PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1108476)

Clipboard (0)
None

Related Articles

1.  Number Processing Pathways in Human Parietal Cortex 
Cerebral Cortex (New York, NY)  2009;20(1):77-88.
Numerous studies have identified the intraparietal sulcus (IPS) as an area critically involved in numerical processing. IPS neurons in macaques are tuned to a preferred numerosity, hence neurally coding numerosity in a number-selective way. Neuroimaging studies in humans have demonstrated number-selective processing in the anterior parts of the IPS. Nevertheless, the processes that convert visual input into a number-selective neural code remain unknown. Computational studies have suggested that a neural coding stage that is sensitive, but not selective to number, precedes number-selective coding when processing nonsymbolic quantities but not when processing symbolic quantities. In Experiment 1, we used functional magnetic resonance imaging to localize number-sensitive areas in the human brain by searching for areas exhibiting increasing activation with increasing number, carefully controlling for nonnumerical parameters. An area in posterior superior parietal cortex was identified as a substrate for the intermediate number-sensitive steps required for processing nonsymbolic quantities. In Experiment 2, the interpretation of Experiment 1 was confirmed with a connectivity analysis showing that a shared number-selective representation in IPS is reached through different pathways for symbolic versus nonsymbolic quantities. The preferred pathway for processing nonsymbolic quantities included the number-sensitive area in superior parietal cortex, whereas the pathway for processing symbolic quantities did not.
doi:10.1093/cercor/bhp080
PMCID: PMC2792188  PMID: 19429864
fMRI; nonsymbolic; numerical cognition; numerical processing; symbolic
2.  Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing 
Journal of cognitive neuroscience  2014;26(10):2239-2249.
Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.
doi:10.1162/jocn_a_00621
PMCID: PMC4261939  PMID: 24669789
Letter processing; number processing; ERP; hemispheric specialization
3.  Developmental changes in category-specific brain responses to numbers and letters in a working memory task 
NeuroImage  2008;44(4):1404-1414.
Neuroimaging studies have identified a common network of brain regions involving the prefrontal and parietal cortices across a variety of working memory (WM) tasks. However, previous studies have also reported category-specific dissociations of activation within this network. In this study, we investigated the development of category-specific activation in a WM task with digits, letters, and faces. Eight-year-old children and adults performed a 2-back WM task while their brain activity was measured using functional magnetic resonance imaging (fMRI). Overall, children were significantly slower and less accurate than adults on all three WM conditions (digits, letters, and faces); however, within each age group, behavioral performance across the three conditions was very similar. FMRI results revealed category-specific activation in adults but not children in the intraparietal sulcus for the digit condition. Likewise, during the letter condition, category-specific activation was observed in adults but not children in the left occipital–temporal cortex. In contrast, children and adults showed highly similar brain-activity patterns in the lateral fusiform gyri when solving the 2-back WM task with face stimuli. Our results suggest that 8-year-old children do not yet engage the typical brain regions that have been associated with abstract or semantic processing of numerical symbols and letters when these processes are task-irrelevant and the primary task is demanding. Nevertheless, brain activity in letter-responsive areas predicted children’s spelling performance underscoring the relationship between abstract processing of letters and linguistic abilities. Lastly, behavioral performance on the WM task was predictive of math and language abilities highlighting the connection between WM and other cognitive abilities in development.
doi:10.1016/j.neuroimage.2008.10.027
PMCID: PMC2659412  PMID: 19027079
4.  Intact verbal description of letters with diminished awareness of their forms 
Visual processing and its conscious awareness can be dissociated. To examine the extent of dissociation between ability to read characters or words and to be consciously aware of their forms, reading ability and conscious awareness for characters were examined using a tachistoscope in an alexic patient. A right handed woman with 14 years of education presented with incomplete right hemianopia, alexia with kanji (ideogram) agraphia, anomia, and amnesia. Brain MRI disclosed cerebral infarction limited to the left lower bank of the calcarine fissure, lingual and parahippocampal gyri, and an old infarction in the right medial frontal lobe. Tachistoscopic examination disclosed that she could read characters aloud in the right lower hemifield when she was not clearly aware of their forms and only noted their presence vaguely. Although her performance in reading kanji was better in the left than the right field, she could read kana (phonogram) characters and Arabic numerals equally well in both fields. By contrast, she claimed that she saw only a flash of light in 61% of trials and noticed vague forms of stimuli in 36% of trials. She never recognised a form of a letter in the right lower field precisely. She performed judgment tasks better in the left than right lower hemifield where she had to judge whether two kana characters were the same or different. Although dissociation between performance of visual recognition tasks and conscious awareness of the visual experience was found in patients with blindsight or residual vision, reading (verbal identification) of characters without clear awareness of their forms has not been reported in clinical cases. Diminished awareness of forms in our patient may reflect incomplete input to the extrastriate cortex.


doi:10.1136/jnnp.68.6.782
PMCID: PMC1736980  PMID: 10811708
5.  Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes 
Background
Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia.
Methods
18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations.
Results
Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group × task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left – but not right – (intra)parietal regions (becoming even positive in dyscalculic children).
Conclusion
Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia.
doi:10.1186/1744-9081-5-35
PMCID: PMC2731029  PMID: 19653919
6.  Functional Imaging of Numerical Processing in Adults and 4-y-Old Children 
PLoS Biology  2006;4(5):e125.
Adult humans, infants, pre-school children, and non-human animals appear to share a system of approximate numerical processing for non-symbolic stimuli such as arrays of dots or sequences of tones. Behavioral studies of adult humans implicate a link between these non-symbolic numerical abilities and symbolic numerical processing (e.g., similar distance effects in accuracy and reaction-time for arrays of dots and Arabic numerals). However, neuroimaging studies have remained inconclusive on the neural basis of this link. The intraparietal sulcus (IPS) is known to respond selectively to symbolic numerical stimuli such as Arabic numerals. Recent studies, however, have arrived at conflicting conclusions regarding the role of the IPS in processing non-symbolic, numerosity arrays in adulthood, and very little is known about the brain basis of numerical processing early in development. Addressing the question of whether there is an early-developing neural basis for abstract numerical processing is essential for understanding the cognitive origins of our uniquely human capacity for math and science. Using functional magnetic resonance imaging (fMRI) at 4-Tesla and an event-related fMRI adaptation paradigm, we found that adults showed a greater IPS response to visual arrays that deviated from standard stimuli in their number of elements, than to stimuli that deviated in local element shape. These results support previous claims that there is a neurophysiological link between non-symbolic and symbolic numerical processing in adulthood. In parallel, we tested 4-y-old children with the same fMRI adaptation paradigm as adults to determine whether the neural locus of non-symbolic numerical activity in adults shows continuity in function over development. We found that the IPS responded to numerical deviants similarly in 4-y-old children and adults. To our knowledge, this is the first evidence that the neural locus of adult numerical cognition takes form early in development, prior to sophisticated symbolic numerical experience. More broadly, this is also, to our knowledge, the first cognitive fMRI study to test healthy children as young as 4 y, providing new insights into the neurophysiology of human cognitive development.
This functional imaging study provides evidence for a neurobiological link between early non-symbolic numerical abilities of 4 year-old children and the more symbolic numerical processing of adults.
doi:10.1371/journal.pbio.0040125
PMCID: PMC1431577  PMID: 16594732
7.  Dissociable effects of top-down and bottom-up attention during episodic encoding 
It is well established that the formation of memories for life’s experiences—episodic memory—is influenced by how we attend to those experiences, yet the neural mechanisms by which attention shapes episodic encoding are still unclear. We investigated how top-down and bottom-up attention contribute to memory encoding of visual objects in humans by manipulating both types of attention during functional magnetic resonance imaging (fMRI) of episodic memory formation. We show that dorsal parietal cortex—specifically, intraparietal sulcus (IPS)—was engaged during top-down attention and was also recruited during the successful formation of episodic memories. By contrast, bottom-up attention engaged ventral parietal cortex—specifically, temporoparietal junction (TPJ)—and was also more active during encoding failure. Functional connectivity analyses revealed further dissociations in how top-down and bottom-up attention influenced encoding: while both IPS and TPJ influenced activity in perceptual cortices thought to represent the information being encoded (fusiform/lateral occipital cortex), they each exerted opposite effects on memory encoding. Specifically, during a preparatory period preceding stimulus presentation, a stronger drive from IPS was associated with a higher likelihood that the subsequently attended stimulus would be encoded. By contrast, during stimulus processing, stronger connectivity with TPJ was associated with a lower likelihood the stimulus would be successfully encoded. These findings suggest that during encoding of visual objects into episodic memory, top-down and bottom-up attention can have opposite influences on perceptual areas that subserve visual object representation, suggesting that one manner in which attention modulates memory is by altering the perceptual processing of to-be-encoded stimuli.
doi:10.1523/JNEUROSCI.0152-11.2011
PMCID: PMC3172893  PMID: 21880922
8.  Recollection, familiarity, and content-sensitivity in lateral parietal cortex: a high-resolution fMRI study 
Numerous studies have identified brain regions where activity is consistently correlated with the retrieval (recollection) of qualitative episodic information. This ‘core recollection network’ can be contrasted with regions where activity differs according to the contents of retrieval. The present study used high-resolution fMRI to investigate whether these putatively-distinct retrieval processes engage common versus dissociable regions. Subjects studied words with two encoding tasks and then performed a memory test in which they distinguished between recollection and different levels of recognition confidence. The fMRI data from study and test revealed several overlapping regions where activity differed according to encoding task, suggesting that content was selectively reinstated during retrieval. The majority of recollection-related regions, though, did not exhibit reinstatement effects, providing support for a core recollection network. Importantly, lateral parietal cortex demonstrated a clear dissociation, whereby recollection effects were localized to angular gyrus and confidence effects were restricted to intraparietal sulcus. Moreover, the latter region exhibited a non-monotonic pattern, consistent with a neural signal reflecting item familiarity rather than a generic form of memory strength. Together, the findings show that episodic retrieval relies on both content-sensitive and core recollective processes, and these can be differentiated from familiarity-based recognition memory.
doi:10.3389/fnhum.2013.00219
PMCID: PMC3661949  PMID: 23734122
episodic memory; recognition memory; content; fMRI; high-resolution MRI; recollection; familiarity
9.  The Temporal Dynamics of Implicit Processing of Non-Letter, Letter, and Word-Forms in the Human Visual Cortex 
The decoding of visually presented line segments into letters, and letters into words, is critical to fluent reading abilities. Here we investigate the temporal dynamics of visual orthographic processes, focusing specifically on right hemisphere contributions and interactions between the hemispheres involved in the implicit processing of visually presented words, consonants, false fonts, and symbolic strings. High-density EEG was recorded while participants detected infrequent, simple, perceptual targets (dot strings) embedded amongst a of character strings. Beginning at 130 ms, orthographic and non-orthographic stimuli were distinguished by a sequence of ERP effects over occipital recording sites. These early latency occipital effects were dominated by enhanced right-sided negative-polarity activation for non-orthographic stimuli that peaked at around 180 ms. This right-sided effect was followed by bilateral positive occipital activity for false-fonts, but not symbol strings. Moreover the size of components of this later positive occipital wave was inversely correlated with the right-sided ROcc180 wave, suggesting that subjects who had larger early right-sided activation for non-orthographic stimuli had less need for more extended bilateral (e.g., interhemispheric) processing of those stimuli shortly later. Additional early (130–150 ms) negative-polarity activity over left occipital cortex and longer-latency centrally distributed responses (>300 ms) were present, likely reflecting implicit activation of the previously reported ‘visual-word-form’ area and N400-related responses, respectively. Collectively, these results provide a close look at some relatively unexplored portions of the temporal flow of information processing in the brain related to the implicit processing of potentially linguistic information and provide valuable information about the interactions between hemispheres supporting visual orthographic processing.
doi:10.3389/neuro.09.056.2009
PMCID: PMC2796900  PMID: 20046826
word reading; ERPs; visual cortex; visual orthography
10.  Repetition of letter strings leads to activation of and connectivity with word-related regions 
Neuroimage  2011;59(3):2839-2849.
Individuals learn to read by gradually recognizing repeated letter combinations. However, it is unclear how or when neural mechanisms associated with repetition of basic stimuli (i.e., strings of letters) shift to involvement of higher-order language networks. The present study investigated this question by repeatedly presenting unfamiliar letter strings in a one-back matching task during an hour-long period. Activation patterns indicated that only brain areas associated with visual processing were activated during the early period, but additional regions that are usually associated with semantic and phonological processing in inferior frontal gyrus were recruited after stimuli became more familiar. Changes in activation were also observed in bilateral superior temporal cortex, also suggestive of a shift toward a more language-based processing strategy. Connectivity analyses reveal two distinct networks that correspond to phonological and visual processing, which may reflect the indirect and direct routes of reading. The phonological route maintained a similar degree of connectivity throughout the experiment, whereas visual areas increased connectivity with language areas as stimuli became more familiar, suggesting early recruitment of the direct route. This study provides insight about plasticity of the brain as individuals become familiar with unfamiliar combinations of letters (i.e., words in a new language, new acronyms) and has implications for engaging these linguistic networks during development of language remediation therapies.
doi:10.1016/j.neuroimage.2011.09.047
PMCID: PMC3254793  PMID: 21982931
letter strings; fMRI; connectivity; reading; learning; plasticity
11.  The Role of Finger Representations and Saccades for Number Processing: An fMRI Study in Children 
A possible functional role of finger representations for the development of early numerical cognition has been the subject of recent debate; however, until now, only behavioral studies have directly supported this view. Working from recent models of number processing, we focused on the neural networks involved in numerical tasks and their relationship to the areas underlying finger representations and saccades in children aged 6–12 years. We were able to differentiate three parietal circuits that were related to distinct aspects of number processing. Abstract magnitude processing was subserved by an association area also activated by saccades and visually guided finger movements. Addition processes led to activation in an area only engaged during saccade encoding, whereas counting processes resulted in the activation of an area only activated during visually guided finger movements, namely in the anterior intraparietal sulcus. Apart from this area, a large network of specifically finger-related brain areas including the ventral precentral sulcus, supplementary motor area, dorso-lateral prefrontal cortex, insula, thalamus, midbrain, and cerebellum was activated during (particularly non-symbolic) exact addition but not during magnitude comparison. Moreover, a finger-related activation cluster in the right ventral precentral sulcus was only present during non-symbolic addition and magnitude comparison, but not during symbolic number processing tasks. We conclude that finger counting may critically mediate the step from non-symbolic to symbolic and exact number processing via somatosensory integration processes and therefore represents an important example of embodied cognition.
doi:10.3389/fpsyg.2011.00373
PMCID: PMC3244143  PMID: 22203810
canonical numerical hand shapes; movement vocabulary; ordinal aspects of cognition
12.  Sequential Neural Processes in Abacus Mental Addition: An EEG and fMRI Case Study 
PLoS ONE  2012;7(5):e36410.
Abacus experts are able to mentally calculate multi-digit numbers rapidly. Some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor strategy during abacus mental calculation. However, no study up to now has attempted to dissociate temporally the visuospatial neural process from the visuomotor neural process during abacus mental calculation. In the present study, an abacus expert performed the mental addition tasks (8-digit and 4-digit addends presented in visual or auditory modes) swiftly and accurately. The 100% correct rates in this expert’s task performance were significantly higher than those of ordinary subjects performing 1-digit and 2-digit addition tasks. ERPs, EEG source localizations, and fMRI results taken together suggested visuospatial and visuomotor processes were sequentially arranged during the abacus mental addition with visual addends and could be dissociated from each other temporally. The visuospatial transformation of the numbers, in which the superior parietal lobule was most likely involved, might occur first (around 380 ms) after the onset of the stimuli. The visuomotor processing, in which the superior/middle frontal gyri were most likely involved, might occur later (around 440 ms). Meanwhile, fMRI results suggested that neural networks involved in the abacus mental addition with auditory stimuli were similar to those in the visual abacus mental addition. The most prominently activated brain areas in both conditions included the bilateral superior parietal lobules (BA 7) and bilateral middle frontal gyri (BA 6). These results suggest a supra-modal brain network in abacus mental addition, which may develop from normal mental calculation networks.
doi:10.1371/journal.pone.0036410
PMCID: PMC3344852  PMID: 22574155
13.  Semantic Associations between Signs and Numerical Categories in the Prefrontal Cortex 
PLoS Biology  2007;5(11):e294.
The utilization of symbols such as words and numbers as mental tools endows humans with unrivalled cognitive flexibility. In the number domain, a fundamental first step for the acquisition of numerical symbols is the semantic association of signs with cardinalities. We explored the primitives of such a semantic mapping process by recording single-cell activity in the monkey prefrontal and parietal cortices, brain structures critically involved in numerical cognition. Monkeys were trained to associate visual shapes with varying numbers of items in a matching task. After this long-term learning process, we found that the responses of many prefrontal neurons to the visual shapes reflected the associated numerical value in a behaviorally relevant way. In contrast, such association neurons were rarely found in the parietal lobe. These findings suggest a cardinal role of the prefrontal cortex in establishing semantic associations between signs and abstract categories, a cognitive precursor that may ultimately give rise to symbolic thinking in linguistic humans.
Author Summary
We use symbols, such as numbers, as mental tools for abstract and precise representations. Humans share with animals a language-independent system for representing numerical quantity, but number symbols are learned during childhood. A first step in the acquisition of number symbols constitutes an association of signs with specific numerical values of sets. To investigate the single-neuron mechanisms of semantic association, we simulated such a mapping process in rhesus monkeys by training them to associate the visual shapes of Arabic numerals with the numerosity of multiple-dot displays. We found that many individual neurons in the prefrontal cortex, but only a few in the posterior parietal cortex, responded in a tuned fashion to the same numerical values of dot sets and associated shapes. We called these neurons association neurons since they establish an associational link between shapes and numerical categories. The distribution of these association neurons across prefrontal and parietal areas resembles activation patterns in children and suggests a precursor of our symbol system in monkeys.
Single neurons in the primate cortex associate numerical meaning with visual signs, thus providing insight into precursor mechanisms of human symbol acquisition.
doi:10.1371/journal.pbio.0050294
PMCID: PMC2043050  PMID: 17973578
14.  Neural Substrates of Reliability-Weighted Visual-Tactile Multisensory Integration 
As sensory systems deteriorate in aging or disease, the brain must relearn the appropriate weights to assign each modality during multisensory integration. Using blood-oxygen level dependent functional magnetic resonance imaging of human subjects, we tested a model for the neural mechanisms of sensory weighting, termed “weighted connections.” This model holds that the connection weights between early and late areas vary depending on the reliability of the modality, independent of the level of early sensory cortex activity. When subjects detected viewed and felt touches to the hand, a network of brain areas was active, including visual areas in lateral occipital cortex, somatosensory areas in inferior parietal lobe, and multisensory areas in the intraparietal sulcus (IPS). In agreement with the weighted connection model, the connection weight measured with structural equation modeling between somatosensory cortex and IPS increased for somatosensory-reliable stimuli, and the connection weight between visual cortex and IPS increased for visual-reliable stimuli. This double dissociation of connection strengths was similar to the pattern of behavioral responses during incongruent multisensory stimulation, suggesting that weighted connections may be a neural mechanism for behavioral reliability weighting.
doi:10.3389/fnsys.2010.00025
PMCID: PMC2903191  PMID: 20631844
effective connectivity; intraparietal cortex; BOLD fMRI; structural equation modeling; weighted connections; area MT
15.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area 
PLoS Biology  2007;5(8):e208.
As any child knows, the first step in counting is summing up individual elements, yet the brain mechanisms responsible for this process remain obscure. Here we show, for the first time, that a population of neurons in the lateral intraparietal area of monkeys encodes the total number of elements within their classical receptive fields in a graded fashion, across a wide range of numerical values (2–32). Moreover, modulation of neuronal activity by visual quantity developed rapidly, within 100 ms of stimulus onset, and was independent of attention, reward expectations, or stimulus attributes such as size, density, or color. The responses of these neurons resemble the outputs of “accumulator neurons” postulated in computational models of number processing. Numerical accumulator neurons may provide inputs to neurons encoding specific cardinal values, such as “4,” that have been described in previous work. Our findings may explain the frequent association of visuospatial and numerical deficits following damage to parietal cortex in humans.
Author Summary
As any child knows, to answer the question “how many,” one must start by adding up individual objects in a group. Extending beyond humans, this cognitive ability is shared by animals as diverse as birds and monkeys. Surprisingly, the exact brain mechanisms responsible for this process remain unknown. Damage to a brain area known as the parietal cortex disrupts basic mathematical skills, and functional imaging studies show that this area is activated when people perform basic computations. To understand how parietal cortex contributes to numerical behavior, we studied the activity of neurons in this area in monkeys while they looked at arrays of dots on a computer screen. We found that parietal neurons responded progressively as the total number of elements in the display was varied across a wide range of values (2–32). These neurons resemble “accumulator neurons” that have been suggested to serve as the first stage in counting. This information could be used by other neurons that respond best for a particular cardinal number, such as “4,” as has been reported in prior studies. Our findings support computer models that separate the processes of summing and numerical identification, and may also explain the fact that parietal cortex damage causes both numerical and spatial confusion.
Neurons in the lateral intraparietal area (LIP) in monkeys respond in a graded fashion to the number of items in a visual array during a delayed saccade task, suggesting that the neurons "sum up" individual elements to represent accumulated magnitude.
doi:10.1371/journal.pbio.0050208
PMCID: PMC1925133  PMID: 17676978
16.  Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic mapping study 
Neuropsychologia  2011;49(9):2592-2608.
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically-defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division vs. multiplication and subtraction vs. addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distributed representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings.
doi:10.1016/j.neuropsychologia.2011.04.035
PMCID: PMC3165023  PMID: 21616086
Arithmetic; Posterior Parietal Cortex; Cytoarchitectonics; Intraparietal Sulcus; Angular Gyrus; Superior Parietal Lobule; Addition; Subtraction; Multiplication; Division; Retrieval; Calculation
17.  Neuronal Correlates of the Set-Size Effect in Monkey Lateral Intraparietal Area 
PLoS Biology  2008;6(7):e158.
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size). Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches.
Author Summary
It is well known that the brain is limited in the amount of sensory information that it can process at any given time. During an everyday task such as finding an object in a cluttered environment (known as visual search), observers take longer to find a target as the number of distractors increases. This well-known phenomenon implies that inputs from distractors interfere with the brain's ability to perceive the target at some stage or stages of neural processing. However, the loci and mechanisms of this interference are unknown. Visual information is processed in feature-selective areas that encode the physical properties of stimuli and in higher-order areas that convey information about behavioral significance and help direct attention to individual stimuli. Here we studied a higher-order parietal area related to attention and eye movements. We found that parietal neurons selectively track the location of a search target during a difficult visual search task. However, neuronal firing rates decreased as distractors were added to the display, and the decrease in the target-related response correlated with the set-size-related increase in reaction time. This suggests that distractors trigger competitive visuo-visual interactions that limit the brain's ability to find and focus on a task-relevant target.
Single-neuron activity in the lateral intraparietal area declines with the number of distractors and provides the first known neural correlate of the set-size effect in visual search.
doi:10.1371/journal.pbio.0060158
PMCID: PMC2443194  PMID: 18656991
18.  rTMS over the intraparietal sulcus disrupts numerosity processing 
It has been widely argued that the intraparietal sulcus (IPS) is involved in tasks that evoke representations of numerical magnitude, among other cognitive functions. However, the causal role of this parietal region in processing symbolic and non-symbolic numerosity has not been established. The current study used repetitive Transcranial Magnetic Stimulation (rTMS) to the left and right IPS to investigate the effects of temporary deactivations of these regions on the capacity to represent symbolic (Arabic numbers) and non-symbolic (arrays of dots) numerosities. We found that comparisons of both symbolic and non-symbolic numerosities were impaired after rTMS to the left IPS but enhanced by rTMS to the right IPS. A signature effect of numerical distance was also found: greater impairment (or lesser facilitation) when comparing numerosities of similar magnitude. The reverse pattern of impairment and enhancement was found in a control task that required judging an analogue stimulus property (ellipse orientation) but no numerosity judgements. No rTMS effects for the numerosity tasks were found when stimulating an area adjacent but distinct from the IPS, the left and right angular gyrus. These data suggest that left IPS is critical for processing symbolic and non-symbolic numerosity; this processing may thus depend on common neural mechanisms, which are distinct from mechanisms supporting the processing of analogue stimulus properties.
doi:10.1007/s00221-006-0820-0
PMCID: PMC2567820  PMID: 17216413
Numerical cognition; rTMS; Parietal lobe; Numerosity; Distance effect
19.  Dissociating dynamic probability and predictability in observed actions—an fMRI study 
The present fMRI study investigated whether human observers spontaneously exploit the statistical structure underlying continuous action sequences. In particular, we tested whether two different statistical properties can be distinguished with regard to their neural correlates: an action step's predictability and its probability. To assess these properties we used measures from information theory. Predictability of action steps was operationalized by its inverse, conditional entropy, which combines the number of possible action steps with their respective probabilities. Probability of action steps was assessed using conditional surprisal, which increases with decreasing probability. Participants were trained in an action observation paradigm with video clips showing sequences of 9–33 s length with varying numbers of action steps that were statistically structured according to a Markov chain. Behavioral tests revealed that participants implicitly learned this statistical structure, showing that humans are sensitive toward these probabilistic regularities. Surprisal (lower probability) enhanced the BOLD signal in the anterior intraparietal sulcus. In contrast, high conditional entropy, i.e., low predictability, was correlated with higher activity in dorsomedial prefrontal cortex, orbitofrontal gyrus, and posterior intraparietal sulcus. Furthermore, we found a correlation between the anterior hippocampus' response to conditional entropy with the extent of learning, such that the more participants had learnt the structure, the greater the magnitude of hippocampus activation in response to conditional entropy. Findings show that two aspects of predictions can be dissociated: an action's predictability is reflected in a top-down modulation of attentional focus, evident in increased fronto-parietal activation. In contrast, an action's probability depends on the identity of the stimulus itself, resulting in bottom-up driven processing costs in the parietal cortex.
doi:10.3389/fnhum.2014.00273
PMCID: PMC4019881  PMID: 24847235
statistical learning; action observation; orbitofrontal cortex; dmPFC; fMRI; information theory
20.  Representation of numerosity in posterior parietal cortex 
Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2 + 4?) or number bisection (what is between 3 and 5?) tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and non-verbal magnitude comparison tasks show activity in areas within the intraparietal sulcus (IPS). Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition.
doi:10.3389/fnint.2012.00025
PMCID: PMC3364489  PMID: 22666194
posterior parietal cortex; number; human; animal cognition; electrophysiology; psychophysics
21.  Multi-Representation of Symbolic and Nonsymbolic Numerical Magnitude in Chinese Number Processing 
PLoS ONE  2011;6(4):e19373.
Numerical information can be conveyed by either symbolic or nonsymbolic representation. Some symbolic numerals can also be identified as nonsymbolic quantities defined by the number of lines (e.g., I, II, III in Roman and , , in Japanese Kanji and Chinese). Here we report that such multi-representation of magnitude can facilitate the processing of these numerals under certain circumstances. In a magnitude comparison task judging 1 to 9 (except 5) Chinese and Arabic numerals presented at the foveal (at the center) or parafoveal (3° left or right of the center) location, multi-representational small-value Chinese numerals showed a processing advantage over single-representational Arabic numerals and large-value Chinese numerals only in the parafoveal condition, demonstrated by lower error rates and faster reaction times. Further event-related potential (ERP) analysis showed that such a processing advantage was not reflected by traditional ERP components identified in previous studies of number processing, such as N1 or P2p. Instead, the difference was found much later in a N400 component between 300–550 msec over parietal regions, suggesting that those behavioral differences may not be due to early processing of visual identification, but later processing of subitizing or accessing mental number line when lacking attentional resources. These results suggest that there could be three stages of number processing represented separately by the N1, P2p and N400 ERP components. In addition, numerical information can be represented simultaneously by both symbolic and nonsymbolic systems, which will facilitate number processing in certain situations.
doi:10.1371/journal.pone.0019373
PMCID: PMC3082580  PMID: 21541303
22.  Anatomical segregation of visual selection mechanisms in human parietal cortex 
Visual selection requires mechanisms for representing object salience and for shifting the focus of processing to novel objects. It is not clear from computational or neural models whether these operations are carried out within same or different brain regions. Here, we use repetitive trans-cranial magnetic stimulation (rTMS) to briefly interfere with neural activity in individually localized regions of human posterior parietal cortex (PPC) that are putatively involved in attending to contralateral locations or shifting attention between locations. Stimulation over right ventral intraparietal sulcus (vIPS) impaired target discrimination at contralateral locations, whereas stimulation over right medial superior parietal lobule (mSPL) impaired target discrimination following a shift of attention irrespective of its location. This double dissociation is consistent with neuroimaging studies and indicates that mechanisms of visual selection are partly anatomically segregated in human PPC.
doi:10.1523/JNEUROSCI.4983-12.2013
PMCID: PMC3646236  PMID: 23554503
23.  Manipulating letter fluency for words alters electrophysiological correlates of recognition memory 
NeuroImage  2013;83:849-861.
The mechanisms that give rise to familiarity memory have received intense research interest. One current topic of debate concerns the extent to which familiarity is driven by the same fluency sources that give rise to certain implicit memory phenomena. Familiarity may be tied to conceptual fluency, given that familiarity and conceptual implicit memory can exhibit similar neurocognitive properties. However, familiarity can also be driven by perceptual factors, and its neural basis under these circumstances has received less attention. Here we recorded brain potentials during recognition testing using a procedure that has previously been shown to encourage a reliance on letter information when assessing familiarity for words. Studied and unstudied words were derived either from two separate letter pools or a single letter pool (“letter-segregated” and “normal” conditions, respectively) in a within-subjects contrast. As predicted, recognition accuracy was higher in the letter-segregated relative to the normal condition. Electrophysiological analyses revealed parietal old-new effects from 500–700 ms in both conditions. In addition, a topographically dissociable occipital old-new effect from 300–700 ms was present in the letter-segregated condition only. In a second experiment, we found that similar occipital brain potentials were associated with confident false recognition of words that shared letters with studied words but were not themselves studied. These findings indicate that familiarity is a multiply determined phenomenon, and that the stimulus dimensions on which familiarity is based can moderate its neural correlates. Conceptual and perceptual contributions to familiarity vary across testing circumstances, and both must be accounted for in theories of recognition memory and its neural basis.
doi:10.1016/j.neuroimage.2013.07.039
PMCID: PMC4032787  PMID: 23871869
Implicit memory; explicit memory; familiarity; fluency; ERP
24.  Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task 
The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP) and of the frontal eye field (FEF) in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT) necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF. In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: (1) different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; (2) LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioral strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future experiments.
doi:10.3389/fnint.2012.00039
PMCID: PMC3386550  PMID: 22754512
LIP; FEF; visual search; inactivation; manual reaction times; LATER model; distribution
25.  THE ROLE OF THE RIGHT AND LEFT PARIETAL LOBES IN THE CONCEPTUAL PROCESSING OF NUMBERS 
Journal of cognitive neuroscience  2010;22(2):331-346.
Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including the intraparietal sulcus, IPS). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention and response-selection processes. To dissociate parietal activation that is number-selective from parietal activation related to other stimulus or response-selection processes, we used fMRI to compare numbers and object names during exactly the same conceptual and perceptual tasks while factoring out activations correlating with response times. We found that right parietal activation was higher for conceptual decisions on numbers relative to the same tasks on object names, even when response time effects were fully factored out. In contrast, left parietal activation for numbers was equally involved in conceptual processing of object names. We suggest that left parietal activation for numbers reflects a range of processes, including the retrieval of learnt facts that are also involved in conceptual decisions on object names. In contrast, number-selectivity in the right parietal cortex reflects processes that are more involved in conceptual decisions on numbers than object names. Our results generate a new set of hypotheses that have implications for the design of future behavioral and functional imaging studies of patients with left and right parietal damage.
doi:10.1162/jocn.2009.21246
PMCID: PMC2808313  PMID: 19400672
numerical processing; response times; quantity; parietal lobe; conceptual processing

Results 1-25 (1108476)