Search tips
Search criteria

Results 1-25 (724955)

Clipboard (0)

Related Articles

1.  Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study 
With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues.
Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens.
Group C presented the lowest water contact angle (62.89±5.66 θ), highest surface energy (45±1.2 mN/m), and highest surface roughness (Ra=22.351±2.766 µm). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue.
Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.
Graphical Abstract
PMCID: PMC4485062  PMID: 26131372
Cell adhesion; Dental implants; Titanium; Wound healing
2.  Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces 
To evaluate adherence of human gingival fibroblasts (HGFs) to transmucosal abutment of dental implant with different surface conditions with time and to investigate the roles of focal adhesion linker proteins (FALPs) involved in HGFs adhesion to abutment surfaces.
Morphologies of cultured HGFs on titanium and ceramic discs with different surface were observed by scanning electron microscopy. Biocompatibility and focal adhesion were evaluated by ultrasonic wave application and cell viability assay. FALPs expression levels were assessed by RT-PCR and western blot.
There seemed to be little difference in biocompatibility and adhesion strength of HGFs depending on the surface conditions and materials. In all experimental groups, the number of cells remaining on the disc surface after ultrasonic wave application increased more than 2 times at 3 days after seeding compared to 1-day cultured cells and this continued until 7 days of culture. FALPs expression levels, especially of vinculin and paxillin, also increased in 5-day cultured cells compared to 1-day cultured fibroblasts on the disc surface.
These results might suggest that the strength of adhesion of fibroblasts to transmucosal abutment surfaces increases with time and it seemed to be related to expressions of FALPs.
PMCID: PMC3774950  PMID: 24049577
Transmucosal abutment; Focal adhesion linker proteins; Gingival fibroblast; Adhesion
3.  Effect of growth factors (BMP-4/7 & bFGF) on proliferation & osteogenic differentiation of bone marrow stromal cells 
Background & objectives:
BMP (bone morphogenetic protein)-4/7 and bFGF (basic fibroblast growth factor) significantly promote the osteogenic activity and the proliferation of rabbit BMSCs (bone marrow stromal cells), respectively. However, their synergistic effects on the proliferation and the differentiation of BMSCs remain unclear. In the present study, the effects of bFGF and BMP-4/7 were investigated on the proliferation and the differentiation of rat BMSCs in vitro.
BMSCs were isolated from New Zealand white rabbits and cultured to the third passage. The samples were divided into five groups according to the material implanted: (A) 80 ng/ml BMP-4/7; (B) 80 ng/ml bFGF; (C) 30 ng/ml BMP-4/7 and 30 ng/ml bFGF; (D) 50 ng/ml BMP-4/7 and 50 ng/ml bFGF; and (E) 80 ng/ml BMP-4/7 and 80 ng/ml bFGF. Cell proliferation was analyzed using methyl thiazolyl tetrazolium (MTT) assay. Alkaline phosphatase activity and osteocalcin (OC) dynamics were also measured.
BMP-4/7 alone significantly (P<0.05) promoted the proliferation of BMSCs. At the same time, it also promoted or inhibited the osteogenic differentiation of BMSCs. The synergistic effects of BMP-4/7 and bFGF significantly promoted both the proliferation and the osteogenic differentiation of BMSCs. The treatment of the synergistic effects was dose and time dependent.
Interpretation & conclusions:
A rational combination of BMP-4/7 and bFGF can promote the proliferation and the osteogenic differentiation of BMSCs. In addition, the synergistic functions are effective.
PMCID: PMC3767270  PMID: 24056563
Basic fibroblast growth factor; bone mesenchymal stromal cells; bone morphogenetic protein-4/7; bone tissue engineering
4.  Optimal Amount of Basic Fibroblast Growth Factor in Gelatin Sponges Incorporating β-Tricalcium Phosphate with Chondrocytes 
Tissue Engineering. Part A  2015;21(3-4):627-636.
Background: A gelatin sponge with slowly releasing basic fibroblast growth factor (b-FGF) enhances chondrogenesis. This study investigated the optimal amount of b-FGF in gelatin sponges to fabricate engineered cartilage.
Materials and Methods: b-FGF (0, 10, 100, 500, 1000, and 2000 μg/cm3)-impregnated gelatin sponges incorporating β-tricalcium phosphate (β-TCP) were produced. Chondrocytes were isolated from the auricular cartilage of C57B6J mice and expanded. The expanded auricular chondrocytes (10×106 cells/cm3) were seeded onto the gelatin sponges, which served as scaffolds. The construct assembly was implanted in the subcutaneous space of mice through a syngeneic fashion. Thereafter, constructs were retrieved at 2, 4, or 6 weeks.
Results: (1) Morphology: The size of implanted constructs was larger than the size of the scaffold with 500, 1000, and 2000 μg/cm3 b-FGF-impregnated gelatin sponges incorporating β-TCP at 4 and 6 weeks after implantation. (2) The weight of the constructs increased roughly proportional to the increase in volume of the b-FGF-impregnated scaffold at 2, 4, and 6 weeks after implantation, except in the 2000 μg/cm3 b-FGF-impregnated constructs group. (3) Histological examination: Extracellular matrix in the center of the constructs was observed in gelatin sponges impregnated with more than 100 μg/cm3 b-FGF at 4 weeks after implantation. The areas of cells with an abundant extracellular matrix were positive for cartilage-specific marker type 2 collagen in the constructs. (4) Protein assay: Glycosaminoglycan and collagen type 2 expression were significantly increased at 4 and 6 weeks on implantation of gelatin sponges impregnated with more than 100 μg/cm3 b-FGF. At 6 weeks after implantation, the ratio of type 2 collagen to type 1 collagen in constructs impregnated with 100 μg/cm3 or more b-FGF was higher than that in mice auricular cartilage.
Conclusion: Gelatin sponges impregnated with more than 100 μg/cm3 b-FGF incorporating β-TCP with chondrocytes (10×106 cells/cm3) can fabricate engineered cartilage at 4 weeks after implantation.
PMCID: PMC4334093  PMID: 25287675
5.  Therapeutic Angiogenesis Using Basic Fibroblast Growth Factor in Combination with a Collagen Matrix in Chronic Hindlimb Ischemia 
The Scientific World Journal  2012;2012:652794.
Although therapeutic angiogenesis by angiogenic cytokines is a feasible strategy to improve regional blood flow in ischemic regions, the optimal delivery mode needs to be established. Here we designed a complex of collagen matrix (CM) and basic fibroblast growth factor (bFGF) and evaluated its proangiogenic effect in ischemic hindlimbs. The bFGF-CM was prepared using lyophilization. The morphology, porosity and toxicity of CM were examined. The bFGF releasing profile and bioactivity of released bFGF were assessed. bFGF-CM was intramuscularly implanted into the rabbit ischemic hindlimb model. Oxygen saturation parameters (OSP) of ischemic hindlimbs was measured to evaluate the extremity perfusion at intervals. Histological examination was performed to evaluate the level of angiogenesis. The CM and bFGF-CM were of identical multiporous structure lacking cytotoxicity. The releasing profile lasted 10 days and the released bFGF remained bioactive. OSP in bFGF-CM group was significantly higher than that in CM, bFGF and ischemic groups at 2 and 4 weeks. The number of capillaries and mature vessels in bFGF-CM group were significantly greater than that in untreated control, CM and bFGF groups. Therefore, bFGF-CM enables the safe and effective long-term release of bFGF with improved angiogenesis in ischemic hindlimbs compared with CM devoid of bFGF.
PMCID: PMC3362026  PMID: 22666143
6.  Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization 
Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants.
PMCID: PMC4493505  PMID: 25837724
nanotube; tantala; niobia; zirconia; titania; wettability; roughness; hydroxyapatite
7.  Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts 
Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid.
PMCID: PMC3949701  PMID: 24623977
titania nanotubes; bovine serum albumin; modified surface; transmucosal area; human gingival fibroblast
8.  Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration 
Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.
PMCID: PMC4660911  PMID: 26665091
anodization; dental implants; nanopores; surface treatment; titania
9.  Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties 
Adipose tissue has the unique property of expanding throughout adult life, and angiogenesis is required for its growth. However, endothelial progenitor cells contribute minimally to neovascularization. Because myeloid cells have proven to be angiogenic, and monocytes accumulate in expanding adipose tissue, they might contribute to vascularization.
The stromal vascular fraction (SVF) cells from human adipose tissue were magnetically separated according to CD45 or CD14 expression. Adipose-derived mesenchymal stromal cells (MSCs) were obtained from SVF CD45- cells. CD14+ monocytes were isolated from peripheral blood (PB) mononuclear cells and then cultured with SVF-derived MSCs. Freshly isolated or cultured cells were characterized with flow cytometry; the conditioned media were analyzed for the angiogenic growth factors, angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF) with Luminex Technology; their angiogenic capacity was determined in an in vivo gelatinous protein mixture (Matrigel) plug angiogenesis assay.
CD45+ hematopoietic cells within the SVF contain CD14+ cells that co-express the CD34 progenitor marker and the endothelial cell antigens VEGF receptor 2 (VEGFR2/KDR), VEGFR1/Flt1, and Tie2. Co-culture experiments showed that SVF-derived MSCs promoted the acquisition of KDR and Tie-2 in PB monocytes. MSCs secreted significant amounts of Ang-2 and HGF, but minimal amounts of bFGF, G-CSF, or GM-CSF, whereas the opposite was observed for SVF CD14+ cells.
Additionally, SVF CD14+ cells secreted significantly higher levels of VEGF and bFGF than did MSCs. Culture supernatants of PB monocytes cultured with MSCs contained significantly higher concentrations of VEGF, HGF, G-CSF, and GM-CSF than did the supernatants from cultures without MSCs. Quantitative analysis of angiogenesis at 14 days after implantation demonstrated that neovascularization of the implants containing SVF CD14+ cells or PB monocytes previously co-cultured with MSCs was 3.5 or 2 times higher than that observed in the implants with SVF-derived MSCs. Moreover, immunofluorescence of Matrigel sections revealed that SVF CD14+ cells differentiated into endothelial cells and contributed to vascular endothelium.
The results from this study suggest that adipose tissue-resident monocytes should contribute to tissue vascularization. Because SVF CD14+ cells were more efficient in inducing angiogenesis than SVF-derived MSCs, and differentiated into vascular endothelial cells, they may constitute a new cell source for cell-based therapeutic angiogenesis.
PMCID: PMC4055093  PMID: 24731246
10.  The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties 
The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications.
Graphical Abstract
The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.
PMCID: PMC4366560  PMID: 25791457
11.  Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation 
The Journal of Cell Biology  1988;107(2):743-751.
Cultured bovine capillary endothelial (BCE) cells were found to synthesize and secrete high molecular mass heparan sulfate proteoglycans and glycosaminoglycans, which bound basic fibroblast growth factor (bFGF). The secreted heparan sulfate molecules were purified by DEAE cellulose chromatography, followed by Sepharose 4B chromatography and affinity chromatography on immobilized bFGF. Most of the heparinase-sensitive sulfated molecules secreted into the medium by BCE cells bound to immobilized bFGF at low salt concentrations. However, elution from bFGF with increasing salt concentrations demonstrated varying affinities for bFGF among the secreted heparan sulfate molecules, with part of the heparan sulfate requiring NaCl concentrations between 1.0 and 1.5 M for elution. Cell extracts prepared from BCE cells also contained a bFGF-binding heparan sulfate proteoglycan, which could be released from the intact cells by a short proteinase treatment. The purified bFGF-binding heparan sulfate competed with 125I-bFGF for binding to low-affinity binding sites but not to high-affinity sites on the cells. Heparan sulfate did not interfere with bFGF stimulation of plasminogen activator activity in BCE cells in agreement with its lack of effect on binding of 125I-bFGF to high-affinity sites. Soluble bFGF was readily degraded by plasmin, whereas bFGF bound to heparan sulfate was protected from proteolytic degradation. Treatment of the heparan sulfate with heparinase before addition of plasmin abolished the protection and resulted in degradation of bFGF by the added proteinase. The results suggest that heparan sulfate released either directly by cells or through proteolytic degradation of their extracellular milieu may act as carrier for bFGF and facilitate the diffusion of locally produced growth factor by competing with its binding to surrounding matrix structures. Simultaneously, the secreted heparan sulfate glycosaminoglycans protect the growth factor from proteolytic degradation by extracellular proteinases, which are abundant at sites of neovascularization or cell invasion.
PMCID: PMC2115214  PMID: 2971068
12.  Increased fibroblast functionality on CNN2-loaded titania nanotubes 
Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor) fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.
PMCID: PMC3292419  PMID: 22403489
anodization; titania nanotubes; adhesion; connective tissue growth factor; fibroblast
13.  Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican 
The Journal of Cell Biology  1996;133(2):405-416.
The formation of distinctive basic FGF-heparan sulfate complexes is essential for the binding of bFGF to its cognate receptor. In previous experiments, cell-surface heparan sulfate proteoglycans extracted from human lung fibroblasts could not be shown to promote high affinity binding of bFGF when added to heparan sulfate-deficient cells that express FGF receptor-1 (FGFR1) (Aviezer, D., D. Hecht, M. Safran, M. Eisinger, G. David, and A. Yayon. 1994. Cell 79:1005-1013). In alternative tests to establish whether cell-surface proteoglycans can support the formation of the required complexes, K562 cells were first transfected with the IIIc splice variant of FGFR1 and then transfected with constructs coding for either syndecan-1, syndecan-2, syndecan-4 or glypican, or with an antisense syndecan-4 construct. Cells cotransfected with receptor and proteoglycan showed a two- to three- fold increase in neutral salt-resistant specific 125I-bFGF binding in comparison to cells transfected with only receptor or cells cotransfected with receptor and anti-syndecan-4. Exogenous heparin enhanced the specific binding and affinity cross-linking of 125I-bFGF to FGFR1 in receptor transfectants that were not cotransfected with proteoglycan, but had no effect on this binding and decreased the yield of bFGFR cross-links in cells that were cotransfected with proteoglycan. Receptor-transfectant cells showed a decrease in glycophorin A expression when exposed to bFGF. This suppression was dose-dependent and obtained at significantly lower concentrations of bFGF in proteoglycan-cotransfected cells. Finally, complementary cell- free binding assays indicated that the affinity of 125I-bFGF for an immobilized FGFR1 ectodomain was increased threefold when the syndecan- 4 ectodomain was coimmobilized with receptor. Equimolar amounts of soluble syndecan-4 ectodomain, in contrast, had no effect on this binding. We conclude that, at least in K562 cells, syndecans and glypican can support bFGF-FGFR1 interactions and signaling, and that cell-surface association may augment their effectiveness.
PMCID: PMC2120790  PMID: 8609172
14.  Fibroblast growth factor 2-antagonist activity of a long-pentraxin 3-derived anti-angiogenic pentapeptide 
Fibroblast growth factor-2 (FGF2) plays a major role in angiogenesis. The pattern recognition receptor long-pentraxin 3 (PTX3) inhibits the angiogenic activity of FGF2. To identify novel FGF2-antagonistic peptide(s), four acetylated (Ac) synthetic peptides overlapping the FGF2-binding region PTX3-(97–110) were assessed for their FGF2-binding capacity. Among them, the shortest pentapeptide Ac-ARPCA-NH2 (PTX3-[100–104]) inhibits the interaction of FGF2 with PTX3 immobilized to a BIAcore sensorchip and suppresses FGF2-dependent proliferation in endothelial cells, without affecting the activity of unrelated mitogens. Also, Ac-ARPCA-NH2 inhibits angiogenesis triggered by FGF2 or by tumorigenic FGF2-overexpressing murine endothelial cells in chick and zebrafish embryos, respectively. Accordingly, the peptide hampers the binding of FGF2 to Chinese Hamster ovary cells overexpressing the tyrosine-kinase FGF receptor-1 (FGFR1) and to recombinant FGFR1 immobilized to a BIAcore sensorchip without affecting heparin interaction. In all the assays the mutated Ac-ARPSA-NH2 peptide was ineffective. In keeping with the observation that hydrophobic interactions dominate the interface between FGF2 and the FGF-binding domain of the Ig-like loop D2 of FGFR1, amino acid substitutions in Ac-ARPCA-NH2 and saturation transfer difference-nuclear magnetic resonance analysis of its mode of interaction with FGF2 implicate the hydrophobic methyl groups of the pentapeptide in FGF2 binding. These results will provide the basis for the design of novel PTX3-derived anti-angiogenic FGF2 antagonists.
PMCID: PMC3823002  PMID: 19627396
angiogenesis; FGF; pentraxin; BIAcore; NMR; receptors; heparan sulphate; zebrafish; chorioallantoic membrane; embryo; tumour
15.  Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca) 
PLoS ONE  2015;10(9):e0137712.
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.
PMCID: PMC4574107  PMID: 26375397
16.  Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies 
PLoS ONE  2015;10(5):e0125484.
In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2).
PMCID: PMC4422587  PMID: 25945799
17.  Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications 
Materials currently used for bladder applications often suffer from incomplete coverage by urothelial cells (cells that line the interior of the bladder and ureter) which leads to the continuous exposure of the underlying materials aggravating an immune response. In particular, a ureteral (or sometimes called an ureteric or bladder) stent is a thin tube inserted into the ureter to prevent or treat obstruction of urine flow from the kidney. The main complications with ureteral stents are infection and blockage by encrustation, which can be avoided by promoting the formation of a monolayer of urothelial cells on the surface of the stent. Nanotechnology (or the use of nanomaterials) may aid in urothelialization of bladder stents since nanomaterials have been shown to have unique surface energetics to promote the adsorption of proteins important for urothelial cell adhesion and proliferation. Since many bladder stents are composed of titanium, this study investigated the attachment and spreading of human urothelial cells on different nanotextured titanium surfaces. An inexpensive and effective scaled up anodization process was used to create equally distributed nanotubular surfaces of different diameter sizes from 20–80 nm on titanium with lengths approximately 500 nm. Results showed that compared to untreated titanium stents and 80 nm diameter nanotubular titanium, 20 nm diameter nanotubular titanium stents enhanced human urothelial cell adhesion and growth up to 3 days in culture. In this manner, this study suggests that titanium anodized to possess nanotubular surface features should be further explored for bladder stent applications.
PMCID: PMC3075895  PMID: 21499419
anodization; nanotube; urothelial cells; bladder applications; titanium
18.  Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces 
Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin) and inflammation (dexamethasone) using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF). Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.
PMCID: PMC2527662  PMID: 18686785
anodization; titanium; adhesion; simulated body fluid; nanotubes; osteoblasts
19.  Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium 
Macromolecular bioscience  2011;11(11):1515-1525.
Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the copolymerization reaction is almost ideal statistical, copolymers with varying compositions can be synthesized and immobilized onto titanium surfaces for comprehensive screening concerning antimicrobial activity and biocompatibility. Copolymer films on titanium were characterized by contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Antibacterial properties were assessed by investigation of adherence of S. mutans which represents a strain found in the human oral cavity. Biocompatibility was rated based on human gingival fibroblast adhesion, proliferation and cell morphology. Depending on polymer composition the coatings displayed a behavior ranging from biocompatibility equal to titanium but no antibacterial action to highly antimicrobial activity but poor biocompatibility. By balancing these two opposing effects by tailoring chemical composition, copolymer coatings were fabricated, which were able to inhibit the growth of S. mutans on the surface significantly but still show a sufficient attachment of gingival fibroblasts.
PMCID: PMC3784832  PMID: 21818855
antimicrobial polymer coatings; biocompatibility; copolymerization; medical implants; cell adhesion
20.  Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative (Emdogain®) 
The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces.
Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD 25 µg/mL, and (3) with EMD 100 µg/mL on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-β1 was evaluated with the real-time polymerase chain reaction (RT-PCR).
From MTT assay, HGF showed more proliferation in EMD 25 µg/mL group than control and EMD 100 µg/mL group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD 25 µg/mL group and EMD 100 µg/mL group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-β1 was increased at EMD 100 µg/mL. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD 25 µg/mL.
Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-β1 in high concentration levels.
With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.
PMCID: PMC4211057  PMID: 25352963
Enamel matrix derivative (Emdogain®); Human gingival fibroblast; Zirconia; Cell proliferation; Cell attachment
21.  In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles 
Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles.
Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites.
Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.
PMCID: PMC3935549  PMID: 24578816
Adhesive; biocompatibility; cytotoxicity; nano-particles; orthodontics; titanium dioxide
22.  Interaction of Fibroblast Growth Factor-2 (FGF-2) with Free Gangliosides: Biochemical Characterization and Biological Consequences in Endothelial Cell Cultures 
Molecular Biology of the Cell  1999;10(2):313-327.
Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid, N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.
PMCID: PMC25171  PMID: 9950679
23.  Compositional analysis on heparin/heparan sulfate interacting with FGF•FGFR complexes 
Biochemistry  2009;48(35):8379-8386.
Heparan sulfate (HS) proteoglycans (PGs) interact with a number of extracellular signaling proteins thereby playing an essential role in the regulation of many physiological processes. One major function of HS is to interact with fibroblast growth factors (FGFs) and their receptors (FGFRs) and form FGF•HS•FGFR signaling complexes. Past studies primarily examined the selectivity of HS for FGF or FGFR. In present report, we used a new strategy to study the structural specificity of HS binding to 10 different FGF•FGFR complexes. Oligosaccharide libraries prepared from heparin, 6-desufated heparin and HS were used for the interaction studies by solution competition surface plasmon resonance (SPR) and using filter trapping assays. Specific oligosaccharides binding to FGF•FGFR complexes were subjected to polyacrylamide gel electrophoresis (PAGE) analysis and disaccharide compositional analysis using liquid chromatography-mass spectrometry. The competition SPR studies using sized oligosaccharide mixtures showed that binding of each of the tested FGFs or FGF•FGFR complexes to heparin immobilized to an SPR chip were size dependent. The 6-desulfated heparin oligosaccharides showed reduced inhibition of FGF and FGF•FGFR binding to heparin in the competition experiments. Heparin and the 6-desulfated heparin showed higher inhibition to FGF•FGFR complex binding to heparin than to FGF binding to heparin. In the filter trapping experiments, PAGE analysis showed different affinities between the FGF•FGFR complexes and oligosaccharides. Disaccharide analysis showed HS disaccharides degree of polymerization (dp) 10 had high binding selectively, while heparin dp10 and 6-desulfated heparin dp10 showed reduced or no selectivity to the different FGF•FGFR complexes tested.
PMCID: PMC3348549  PMID: 19591432
24.  Cytotoxicity of Two Resin-Based Sealers and a Fluoride Varnish on Human Gingival Fibroblasts 
Iranian Endodontic Journal  2015;10(2):89-92.
Introduction: Assessment of cellular cytotoxicity is a regular method for evaluating the biocompatibility of novel materials. In a recent study, 5% fluoride varnish (Duraflur) has shown reasonable sealing ability and coverage of root canal walls when used as a sealer. The aim of the present study was to compare the cytotoxicity of Duraflur varnish with two popular commonly used root canal sealers (AH-Plus and AH-26) on human gingival fibroblasts (HGF). Methods and Materials: The HGFs were incubated with different concentrations (1/2, 1/4, and 1/8) of AH-plus, AH-26, and Duraflur varnish for 24 h. The percentage of cell viability was assessed with methyl-thiazol-tetrazolium (MTT) assay. The data was analyzed using the one-way ANOVA followed by Student-Newman-Keuls test. The level of significance was set at 0.001. Results: MTT assay showed that higher concentrations of the tested materials resulted in lower viability of HGFs. AH-Plus showed significantly greater cell viability compared to AH-26 at all dilutions (P<0.001); however, no significant difference was found between Duraflur and AH-Plus in terms of cell viability at 1/8 dilution (P>0.001). Duraflur showed significantly higher cell viability compared to AH-26 except at 1/2 dilution (P<0.001). Conclusion: Although Duraflur varnish had better biocompatibility compared to AH-26, it should still be evaluated with further biocompatibility tests such as intraosseous and subcutaneous implantation.
PMCID: PMC4372780  PMID: 25834590
Cytotoxicity; Duraflur; Human Gingival Fibroblast; Methyl-thiazol-tetrazolium Assay; MTT Assay; Root Canal Sealer; Varnish
25.  Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters 
Titania nanotubes loaded with antibiotics can deliver a high concentration of antibiotics locally at a specific site, thereby providing a promising strategy to prevent implant-associated infections. In this study we have fabricated titania nanotubes with various diameters (80, 120, 160, and 200 nm) and 200 nm length via electrochemical anodization. These nanotubes were loaded with 2 mg of gentamicin using a lyophilization method and vacuum drying. A standard strain, Staphylococcus epidermidis (American Type Culture Collection 35984), and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the anti-infective ability of the gentamicin-loaded nanotubes (NT-G). Flat titanium (FlatTi) and nanotubes with no drug loading (NT) were also investigated and compared. We found that NT-G could significantly inhibit bacterial adhesion and biofilm formation compared to FlatTi or NT, and the NT-G with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended drug release time of NT-G with larger diameters. The NT also exhibited greater antibacterial ability than the FlatTi, while nanotubes with 80 nm or 120 nm diameters had better effects. Furthermore, human marrow derived mesenchymal stem cells were used to evaluate the effect of nanotubular topographies on the osteogenic differentiation of mesenchymal stem cells. Our results showed that NT-G and NT, especially those with 80 nm diameters, significantly promoted cell attachment, proliferation, spreading, and osteogenic differentiation when compared to FlatTi, and there was no significant difference between NT-G and NT with the same diameter. Therefore, nanotube modification and gentamicin loading can significantly improve the antibacterial ability and osteogenic activity of orthopedic implants.
PMCID: PMC3952900  PMID: 24634583
titania nanotubes; gentamicin; bacteria adhesion; biofilm formation; osteogenic activity

Results 1-25 (724955)