PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1185352)

Clipboard (0)
None

Related Articles

1.  Novel Curcumin Loaded Magnetic Nanoparticles for Pancreatic Cancer Treatment 
Molecular cancer therapeutics  2013;12(8):1471-1480.
Curcumin (CUR), a naturally occurring polyphenol derived from the root of Curcuma longa, has demonstrated potent anti-cancer and cancer prevention activity in a variety of cancers. However, the clinical translation of curcumin has been significantly hampered due to its extensive degradation, suboptimal pharmacokinetics and poor bioavailability. To address these clinically relevant issues, we have developed a novel curcumin loaded magnetic nanoparticle (MNP-CUR) formulation. Herein, we have evaluated the in vitro and in vivo therapeutic efficacy of this novel MNP-CUR formulation in pancreatic cancer. Human pancreatic cancer cells (HPAF-II and Panc-1) exhibited efficient internalization of the MNP-CUR formulation in a dose dependent manner. As a result, the MNP-CUR formulation effectively inhibited growth of HPAF-II and Panc-1 cells in cell proliferation and colony formation assays. The MNP-CUR formulation suppressed pancreatic tumor growth in an HPAF-II xenograft mice model and improved mice survival by delaying tumor growth. The growth inhibitory effect of MNP-CUR formulation was correlated with the suppression of PCNA, Bcl-xL, Mcl-1, MUC1, Collagen I and enhanced membrane β-catenin expression. MNP-CUR formulation did not show any sign of hemotoxicity and was stable after incubation with human serum proteins. Additionally, the MNP-CUR formulation improved serum bioavailability of curcumin in mice up to 2.5 fold as compared to free curcumin. Biodistribution studies demonstrate that a significant amount of MNP-CUR formulation was able to reach the pancreatic xenograft tumor(s) which suggests its clinical translational potential. In conclusion, this study suggests that our novel MNP-CUR formulation can be valuable for the treatment of pancreatic cancer.
doi:10.1158/1535-7163.MCT-12-1227
PMCID: PMC3965353  PMID: 23704793
magnetic nanoparticles; curcumin; chemoprevention; pancreatic cancer; nanomedicine
2.  Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy 
Biomaterials  2010;32(7):1890-1905.
We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy.
doi:10.1016/j.biomaterials.2010.11.028
PMCID: PMC3021632  PMID: 21167595
Magnetic nanoparticles; multi-layer coating; MRI; drug delivery; hyperthermia
3.  Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles 
The FASEB Journal  2007;21(10):2510-2519.
Targeting gene therapy remains a challenge. The use of magnetic force to achieve this was investigated in the present study. It was hypothesized that nanoparticles with both controllable particle size and magnetic properties would enable magnetically driven gene delivery. We investigated this hypothesis by creating a family of novel biodegradable polymeric superparamagnetic nanoparticle (MNP) formulations. Polylactide MNP were formulated using a modified emulsification-solvent evaporation methodology with both the incorporation of oleate-coated iron oxide and a polyethylenimine (PEI) oleate ion-pair surface modification for DNA binding. MNP size could be controlled by varying the proportion of the tetrahydrofuran cosolvent. Magnetically driven MNP-mediated gene transfer was studied using a green fluorescent protein reporter plasmid in cultured arterial smooth muscle cells and endothelial cells. MNP-DNA internalization and trafficking were examined by confocal microscopy. Cell growth inhibition after MNP-mediated adiponectin plasmid transfection was studied as an example of a therapeutic end point. MNP-DNA complexes protected DNA from degradation and efficiently transfected quiescent cells under both low and high serum conditions after a 15 min exposure to a magnetic field (500 G). There was negligible transfection with MNP in the absence of a magnetic field. Larger sized MNP (375 nm diameter) exhibited higher transfection rates compared with 185 nm- and 240 nm-sized MNP. Internalized larger sized MNP escaped lysosomal localization and released DNA in the perinuclear zone. Adiponectin plasmid DNA delivery using MNP resulted in a dose-dependent growth inhibition of cultured arterial smooth muscle cells. It is concluded that magnetically driven plasmid DNA delivery can be achieved using biodegradable MNP containing oleate-coated magnetite and surface modified with PEI oleate ion-pair complexes that enable DNA binding.
doi:10.1096/fj.06-8070com
PMCID: PMC3378388  PMID: 17403937
GFP plasmid; magnetic nanoparticles; ion-pair complex; polyethylenimine; adiponectin
4.  Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles 
Antioxidant enzymes have shown promise as a therapy for pathological conditions involving increased production of reactive oxygen species (ROS). However the efficiency of their use for combating oxidative stress is dependent on the ability to achieve therapeutically adequate levels of active enzymes at the site of ROS-mediated injury. Thus, the implementation of antioxidant enzyme therapy requires a strategy enabling both guided delivery to the target site and effective protection of the protein in its active form. To address these requirements we developed magnetically responsive nanoparticles (MNP) formed by precipitation of calcium oleate in the presence of magnetite-based ferrofluid (controlled aggregation/precipitation) as a carrier for magnetically guided delivery of therapeutic proteins. We hypothesized that antioxidant enzymes, catalase and superoxide dismutase, can be protected from proteolytic inactivation by encapsulation in MNP. We also hypothesized that catalase-loaded MNP applied with a high-gradient magnetic field can rescue endothelial cells from hydrogen peroxide toxicity in culture. To test these hypotheses, a family of enzyme-loaded MNP formulations were prepared and characterized with respect to their magnetic properties, enzyme entrapment yields and protection capacity. SOD- and catalase-loaded MNP were formed with average sizes ranging from 300 to 400 nm, and a protein loading efficiency of 20–33%. MNP were strongly magnetically responsive (magnetic moment at saturation of 14.3 emu/g) in the absence of magnetic remanence, and exhibited a protracted release of their cargo protein in plasma. Catalase stably associated with MNP was protected from proteolysis and retained 20% of its initial enzymatic activity after 24 hr of exposure to pronase. Under magnetic guidance catalase-loaded MNP were rapidly taken up by cultured endothelial cells providing increased resistance to oxidative stress (62±12% cells rescued from hydrogen peroxide induced cell death vs. 10±4% under non-magnetic conditions). We conclude that non-polymeric MNP formed using the controlled aggregation/precipitation strategy are a promising carrier for targeted antioxidant enzyme therapy, and in combination with magnetic guidance can be applied to protect endothelial cells from oxidative stress mediated damage. This protective effect of magnetically targeted MNP impregnated with antioxidant enzymes can be highly relevant for the treatment of cardiovascular disease and should be further investigated in animal models.
doi:10.1016/j.jconrel.2010.05.003
PMCID: PMC2914110  PMID: 20483366
5.  Potential of magnetic nanoparticles for targeted drug delivery 
Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications.
doi:10.2147/NSA.S35506
PMCID: PMC3781723  PMID: 24198498
magnetic nanoparticles; drug delivery; biomedical applications; cancer therapy
6.  Magnetic nanoparticles for theragnostics 
Advanced drug delivery reviews  2009;61(6):467-477.
Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a pro-inflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). In vivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use.
doi:10.1016/j.addr.2009.03.007
PMCID: PMC2700776  PMID: 19389434
magnetic nanoparticles; iron oxide; nanotoxicity; oxidative stress; macrophages; ROS; surface chemistry; DMSA
7.  Magnetic core-shell nanoparticles for drug delivery by nebulization 
Background
Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.
Results
Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.
Conclusion
We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.
doi:10.1186/1477-3155-11-1
PMCID: PMC3563500  PMID: 23343139
Nanomedicine; Magnetite nanoparticles; Quercetin; Drug delivery; Nebulization
8.  Gum Arabic-Coated Magnetic Nanoparticles for Potential Application in Simultaneous Magnetic Targeting and Tumor Imaging 
The AAPS Journal  2009;11(4):693-699.
Magnetic iron oxide nanoparticles (MNP) coated with gum arabic (GA), a biocompatible phytochemical glycoprotein widely used in the food industry, were successfully synthesized and characterized. GA-coated MNP (GA-MNP) displayed a narrow hydrodynamic particle size distribution averaging about 100 nm; a GA content of 15.6% by dry weight; a saturation magnetization of 93.1 emu/g Fe; and a superparamagnetic behavior essential for most magnetic-mediated applications. The GA coating offers two major benefits: it both enhances colloidal stability and provides reactive functional groups suitable for coupling of bioactive compounds. In vitro results showed that GA-MNP possessed a superior stability upon storage in aqueous media when compared to commercial MNP products currently used in magnetic resonance imaging (MRI). In addition, significant cellular uptake of GA-MNP was evaluated in 9L glioma cells by electron spin resonance (ESR) spectroscopy, fluorescence microscopy, and MRI analyses. Based on these findings, it was hypothesized that GA-MNP might be utilized as a MRI-visible drug carrier in achieving both magnetic tumor targeting and intracellular drug delivery. Indeed, preliminary in vivo investigations validate this clinical potential. MRI visually confirmed the accumulation of GA-MNP at the tumor site following intravenous administration to rats harboring 9L glioma tumors under the application of an external magnetic field. ESR spectroscopy quantitatively revealed a 12-fold increase in GA-MNP accumulation in excised tumors when compared to contralateral normal brain. Overall, the results presented show promise that GA-MNP could potentially be employed to achieve simultaneous tumor imaging and targeted intra-tumoral drug delivery.
doi:10.1208/s12248-009-9151-y
PMCID: PMC2782085  PMID: 19842043
brain tumor; drug delivery; gum arabic; magnetic nanoparticle; magnetic targeting
9.  Magnetorelaxometry Assisting Biomedical Applications of Magnetic Nanoparticles 
Pharmaceutical Research  2011;29(5):1189-1202.
Due to their biocompatibility and small size, iron oxide magnetic nanoparticles (MNP) can be guided to virtually every biological environment. MNP are susceptible to external magnetic fields and can thus be used for transport of drugs and genes, for heat generation in magnetic hyperthermia or for contrast enhancement in magnetic resonance imaging of biological tissue. At the same time, their magnetic properties allow one to develop sensitive and specific measurement methods to non-invasively detect MNP, to quantify MNP distribution in tissue and to determine their binding state. In this article, we review the application of magnetorelaxometry (MRX) for MNP detection. The underlying physical properties of MNP responsible for the generation of the MRX signal with its characteristic parameters of relaxation amplitude and relaxation time are described. Existing single and multi-channel MRX devices are reviewed. Finally, we thoroughly describe some applications of MRX to cellular MNP quantification, MNP organ distribution and MNP-based binding assays. Providing specific MNP signals, a detection limit down to a few nanogram MNP, in-vivo capability in conscious animals and measurement times of a few seconds, MRX is a valuable tool to improve the application of MNP for diagnostic and therapeutic purposes.
doi:10.1007/s11095-011-0630-3
PMCID: PMC3332344  PMID: 22161287
magnetic binding assay; magnetic drug targeting; magnetic nanoparticles; magnetofection; nanoparticle biodistribution
10.  Size-regulated group separation of CoFe2O4 nanoparticles using centrifuge and their magnetic resonance contrast properties 
Nanoscale Research Letters  2013;8(1):376.
Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe2O4 MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T2 relaxivities (r2) at 4.7 T and room temperature in the range of 60 to 300 mM−1s−1, depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe2O4 MNPs could be used as initial base cores of MRI T2 CAs, with almost unique T2 relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis.
PACS
75.75.Fk, 78.67.Bf, 61.46.Df
doi:10.1186/1556-276X-8-376
PMCID: PMC3844441  PMID: 24004536
Magnetic nanoparticles; Magnetic resonance imaging; Relaxivity; Particle size regulation
11.  Optical Imaging and Magnetic Field Targeting of Magnetic Nanoparticles in Tumors 
ACS nano  2010;4(9):5217-5224.
To address efficacy issues of cancer diagnosis and chemotherapy, we have developed a magnetic nanoparticle (MNP) formulation with combined drug delivery and imaging properties that can potentially be used in image-guided drug therapy. Our MNP consists of an iron-oxide magnetic core coated with oleic acid (OA) and stabilized with an amphiphilic block copolymer. Previously, we reported that our MNP formulation can provide prolonged contrast for tumor magnetic resonance imaging and can be loaded with hydrophobic anticancer agents for sustained drug delivery. In this study, we developed MNPs with optical imaging properties using new near-infrared dyes to quantitatively determine their long-term biodistribution and tumor localization with and without an external magnetic field in mice with xenograft breast tumors. MNPs localized slowly in the tumor, reaching a peak 48 h post injection before slowly declining over the next 11 days. One-hour exposure of the tumor to a magnetic field further enhanced MNP localization to tumors. Our MNPs can be developed with combined drug delivery and multimodal imaging properties to improve cancer diagnosis, provide sustained treatment, and monitor therapeutic effects in tumors over time.
doi:10.1021/nn101427t
PMCID: PMC2947615  PMID: 20731413
Tumor targeting; Biodistribution; Drug delivery systems; Fluorophores; Theranostic agent
12.  Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting 
Biomaterials  2010;32(8):2183-2193.
While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models.
doi:10.1016/j.biomaterials.2010.11.040
PMCID: PMC3022959  PMID: 21176955
iron oxide nanoparticles; magnetic nanoparticles; magnetic targeting; polyethylene glycol (PEG); pharmacokinetics; reticuloendothelial system (RES); drug delivery; brain tumor; glioma
13.  Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content 
Purpose
Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations.
Materials and methods
Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity.
Results
No cytotoxicity was observed at twice the target intracellular iron concentration (~100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties.
Conclusions
This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia.
doi:10.3109/02656736.2014.913321
PMCID: PMC4327906  PMID: 24773041
Magnetic iron oxide nanoparticles; magnetic nanoparticle hyperthermia; magnetic resonance imaging; cancer
14.  Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects 
Magnetic nanoparticles (MNPs) have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs); tripolyphosphate-coated (PhMNPs); and bare magnetic nanoparticles (BaMNPs). The samples were characterized by vibrating sample magnetometer, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. The direct effects of the MNPs on cardiac contractility were evaluated in isolated perfused rat hearts. The CiMNPs, but not PhMNPs and BaMNPs, induced a transient decrease in the left ventricular end-systolic pressure. The PhMNPs and BaMNPs, but not CiMNPs, induced an increase in left ventricular end-diastolic pressure, which resulted in a decrease in a left ventricular end developed pressure. Indeed, PhMNPs and BaMNPs also caused a decrease in the maximal rate of left ventricular pressure rise (+dP/dt) and maximal rate of left ventricular pressure decline (−dP/dt). The three MNPs studied induced an increase in the perfusion pressure of isolated hearts. BaMNPs, but not PhMNPs or CiMNPs, induced a slight vasorelaxant effect in the isolated aortic rings. None of the MNPs were able to change heart rate or arterial blood pressure in conscious rats. In summary, although the MNPs were able to induce effects ex vivo, no significant changes were observed in vivo. Thus, given the proper dosages, these MNPs should be considered for possible therapeutic applications.
doi:10.2147/IJN.S64254
PMCID: PMC4099104  PMID: 25031535
cardiac function; isolated heart; magnetic fluids; magnetic nanoparticles; nanomedicine
15.  PEG-Functionalized Magnetic Nanoparticles for Drug Delivery and Magnetic Resonance Imaging Applications 
Pharmaceutical research  2010;27(11):2283-2295.
Purpose
Polyethylene glycol (PEG) functionalized magnetic nanoparticles (MNPs) were tested as a drug carrier system, magnetic resonance imaging (MRI) agent, and ability to conjugate to an antibody.
Methods
An iron oxide core coated with oleic acid (OA) and then with OA-PEG forms a water dispersible MNP formulation. Hydrophobic doxorubicin partitions into the OA layer for sustained drug delivery. The T1 and T2 MRI contrast properties were determined in vitro and the circulation of the MNPs measured in mouse carotid arteries. An N-hydroxysuccinimide group (NHS) on the OA-PEG-80 was used to conjugate the amine functional group on antibodies for active targeting in the human MCF-7 breast cancer cell line.
Results
The optimized formulation had a mean hydrodynamic diameter of 184 nm with an 8 nm iron-oxide core. The MNPs enhance the T2 MRI contrast, and have a long circulation time in vivo with 30% relative concentration 50 min post-injection. Doxorubicin-loaded MNPs showed sustained drug release and dose-dependent antiproliferative effects in vitro; the drug effect was enhanced with transferrin antibody conjugated MNPs.
Conclusion
PEG functionalized MNPs could be developed as a targeted drug delivery system and MRI contrast agent.
doi:10.1007/s11095-010-0260-1
PMCID: PMC3001231  PMID: 20845067
Iron-oxide; Anticancer drugs; Anti-proliferative effect; Reticuloendothelial system; Transferrin antibody
16.  Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential 
Nanoscale Research Letters  2014;9(1):602.
Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features.
In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels.
The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed.
Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia.
doi:10.1186/1556-276X-9-602
PMCID: PMC4230907  PMID: 25404872
Immobilization; Specific absorption rate (SAR); Intrinsic loss power (ILP); Magnetic nanoparticles (MNP); Magnetic hyperthermia
17.  Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia 
BMC Neuroscience  2012;13:32.
Background
Magnetic nanoparticles (MNPs) offer a large range of applications in life sciences. Applications in neurosciences are one focus of interest. Unfortunately, not all groups have access to nanoparticles or the possibility to develop and produce them for their applications. Hence, they have to focus on commercially available particles. Little is known about the uptake of nanoparticles in primary cells. Previously studies mostly reported cellular uptake in cell lines. Here we present a systematic study on the uptake of magnetic nanoparticles (MNPs) by primary cells of the nervous system.
Results
We assessed the internalization in different cell types with confocal and electron microscopy. The analysis confirmed the uptake of MNPs in the cells, probably with endocytotic mechanisms. Furthermore, we compared the uptake in PC12 cells, a rat pheochromocytoma cell line, which is often used as a neuronal cell model, with primary neuronal cells. It was found that the percentage of PC12 cells loaded with MNPs was significantly higher than for neurons. Uptake studies in primary mixed neuronal/glial cultures revealed predominant uptake of MNPs by microglia and an increase in their number. The number of astroglia and oligodendroglia which incorporated MNPs was lower and stable. Primary mixed Schwann cell/fibroblast cultures showed similar MNP uptake of both cell types, but the Schwann cell number decreased after MNP incubation. Organotypic co-cultures of spinal cord slices and peripheral nerve grafts resembled the results of the dispersed primary cell cultures.
Conclusions
The commercial MNPs used activated microglial phagocytosis in both disperse and organotypic culture systems. It can be assumed that in vivo application would induce immune system reactivity, too. Because of this, their usefulness for in vivo neuroscientific implementations can be questioned. Future studies will need to overcome this issue with the use of cell-specific targeting strategies. Additionally, we found that PC12 cells took up significantly more MNPs than primary neurons. This difference indicates that PC12 cells are not a suitable model for natural neuronal uptake of nanoparticles and qualify previous results in PC12 cells.
doi:10.1186/1471-2202-13-32
PMCID: PMC3326704  PMID: 22439862
Magnetic nanoparticles; Primary neuronal cells; Microglia; Organotypic spinal cord
18.  Development of a Novel Lipophilic, Magnetic Nanoparticle for in Vivo Drug Delivery 
Pharmaceutics  2013;5(2):246-260.
The aim of the present study was to evaluate the transfection potential of chitosan-coated, green-fluorescent magnetic nanoparticles (MNPs) (chi-MNPs) after encapsulation inside polyethylglycol (PEG)ylated liposomes that produced lipid-encapsulated chitosan-coated MNPs (lip-MNPs), and also to evaluate how these particles would distribute in vivo after systemic injection. The transfection potential of both chi-MNPs and lip-MNPs was evaluated in vitro in rat brain endothelial 4 (RBE4) cells with and without applying a magnetic field. Subsequently, the MNPs were evaluated in vivo in young rats. The in vitro investigations revealed that the application of a magnetic field resulted in an increased cellular uptake of the particles. The lip-MNPs were able to transfect the RBE4 cells with an incidence of approximately 20% of a commercial transfection agent. The in vivo distribution studies revealed that lip-MNPs had superior pharmacokinetic properties due to evasion of the RES, including hepatic Kuppfer cells and macrophages in the spleen. In conclusion, we were able to design a novel lipid-encapsulated MNP with the ability to carry genetic material, with favorable pharmacokinetic properties, and under the influence of a magnetic field with the capability to mediate transfection in vitro.
doi:10.3390/pharmaceutics5020246
PMCID: PMC3834948  PMID: 24300449
blood-brain barrier; endothelium; magnetofection; magnetic field; nanoparticle; transfection
19.  Magnetic Nanoparticles with Dual Functional Properties: Drug Delivery and Magnetic Resonance Imaging 
Biomaterials  2008;29(29):4012-4021.
There is significant interest in recent years in developing MNPs having multifunctional characteristics with complimentary roles. In this study, we investigated the drug delivery and magnetic resonance imaging (MRI) properties of our novel oleic acid-coated iron-oxide and pluronic-stabilized magnetic nanoparticles (MNPs). The drug incorporation efficiency of doxorubicin and paclitaxel (alone or in combination) in MNPs was 74–95%; the drug release was sustained and the incorporated drugs had marginal effects on physical (size and zeta potential) or magnetization properties of the MNPs. The drugs in combination incorporated in MNPs demonstrated highly synergistic antiproliferative activity in breast cancer cells. The T2 relaxivity (r2) was higher for our MNPs than Feridex IV, whereas the T1 relaxivity (r1) was better for Feridex IV than for our MNPs, suggesting greater sensitivity of our MNPs than Feridex IV in T2 weighted imaging. The circulation half-life (t1/2), determined from the changes in the MRI signal intensity in carotid arteries in mice, was longer for our MNPs than Feridex IV (t1/2 = 31.2 vs 6.4 min). MNPs with combined characteristics of MRI and drug delivery could be of high clinical significance in the treatment of various disease conditions.
doi:10.1016/j.biomaterials.2008.07.004
PMCID: PMC2593647  PMID: 18649936
Iron-oxide; anticancer agents; imaging; anti-proliferative effects; tumor
20.  Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications 
Because of their magnetic properties, magnetic nanoparticles (MNPs) have numerous diverse biomedical applications. In addition, because of their ability to penetrate bacteria and biofilms, nanoantimicrobial agents have become increasingly popular for the control of infectious diseases. Here, MNPs were prepared through an iron salt coprecipitation method in an alkaline medium, followed by a chitosan coating step (CS-coated MNPs); finally, the MNPs were loaded with ampicillin (amp) to form an amp-CS-MNP nanocomposite. Both the MNPs and amp-CS-MNPs were subsequently characterized and evaluated for their antibacterial activity. X-ray diffraction results showed that the MNPs and nanocomposites were composed of pure magnetite. Fourier transform infrared spectra and thermogravimetric data for the MNPs, CS-coated MNPs, and amp-CS-MNP nanocomposite were compared, which confirmed the CS coating on the MNPs and the amp-loaded nanocomposite. Magnetization curves showed that both the MNPs and the amp-CS-MNP nanocomposites were superparamagnetic, with saturation magnetizations at 80.1 and 26.6 emu g−1, respectively. Amp was loaded at 8.3%. Drug release was also studied, and the total release equilibrium for amp from the amp-CS-MNPs was 100% over 400 minutes. In addition, the antimicrobial activity of the amp-CS-MNP nanocomposite was determined using agar diffusion and growth inhibition assays against Gram-positive bacteria and Gram-negative bacteria, as well as Candida albicans. The minimum inhibitory concentration of the amp-CS-MNP nanocomposite was determined against bacteria including Mycobacterium tuberculosis. The synthesized nanocomposites exhibited antibacterial and antifungal properties, as well as antimycobacterial effects. Thus, this study introduces a novel β-lactam antibacterial-based nanocomposite that can decrease fungus activity on demand for numerous medical applications.
doi:10.2147/IJN.S61143
PMCID: PMC4134181  PMID: 25143729
iron oxide nanoparticles; chitosan; coating material; antibacterial activity; β-lactam; and nanoantibiotics
21.  Synthesis and antitumor efficacy of daunorubicin-loaded magnetic nanoparticles 
Background
A promising approach to optimize the disposition of daunorubicin-loaded magnetic nanoparticles (DNR-MNPs) was developed to minimize serious side effects of systematic chemotherapy for cancer.
Methods
The physical properties of DNR-MNPs were investigated and their effect on leukemia cells in vitro was evaluated by a standard WST-1 cell proliferation assay. Furthermore, cell apoptosis and intracellular accumulation of DNR were determined by FACSCalibur flow cytometry.
Results
Our results showed that the majority of MNPs were spherical and their sizes were from 10 to 20 nm. The average hydrodynamic diameter of DNR-MNPs in water was 94 nm. The in vitro release data showed that the DNR-MNPs have excellent sustained release property. Proliferation of K562 cells was inhibited in a dose-dependent manner by DNR in solution (DNR-Sol) or by DNR-MNPs. The IC50 for DNR-MNPs was slightly higher than that for DNR-Sol. DNR-MNPs also induced less apoptosis in K562 cells than did DNR-Sol. Detection of fluorescence intensity of intracellular DNR demonstrated that DNR-MNPs could be taken up by K562 cells and persistently released DNR in cells.
Conclusion
Our study suggests that optimized DNR-MNPs formulation possesses sustained drug-release and favorable antitumor properties, which may be used as a conventional dosage form for antitumor therapy.
doi:10.2147/IJN.S16165
PMCID: PMC3061434  PMID: 21445276
daunorubicin; magnetic iron oxide nanoparticles; drug delivery system; target selection; K562 cells
22.  Design of Curcumin loaded Cellulose Nanoparticles for Prostate Cancer 
Current drug metabolism  2012;13(1):120-128.
Prostate cancer (PC) is the most frequently diagnosed disease in men in the United States. Curcumin (CUR), a natural polyphenol, has shown potent anti-cancer efficacy in various types of cancers. However, suboptimal pharmacokinetics and poor bioavailability limit its effective use in cancer therapeutics. Several successful CUR nanoformulations have recently been reported which improve upon these features; however there is no personalized safe nanoformulation for prostate cancer. This study contributes two important scientific aspects of prostate cancer therapeutics. The first objective was to investigate the comparative cellular uptake and cytotoxicity evaluation of β-cyclodextrin (CD), hydroxyl propyl methyl cellulose (cellulose), poly(lactic-co-glycolic acid) (PLGA), magnetic nanoparticles (MNP), and dendrimer based CUR nanoformulations in prostate cancer cells. Curcumin loaded cellulose nanoparticles (cellulose-CUR) formulation exhibited the highest cellular uptake and caused maximum ultrastructural changes related to apoptosis (presence of vacuoles) in prostate cancer cells. Secondly, the anti-cancer potential of the optimized cellulose-CUR formulation was evaluated in cell culture models using cell proliferation, colony formation and apoptosis (7-AAD staining) assays. In these assays, the cellulose-CUR formulation showed improved anti-cancer efficacy compared to free curcumin. Our study shows, for the first time, the feasibility of cellulose-CUR formulation and its potential use in prostate cancer therapy.
PMCID: PMC3632315  PMID: 21892919
Drug delivery systems; nanoparticles; cellulose; cancer therapy; nanomedicine; anti-cancer drug
23.  Formulation and In Vitro Characterization of Composite Biodegradable Magnetic Nanoparticles for Magnetically Guided Cell Delivery 
Pharmaceutical Research  2012;29(5):1232-1241.
Purpose
Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells.
Methods
Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter.
Results
A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy.
Conclusions
Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP.
doi:10.1007/s11095-012-0675-y
PMCID: PMC3336034  PMID: 22274555
biodegradable nanoparticle; cell therapy; magnetic targeting; restenosis; stent angioplasty; vascular disease
24.  The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism 
Background
Iron oxide magnetic nanoparticles (MNP's) have an increasing number of biomedical applications. As such in vitro characterisation is essential to ensure the bio-safety of these particles. Little is known on the cellular interaction or effect on membrane integrity upon exposure to these MNPs. Here we synthesised Fe3O4 and surface coated with poly(ethylenimine) (PEI) and poly(ethylene glycol) (PEG) to achieve particles of varying surface positive charges and used them as model MNP's to evaluate the relative utility and limitations of cellular assays commonly applied for nanotoxicity assessment. An alternative approach, atomic force microscopy (AFM), was explored for the analysis of membrane structure and cell morphology upon interacting with the MNPs. The particles were tested in vitro on human SH-SY5Y, MCF-7 and U937 cell lines for reactive oxygen species (ROS) production and lipid peroxidation (LPO), LDH leakage and their overall cytotoxic effect. These results were compared with AFM topography imaging carried out on fixed cell lines.
Results
Successful particle synthesis and coating were characterised using FTIR, PCS, TEM and ICP. The particle size from TEM was 30 nm (−16.9 mV) which increased to 40 nm (+55.6 mV) upon coating with PEI and subsequently 50 nm (+31.2 mV) with PEG coating. Both particles showed excellent stability not only at neutral pH but also in acidic environment of pH 4.6 in the presence of sodium citrate. The higher surface charge MNP-PEI resulted in increased cytotoxic effect and ROS production on all cell lines compared with the MNP-PEI-PEG. In general the effect on the cell membrane integrity was observed only in SH-SY5Y and MCF-7 cells by MNP-PEI determined by LDH leakage and LPO production. AFM topography images showed consistently that both the highly charged MNP-PEI and the less charged MNP-PEI-PEG caused cell morphology changes possibly due to membrane disruption and cytoskeleton remodelling.
Conclusions
Our findings indicate that common in vitro cell endpoint assays do not give detailed and complete information on cellular state and it is essential to explore novel approaches and carry out more in-depth studies to elucidate cellular response mechanism to magnetic nanoparticles.
doi:10.1186/1477-3155-10-15
PMCID: PMC3384250  PMID: 22510488
Magnetic nanoparticle; Cellular interaction; Cell membrane; Cytotoxicity; Cell viability assay; Atomic force microscopy; Zeta potential
25.  Trastuzumab-Conjugated Liposome-Coated Fluorescent Magnetic Nanoparticles to Target Breast Cancer 
Korean Journal of Radiology  2014;15(4):411-422.
Objective
To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNP@m-SiO2]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNP@m-SiO2]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer.
Materials and Methods
The physiochemical characteristics of Lipo[MNP@m-SiO2] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNP@m-SiO2] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin®)-conjugated Lipo[MNP@m-SiO2] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging.
Results
We obtained uniformly-sized and evenly distributed Lipo[MNP@m-SiO2] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNP@m-SiO2] was observed by in vitro fluorescence and MR imaging.
Conclusion
Trastuzumab-conjugated Lipo[MNP@m-SiO2] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.
doi:10.3348/kjr.2014.15.4.411
PMCID: PMC4105802  PMID: 25053899
Breast cancer; Drug delivery; Iron oxide nanoparticles; Magnetic resonance imaging; Trastuzumab

Results 1-25 (1185352)