PMID: 17008354
Reactive oxygen species; drought tolerance; glutathione reductase; abscisic acid; gene expression; Vigna unguiculata
18.  QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits 
BMC Genetics  2013;14:4.
Asparagus bean (Vigna. unguiculata. ssp sesquipedalis) is a subspecies and special vegetable type of cowpea (Vigna. unguiculata L. Walp.) important in Asia. Genetic basis of horticulturally important traits of asparagus bean is still poorly understood, hindering the utilization of targeted, DNA marker-assisted breeding in this crop. Here we report the identification of quantitative trait loci (QTLs) and epistatic interactions for four horticultural traits, namely, days to first flowering (FLD), nodes to first flower (NFF), leaf senescence (LS) and pod number per plant (PN) using a recombinant inbred line (RIL) population of asparagus bean.
A similar genetic mode of one major QTL plus a few minor QTLs was found to dominate each of the four traits, with the number of QTLs for individual traits ranging from three to four. These QTLs were distributed on 7 of the 11 chromosomes. Major QTLs for FLD, NFF and LS were co-localized on LG 11, indicative of tight linkage. Genome wide epistasis analysis detected two and one interactive locus pairs that significantly affect FLD and LS, respectively, and the epistatic QTLs for FLD appeared to work in different ways. Synteny based comparison of QTL locations revealed conservation of chromosome regions controlling these traits in related legume crops.
Major, minor, and epistatic QTLs were found to contribute to the inheritance of the FLD, NFF, LS, and PN. Positions of many of these QTLs are conserved among closely related legume species, indicating common mechanisms they share. To our best knowledge, this is the first QTL mapping report using an asparagus bean × asparagus bean intervarietal population and provides marker-trait associations for marker-assisted approaches to selection.
PMCID: PMC3616928  PMID: 23375055
Asparagus bean; Cowpea; Epistasis; Flowering time; Leaf senescence; Node to first flower; Pod number; QTL; RIL
19.  No Gold Standard Estimation of the Sensitivity and Specificity of Two Molecular Diagnostic Protocols for Trypanosoma brucei spp. in Western Kenya 
PLoS ONE  2010;5(1):e8628.
African animal trypanosomiasis is caused by a range of tsetse transmitted protozoan parasites includingTrypanosoma vivax, Trypanosoma congolense and Trypansoma brucei. In Western Kenya and other parts of East Africa two subspecies of T. brucei, T.b. brucei and the zoonoticT.b. rhodesiense, co-circulate in livestock. A range of polymerase chain reactions (PCR) have been developed as important molecular diagnostic tools for epidemiological investigations of T. brucei s.l. in the animal reservoir and of its zoonotic potential. Quantification of the relative performance of different diagnostic PCRs is essential to ensure comparability of studies. This paper describes an evaluation of two diagnostic test systems for T. brucei using a T. brucei s.l. specific PCR [1] and a single nested PCR targeting the Internal Transcribed Spacer (ITS) regions of trypanosome ribosomal DNA [2]. A Bayesian formulation of the Hui-Walter latent class model was employed to estimate their test performance in the absence of a gold standard test for detecting T.brucei s.l. infections in ear-vein blood samples from cattle, pig, sheep and goat populations in Western Kenya, stored on Whatman FTA cards. The results indicate that the system employing the T. brucei s.l. specific PCR (Se1 = 0.760) had a higher sensitivity than the ITS-PCR (Se2 = 0.640); both have high specificity (Sp1 = 0.998; Sp2 = 0.997). The true prevalences for livestock populations were estimated (pcattle = 0.091, ppigs = 0.066, pgoats = 0.005, psheep = 0.006), taking into account the uncertainties in the specificity and sensitivity of the two test systems. Implications of test performance include the required survey sample size; due to its higher sensitivity and specificity, the T. brucei s.l. specific PCR requires a consistently smaller sample size than the ITS-PCR for the detection of T. brucei s.l. However the ITS-PCR is able to simultaneously screen samples for other pathogenic trypanosomes and may thus be, overall, a better choice of test in multi-organism studies.
PMCID: PMC2798749  PMID: 20062795
20.  Genetic structure and mating system of wild cowpea populations in West Africa 
BMC Plant Biology  2012;12:113.
Cowpea is a highly inbred crop. It is part of a crop-weed complex, whose origin and dynamics is unknown, which is distributed across the African continent. This study examined outcrossing rates and genetic structures in 35 wild cowpea (Vigna unguiculata ssp. unguiculata var. spontanea) populations from West Africa, using 21 isozyme loci, 9 of them showing polymorphism.
Outcrossing rates ranged from 1% to 9.5% (mean 3.4%), which classifies the wild cowpea breeding system as primarily selfing, though rare outcrossing events were detected in each population studied. Furthermore, the analyses of both the genetic structure of populations and the relationships between the wild and domesticated groups suggest possibilities of gene flow that are corroborated by field observations.
As expected in a predominantly inbred breeding system, wild cowpea shows high levels of genetic differentiation and low levels of genetic diversity within populations. Gene flow from domesticated to wild cowpea does occur, although the lack of strong genetic swamping and modified seed morphology in the wild populations suggest that these introgressions should be rare.
PMCID: PMC3438136  PMID: 22827925
21.  Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. 
Journal of Bacteriology  1993;175(4):973-981.
Reference strains from 48 selected serovars representing eight species of Leptospira were examined by two polymerase chain reaction (PCR)-based strategies. First, mapped restriction site polymorphisms (MRSP) were examined in PCR products from portions of rrs (16S rRNA gene) and rrl (23S rRNA gene). Twenty MRSP and 2 length polymorphisms were used to group reference strains into 16 MRSP profiles. Species assignments were consistent with those obtained by a second method, genomic fingerprinting with arbitrarily primed PCR, in which strains within a species were characterized by many shared arbitrarily primed PCR products. The results of both of these methods were in general agreement with those of previous studies that used DNA-DNA relatedness and confirmed the high level of divergence among the recognized species of Leptospira. However, Leptospira meyeri serovar ranarum and evansi strains were indistinguishable from some strains of Leptospira interrogans sensu stricto. Intervening sequences of about 485 to 740 bp were located near base 1230 in rrl of some strains.
PMCID: PMC193009  PMID: 8094390
22.  Genetic diversity and population structure of Musa accessions in ex situ conservation 
BMC Plant Biology  2013;13:41.
Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa.
From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis.
The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.
PMCID: PMC3636076  PMID: 23497122
Association mapping; Banana; Evolution; Flow cytometry; Internal transcribed spacer; Microsatellite; Simple sequence repeat; Structure
23.  Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. 
Bacillus thuringiensis spacer regions between the 16S and 23S rRNAs were amplified with conserved primers, designated 19-mer and 23-mer primers. A spacer region of 144 bp was determined for all of 6 B. thuringiensis strains, 7 B. thuringiensis subspecies, and 11 B. thuringiensis field isolates, as well as for the closely related species Bacillus cereus and Bacillus anthracis. Computer analysis and alignment of nucleotide sequences identified three mutations and one deletion in the intergenic spacer region (ISR) of B. thuringiensis subsp. kurstaki HD-1 when compared with ISR sequences from other subspecies. The same differences were identified between the ISR of B. thuringiensis strains and the ISR of B. cereus and B. anthracis. These minor differences do not seem to be sufficient to allow the design of a species-specific oligonucleotide probe.
PMCID: PMC167419  PMID: 7538281
24.  Accurate and Practical Identification of 20 Fusarium Species by Seven-Locus Sequence Analysis and Reverse Line Blot Hybridization, and an In Vitro Antifungal Susceptibility Study▿† 
Journal of Clinical Microbiology  2011;49(5):1890-1898.
Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria.
PMCID: PMC3122645  PMID: 21389150
25.  The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis 
Annals of Botany  2012;109(6):1185-1200.
Background and Aims
The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna.
Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf.
Key Results
Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions.
This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna.
PMCID: PMC3336956  PMID: 22419763
Cowpea; QTL analysis; domestication; Vigna unguiculata; evolution; yardlong bean

Results 1-25 (718512)