Search tips
Search criteria

Results 1-25 (614708)

Clipboard (0)

Related Articles

1.  Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses 
BMC Genomics  2014;15(1):1009.
High temperature affects organism growth and metabolic activity. Heat shock transcription factors (Hsfs) are key regulators in heat shock response in eukaryotes and prokaryotes. Under high temperature conditions, Hsfs activate heat shock proteins (Hsps) by combining with heat stress elements (HSEs) in their promoters, leading to defense of heat stress. Since the first plant Hsf gene was identified in tomato, several plant Hsf family genes have been thoroughly characterized. Although soybean (Glycine max), an important oilseed crops, genome sequences have been available, the Hsf family genes in soybean have not been characterized accurately.
We analyzed the Hsf genetic structures and protein function domains using the GSDS, Pfam, SMART, PredictNLS, and NetNES online tools. The genome scanning of dicots (soybean and Arabidopsis) and monocots (rice and maize) revealed that the whole-genome replication occurred twice in soybean evolution. The plant Hsfs were classified into 3 classes and 16 subclasses according to protein structure domains. The A8 and B3 subclasses existed only in dicots and the A9 and C2 occurred only in monocots. Thirty eight soybean Hsfs were systematically identified and grouped into 3 classes and 12 subclasses, and located on 15 soybean chromosomes. The promoter regions of the soybean Hsfs contained cis-elements that likely participate in drought, low temperature, and ABA stress responses. There were large differences among Hsfs based on transcriptional levels under the stress conditions. The transcriptional levels of the A1 and A2 subclass genes were extraordinarily high. In addition, differences in the expression levels occurred for each gene in the different organs and at the different developmental stages. Several genes were chosen to determine their subcellular localizations and functions. The subcellular localization results revealed that GmHsf-04, GmHsf-33, and GmHsf-34 were located in the nucleus. Overexpression of the GmHsf-34 gene improved the tolerances to drought and heat stresses in Arabidopsis plants.
This present investigation of the quantity, structural features, expression characteristics, subcellular localizations, and functional roles provides a scientific basis for further research on soybean Hsf functions.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1009) contains supplementary material, which is available to authorized users.
PMCID: PMC4253008  PMID: 25416131
Hsfs; Genome-wide identification; Expression pattern; Subcellular localization; Functional identification; Soybean
2.  Ectopic Overexpression of SlHsfA3, a Heat Stress Transcription Factor from Tomato, Confers Increased Thermotolerance and Salt Hypersensitivity in Germination in Transgenic Arabidopsis 
PLoS ONE  2013;8(1):e54880.
Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions.
PMCID: PMC3551807  PMID: 23349984
3.  The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes 
Journal of Experimental Botany  2013;65(2):539-557.
Heat shock factors (Hsfs) play a central regulatory role in acquired thermotolerance. To understand the role of the major molecular players in wheat adaptation to heat stress, the Hsf family was investigated in Triticum aestivum. Bioinformatic and phylogenetic analyses identified 56 TaHsf members, which are classified into A, B, and C classes. Many TaHsfs were constitutively expressed. Subclass A6 members were predominantly expressed in the endosperm under non-stress conditions. Upon heat stress, the transcript levels of A2 and A6 members became the dominant Hsfs, suggesting an important regulatory role during heat stress. Many TaHsfA members as well as B1, C1, and C2 members were also up-regulated during drought and salt stresses. The heat-induced expression profiles of many heat shock protein (Hsp) genes were paralleled by those of A2 and A6 members. Transactivation analysis revealed that in addition to TaHsfA members (A2b and A4e), overexpression of TaHsfC2a activated expression of TaHsp promoter-driven reporter genes under non-stress conditions, while TaHsfB1b and TaHsfC1b did not. Functional heat shock elements (HSEs) interacting with TaHsfA2b were identified in four TaHsp promoters. Promoter mutagenesis analysis demonstrated that an atypical HSE (GAACATTTTGGAA) in the TaHsp17 promoter is functional for heat-inducible expression and transactivation by Hsf proteins. The transactivation of Hsp promoter-driven reporter genes by TaHsfC2a also relied on the presence of HSE. An activation motif in the C-terminal domain of TaHsfC2a was identified by amino residue substitution analysis. These data demonstrate the role of HsfA and HsfC2 in regulation of Hsp genes in wheat.
PMCID: PMC3904712  PMID: 24323502
Gene expression; gene regulation; heat shock factors; heat shock proteins; heat stress; transcription factors; wheat.
4.  Unraveling Regulation of the Small Heat Shock Proteins by the Heat Shock Factor HvHsfB2c in Barley: Its Implications in Drought Stress Response and Seed Development 
PLoS ONE  2014;9(3):e89125.
The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly conserved.
PMCID: PMC3942355  PMID: 24594978
5.  Genome-wide identification, classification and analysis of heat shock transcription factor family in maize 
BMC Genomics  2011;12:76.
Heat shock response in eukaryotes is transcriptionally regulated by conserved heat shock transcription factors (Hsfs). Hsf genes are represented by a large multigene family in plants and investigation of the Hsf gene family will serve to elucidate the mechanisms by which plants respond to stress. In recent years, reports of genome-wide structural and evolutionary analysis of the entire Hsf gene family have been generated in two model plant systems, Arabidopsis and rice. Maize, an important cereal crop, has represented a model plant for genetics and evolutionary research. Although some Hsf genes have been characterized in maize, analysis of the entire Hsf gene family were not completed following Maize (B73) Genome Sequencing Project.
A genome-wide analysis was carried out in the present study to identify all Hsfs maize genes. Due to the availability of complete maize genome sequences, 25 nonredundant Hsf genes, named ZmHsfs were identified. Chromosomal location, protein domain and motif organization of ZmHsfs were analyzed in maize genome. The phylogenetic relationships, gene duplications and expression profiles of ZmHsf genes were also presented in this study. Twenty-five ZmHsfs were classified into three major classes (class A, B, and C) according to their structural characteristics and phylogenetic comparisons, and class A was further subdivided into 10 subclasses. Moreover, phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice) were distributed in all three classes, it also revealed diverse Hsf gene family expression patterns in classes and subclasses. Chromosomal/segmental duplications played a key role in Hsf gene family expansion in maize by investigation of gene duplication events. Furthermore, the transcripts of 25 ZmHsf genes were detected in the leaves by heat shock using quantitative real-time PCR. The result demonstrated that ZmHsf genes exhibit different expression levels in heat stress treatment.
Overall, data obtained from our investigation contributes to a better understanding of the complexity of the maize Hsf gene family and provides the first step towards directing future experimentation designed to perform systematic analysis of the functions of the Hsf gene family.
PMCID: PMC3039612  PMID: 21272351
6.  Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways 
BMC Genomics  2007;8:125.
The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and below-ground plant tissues.
All stress treatments interact with Hsf and Hsp response pathways to varying extents, suggesting considerable cross-talk between heat and non-heat stress regulatory networks. In general, Hsf and Hsp expression was strongly induced by heat, cold, salt, and osmotic stress, while other types of stress exhibited family or tissue-specific response patterns. With respect to the Hsp20 protein family, for instance, large expression responses occurred under all types of stress, with striking similarity among expression response profiles. Several genes belonging to the Hsp20, Hsp70 and Hsp100 families were specifically upregulated twelve hours after wounding in root tissue, and exhibited a parallel expression response pattern during recovery from heat stress. Among all Hsf and Hsp families, large expression responses occurred under ultraviolet-B light stress in aerial tissue (shoots) but not subterranean tissue (roots).
Our findings show that Hsf and Hsp family member genes represent an interaction point between multiple stress response pathways, and therefore warrant functional analysis under conditions apart from heat shock treatment. In addition, our analysis revealed several family and tissue-specific heat shock gene expression patterns that have not been previously described. These results have implications regarding the molecular basis of cross-tolerance in plant species, and raise new questions to be pursued in future experimental studies of the Arabidopsis heat shock response network.
PMCID: PMC1887538  PMID: 17519032
7.  Identification and expression analysis of OsHsfs in rice*  
Heat stress transcription factors (Hsfs) are the central regulators of defense response to heat stress. We identified a total of 25 rice Hsf genes by genome-wide analysis of rice (Oryza sativa L.) genome, including the subspecies of O. japonica and O. indica. Proteins encoded by OsHsfs were divided into three classes according to their structures. Digital Northern analysis showed that OsHsfs were expressed constitutively. The expressions of these OsHsfs in response to heat stress and oxidative stress differed among the members of the gene family. Promoter analysis identified a number of stress-related cis-elements in the promoter regions of these OsHsfs. No significant correlation, however, was found between the heat-shock responses of genes and their cis-elements. Overall, our results provide a foundation for future research of OsHsfs function.
PMCID: PMC2666206  PMID: 19353748
Heat shock; Transcription factors; Rice; Protein structure; Expression analysis
8.  A Seed Preferential Heat Shock Transcription Factor from Wheat Provides Abiotic Stress Tolerance and Yield Enhancement in Transgenic Arabidopsis under Heat Stress Environment 
PLoS ONE  2013;8(11):e79577.
Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF) gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.
PMCID: PMC3827158  PMID: 24265778
9.  Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice 
BMB Reports  2013;46(1):31-36.
Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings. [BMB Reports 2013; 46(1): 31-36]
PMCID: PMC4133825  PMID: 23351381
Drought tolerance; OsHsfA7; Rice; Root morphology; Salt tolerance
10.  Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum) 
BMC Genomics  2014;15(1):961.
Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n = 4x = (AD)2 = 52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n = 2x = (D5)2 = 26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable.
EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development.
Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-961) contains supplementary material, which is available to authorized users.
PMCID: PMC4233062  PMID: 25378022
Heat shock transcriptional factors; Gossypium hirsutum; Heat stress; qRT-PCR; Fiber development
11.  A Novel Mouse HSF3 Has the Potential to Activate Nonclassical Heat-Shock Genes during Heat Shock 
Molecular Biology of the Cell  2010;21(1):106-116.
HSF1 is a master regulator of the heat-shock response in mammalian cells, whereas in avian cells, HSF3, which was considered as an avian-specific factor, is required for the expression of classical heat-shock genes. Here, the authors identify mouse HSF3, and demonstrate that it has the potential to activate only nonclassical heat-shock genes.
The heat-shock response is characterized by the expression of a set of classical heat-shock genes, and is regulated by heat-shock transcription factor 1 (HSF1) in mammals. However, comprehensive analyses of gene expression have revealed very large numbers of inducible genes in cells exposed to heat shock. It is believed that HSF1 is required for the heat-inducible expression of these genes although HSF2 and HSF4 modulate some of the gene expression. Here, we identified a novel mouse HSF3 (mHSF3) translocated into the nucleus during heat shock. However, mHSF3 did not activate classical heat-shock genes such as Hsp70. Remarkably, overexpression of mHSF3 restored the expression of nonclassical heat-shock genes such as PDZK3 and PROM2 in HSF1-null mouse embryonic fibroblasts (MEFs). Although down-regulation of mHSF3 expression had no effect on gene expression or cell survival in wild-type MEF cells, it abolished the moderate expression of PDZK3 mRNA and reduced cell survival in HSF1-null MEF cells during heat shock. We propose that mHSF3 represents a unique HSF that has the potential to activate only nonclassical heat-shock genes to protect cells from detrimental stresses.
PMCID: PMC2801703  PMID: 19864465
12.  Heterotrimerization of Heat-Shock Factors 1 and 2 Provides a Transcriptional Switch in Response to Distinct Stimuli 
Molecular Biology of the Cell  2009;20(5):1340-1347.
Organisms respond to circumstances threatening the cellular protein homeostasis by activation of heat-shock transcription factors (HSFs), which play important roles in stress resistance, development, and longevity. Of the four HSFs in vertebrates (HSF1-4), HSF1 is activated by stress, whereas HSF2 lacks intrinsic stress responsiveness. The mechanism by which HSF2 is recruited to stress-inducible promoters and how HSF2 is activated is not known. However, changes in the HSF2 expression occur, coinciding with the functions of HSF2 in development. Here, we demonstrate that HSF1 and HSF2 form heterotrimers when bound to satellite III DNA in nuclear stress bodies, subnuclear structures in which HSF1 induces transcription. By depleting HSF2, we show that HSF1-HSF2 heterotrimerization is a mechanism regulating transcription. Upon stress, HSF2 DNA binding is HSF1 dependent. Intriguingly, when the elevated expression of HSF2 during development is mimicked, HSF2 binds to DNA and becomes transcriptionally competent. HSF2 activation leads to activation of also HSF1, revealing a functional interdependency that is mediated through the conserved trimerization domains of these factors. We propose that heterotrimerization of HSF1 and HSF2 integrates transcriptional activation in response to distinct stress and developmental stimuli.
PMCID: PMC2649261  PMID: 19129477
13.  Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. 
Molecular and Cellular Biology  1994;14(11):7592-7603.
Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.
PMCID: PMC359295  PMID: 7935474
14.  Promoter specificity and interactions between early and late Arabidopsis heat shock factors 
Plant Molecular Biology  2010;73(4-5):559-567.
The class A heat shock factors HsfA1a and HsfA1b are highly conserved, interacting regulators, responsible for the immediate-early transcription of a subset of heat shock genes in Arabidopsis. In order to determine functional cooperation between them, we used a reporter assay based on transient over-expression in Arabidopsis protoplasts. Reporter plasmids containing promoters of Hsf target genes fused with the GFP coding region were co-transformed with Hsf effector plasmids. The GFP reporter gene activity was quantified using flow cytometry. Three of the tested target gene promoters (Hsp25.3, Hsp18.1-CI, Hsp26.5) resulted in a strong reporter gene activity, with HsfA1a or HsfA1b alone, and significantly enhanced GFP fluorescence when both effectors were co-transformed. A second set of heat shock promoters (HsfA2, Hsp17.6CII, Hsp17.6C-CI) was activated to much lower levels. These data suggest that HsfA1a/1b cooperate synergistically at a number of target gene promoters. These targets are also regulated via the late HsfA2, which is the most strongly heat-induced class A-Hsf in Arabidopsis. HsfA2 has also the capacity to interact with HsfA1a and HsfA1b as determined by bimolecular fluorescence complementation (BiFC) in Arabidopsis protoplasts and yeast-two-hybrid assay. However, there was no synergistic effect on Hsp18.1-CI promoter-GFP reporter gene expression when HsfA2 was co-expressed with either HsfA1a or HsfA1b. These data provide evidence that interaction between early and late HSF is possible, but only interaction between the early Hsfs results in a synergistic enhancement of expression of certain target genes. The interaction of HsfA1a/A1b with the major-late HsfA2 may possibly support recruitment of HsfA2 and replacement of HsfA1a/A1b at the same target gene promoters.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-010-9643-2) contains supplementary material, which is available to authorized users.
PMCID: PMC2882041  PMID: 20458611
Heat shock transcription factor; Oligomerization domain; BiFC; Flow cytometry; Yeast-two-hybrid interaction; Protoplast transformation
15.  C. elegans HSF-1 is an essential nuclear protein that forms stress granule-like structures following heat shock 
Aging cell  2012;12(1):112-120.
The heat shock transcription factor (HSF) is a conserved regulator of heat shock-inducible gene expression. Organismal roles for HSF in physiological processes such as development, aging, and immunity have been defined largely through studies of the single C. elegans HSF homolog, hsf-1. However, the molecular and cell biological properties of hsf-1 in C. elegans are incompletely understood. We generated animals expressing physiological levels of an HSF-1::GFP fusion protein and examined its function, localization, and regulation in vivo. HSF-1::GFP was functional as measured by its ability to rescue phenotypes associated with two hsf-1 mutant alleles. Rescue of hsf-1 stress, aging, and development phenotypes was abolished in a DNA-binding-deficient mutant, demonstrating that the transcriptional targets of hsf-1 are critical to its function even in the absence of stress. Under non-stress conditions, HSF-1::GFP was found primarily in the nucleus. Following heat shock, HSF-1::GFP rapidly and reversibly redistributed into dynamic, sub-nuclear structures that share many properties with human nuclear stress granules, including colocalization with markers of active transcription. Rapid formation of HSF-1 stress granules required HSF-1 DNA binding activity and the threshold for stress granule formation was altered by growth temperature. HSF-1 stress granule formation was not induced by inhibition of IGF signaling, a pathway previously suggested to function upstream of hsf-1. Our findings suggest that development, stress, and aging pathways may regulate HSF-1 function in distinct ways, and that HSF-1 nuclear stress granule formation is an evolutionarily conserved aspect of HSF-1 regulation in vivo.
PMCID: PMC3552056  PMID: 23107491
Heat shock factor; aging; longevity
16.  Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis 
PLoS Genetics  2012;8(5):e1002669.
Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.
Author Summary
As a consequence of global warming, increasing temperature is a serious threat to crop production worldwide and may influence the objectives of breeding programs. As a universal cellular response to a shift up in temperature, the heat stress response represents the first line of inducible defense against imbalances in cellular homeostasis in the prokaryotic and eukaryotic kingdoms. Given that components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants, the chloroplasts were proposed as sensors to a shift up in temperature. However, the mechanism by which chloroplasts regulate the expression of nuclear heat stress–responsive gene expression according to the functional state of chloroplasts under heat stress remains unknown. In this study, we have identified chloroplast ribosomal protein S1 (RPS1) as a heat-responsive protein through proteomic screening of heat-responsive proteins. We have established a previously unrecognized molecular connection between the downregulation of RPS1 expression in chloroplast and the activation of HsfA2-dependent heat-responsive genes in nucleus, which is required for heat tolerance in higher plants. Our data provide new insights into the mechanisms whereby plant cells modulate nuclear gene expression to keep accordance with the current status of chloroplasts in response to heat stress.
PMCID: PMC3342936  PMID: 22570631
17.  The Balance of Nuclear Import and Export Determines the Intracellular Distribution and Function of Tomato Heat Stress Transcription Factor HsfA2 
Molecular and Cellular Biology  2001;21(5):1759-1768.
Tomato heat stress transcription factor HsfA2 is a shuttling protein with dominant cytoplasmic localization as a result of a nuclear import combined with an efficient export. Besides the nuclear localization signal (NLS) adjacent to the oligomerization domain, a C-terminal leucine-rich motif functions as a nuclear export signal (NES). Mutant forms of HsfA2 with a defective or an absent NES are nuclear proteins. The same is true for the wild-type HsfA2 if coexpressed with HsfA1 or in the presence of export inhibitor leptomycin B (LMB). Fusion of the NES domain of HsfA2 to HsfB1, which is a nuclear protein, caused export of the HsfB1-A2NES hybrid protein, and this effect was reversed by the addition of LMB. Due to the lack of background problems, Chinese hamster ovary (CHO) cells represent an excellent system for expression and functional analysis of tomato Hsfs. The results faithfully reflect the situation found in plant cells (tobacco protoplasts). The intriguing role of NLS and NES accessibility for the intracellular distribution of HsfA2 is underlined by the results of heat stress treatments of CHO cells (41°C). Despite the fact that nuclear import and export are not markedly affected, HsfA2 remains completely cytoplasmic at 41°C even in the presence of LMB. The temperature-dependent conformational transition of HsfA2 with shielding of the NLS evidently needs intramolecular interaction between the internal HR-A/B and the C-terminal HR-C regions. It is not observed with the HR oligomerization domain (HR-A/B region) deletion form of HsfA2 or in HsfA2-HsfA1 hetero-oligomers.
PMCID: PMC86729  PMID: 11238913
18.  Proteomic analysis of SRA01/04 transfected with wild-type and mutant HSF4b identified from a Chinese congenital cataract family 
Molecular Vision  2012;18:694-704.
Congenital cataracts account for about 10% of cases of childhood blindness. Heat shock transcription factor 4 (HSF4) is related with human autosomal dominant lamellar and Marner cataracts; a T→C transition at nucleotide 348 was found in a large Chinese cataract family. The aim of this study was to analyze the unique role of HSF4b and the mutation of HSF4b.
The isobaric tags for relative and absolute quantification (iTRAQ), coupled with the two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique, was used to identify and quantify differential proteomes in human lens epithelial cell lines SRA 01/04 expressing wild-type and mutant HSF4b.
A total of 104 unique proteins were identified from the human lens epithelial cell lines SRA 01/04. Apart from the proteins due to the effect of the pcDNA3.1 vector, the wild-type and mutant HSF4b led to 23 differentially expressed proteins, of which four were histone proteins and three were ribosomal proteins. The T→C transition at nucleotide 348 in HSF4b led to 18 differentially expressed proteins in SRA 01/04, among which serpin H1 precursor, heat shock protein beta-1, and stress-70 protein belong to heat shock protein families. The up- or down-regulated proteins were functionally analyzed using Ingenuity Pathways Analysis (IPA) to interpret the interaction network and predominant canonical pathways involved in these differentially expressed proteins.
A multitude of differentially expressed proteins was found to be associated with HSF4b and a T→C transition at nucleotide 348 in HSF4b. The proteins interacted directly or indirectly with each other, and they may provide clues as to how HSF4b modulates protein expression in the lens epithelial cells of SRA 01/04. Although further investigation is required, the results may provide some new clues to the transcriptional mechanism of HSF4b and cataract formation.
PMCID: PMC3324350  PMID: 22509099
19.  Unraveling Complex Interplay between Heat Shock Factor 1 and 2 Splicing Isoforms 
PLoS ONE  2013;8(2):e56085.
Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs). The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contribute to additional complexity in HSF transcriptional regulation, but remain poorly examined in the literature. In this work, we studied the transcriptional activity of HSF1 and HSF2 splicing isoforms transfected into immortalized Mouse Embryonic Fibroblasts (iMEFs) deleted for both Hsf1 and Hsf2, under normal conditions and after proteasome inhibition. We found that HSF1α is significantly more active than the β isoform after exposure to the proteasome inhibitor MG132. Furthermore, we clearly established that, while HSF2 had no transcriptional activity by itself, short β isoform of HSF2 exerts a negative role on HSF1β-dependent transactivation. To further assess the impact of HSF2β inhibition on HSF1 activity, we developed a mathematical modelling approach which revealed that the balance between each HSF isoform in the cell regulated the strength of the transcriptional response. Moreover, we found that cellular stress such as proteasome inhibition could regulate the splicing of Hsf2 mRNA. All together, our results suggest that relative amounts of each HSF1 and HSF2 isoforms quantitatively determine the cellular level of the proteotoxic stress response.
PMCID: PMC3572029  PMID: 23418516
20.  The Tomato Hsf System: HsfA2 Needs Interaction with HsfA1 for Efficient Nuclear Import and May Be Localized in Cytoplasmic Heat Stress Granules 
Molecular and Cellular Biology  1998;18(4):2240-2251.
In heat-stressed (HS) tomato (Lycopersicon peruvianum) cell cultures, the constitutively expressed HS transcription factor HsfA1 is complemented by two HS-inducible forms, HsfA2 and HsfB1. Because of its stability, HsfA2 accumulates to fairly high levels in the course of a prolonged HS and recovery regimen. Using immunofluorescence and cell fractionation experiments, we identified three states of HsfA2: (i) a soluble, cytoplasmic form in preinduced cultures maintained at 25°C, (ii) a salt-resistant, nuclear form found in HS cells, and (iii) a stored form of HsfA2 in cytoplasmic HS granules. The efficient nuclear transport of HsfA2 evidently requires interaction with HsfA1. When expressed in tobacco protoplasts by use of a transient-expression system, HsfA2 is mainly retained in the cytoplasm unless it is coexpressed with HsfA1. The essential parts for the interaction and nuclear cotransport of the two Hsfs are the homologous oligomerization domain (HR-A/B region of the A-type Hsfs) and functional nuclear localization signal motifs of both partners. Direct physical interaction of the two Hsfs with formation of relatively stabile hetero-oligomers was shown by a two-hybrid test in Saccharomyces cerevisiae as well as by coimmunoprecipitation using tomato and tobacco whole-cell lysates.
PMCID: PMC121470  PMID: 9528795
21.  Novel Isoforms of Heat Shock Transcription Factor 1, HSF1γα and HSF1γβ, Regulate Chaperone Protein Gene Transcription* 
The Journal of Biological Chemistry  2014;289(29):19894-19906.
Background: HSF1 is the major eukaryotic transcription factor that regulates expression of HSP genes.
Results: We identify two novel HSF1 isoforms and show that HSF1 isoforms differentially regulate chaperone gene transcription.
Conclusion: HSF1 isoforms work synergistically, and the ratio of HSF1 isoforms determines chaperone gene transcription levels.
Significance: Our findings unravel an additional layer of chaperone gene regulation through modulation of HSP expression by HSF1 isoform ratios.
The heat shock response, resulting in the production of heat shock proteins or molecular chaperones, is triggered by elevated temperature and a variety of other stressors. Its master regulator is heat shock transcription factor 1 (HSF1). Heat shock factors generally exist in multiple isoforms. The two known isoforms of HSF1 differ in the inclusion (HSF1α) or exclusion (HSF1β) of exon 11. Although there are some data concerning the differential expression patterns and transcriptional activities of HSF2 isoforms during development, little is known about the distinct properties of the HSF1 isoforms. Here we present evidence for two novel HSF1 isoforms termed HSF1γα and HSF1γβ, and we show that the HSF1 isoform ratio differentially regulates heat shock protein gene transcription. Hsf1γ isoforms are expressed in various mouse tissues and are translated into protein. Furthermore, after heat shock, HSF1γ isoforms are exported from the nucleus more rapidly or degraded more quickly than HSF1α or HSF1β. We also show that each individual HSF1 isoform is sufficient to induce the heat shock response and that expression of combinations of HSF1 isoforms, in particular HSF1α and HSF1β, results in a synergistic enhancement of the transcriptional response. In addition, HSF1γ isoforms potentially suppress the synergistic effect of HSF1α and HSF1β co-expression. Collectively, our observations suggest that the expression of HSF1 isoforms in a specific ratio provides an additional layer in the regulation of heat shock protein gene transcription.
PMCID: PMC4106310  PMID: 24855652
Alternative Splicing; Heat Shock Protein (HSP); Molecular Chaperone; Stress Response; Transcription Regulation; HSF1; Heat shock Transcription Factor; Heat Shock Response
22.  Adaptive evolution and divergent expression of heat stress transcription factors in grasses 
Heat stress transcription factors (Hsfs) regulate gene expression in response to heat and many other environmental stresses in plants. Understanding the adaptive evolution of Hsf genes in the grass family will provide potentially useful information for the genetic improvement of modern crops to handle increasing global temperatures.
In this work, we performed a genome-wide survey of Hsf genes in 5 grass species, including rice, maize, sorghum, Setaria, and Brachypodium, by describing their phylogenetic relationships, adaptive evolution, and expression patterns under abiotic stresses. The Hsf genes in grasses were divided into 24 orthologous gene clusters (OGCs) based on phylogeneitc relationship and synteny, suggesting that 24 Hsf genes were present in the ancestral grass genome. However, 9 duplication and 4 gene-loss events were identified in the tested genomes. A maximum-likelihood analysis revealed the effects of positive selection in the evolution of 11 OGCs and suggested that OGCs with duplicated or lost genes were more readily influenced by positive selection than other OGCs. Further investigation revealed that positive selection acted on only one of the duplicated genes in 8 of 9 paralogous pairs, suggesting that neofunctionalization contributed to the evolution of these duplicated pairs. We also investigated the expression patterns of rice and maize Hsf genes under heat, salt, drought, and cold stresses. The results revealed divergent expression patterns between the duplicated genes.
This study demonstrates that neofunctionalization by changes in expression pattern and function following gene duplication has been an important factor in the maintenance and divergence of grass Hsf genes.
PMCID: PMC4094458  PMID: 24974883
Expression divergence; Grass family; Heat stress transcription factors; Orthologous gene clusters; Positive selection
23.  The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. 
Molecular and Cellular Biology  1995;15(10):5268-5278.
Avian cells express three heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and homologs of mouse and human HSF1 and HSF2. Analysis of the biochemical and cell biological properties of these HSFs reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both. HSF3 is constitutively expressed in the erythroblast cell line HD6, the lymphoblast cell line MSB, and embryo fibroblasts, and yet its DNA-binding activity is induced only upon exposure of HD6 cells to heat shock. Acquisition of HSF3 DNA-binding activity in HD6 cells is accompanied by oligomerization from a non-DNA-binding dimer to a DNA-binding trimer, whereas the effect of heat shock on HSF1 is oligomerization of an inert monomer to a DNA-binding trimer. Induction of HSF3 DNA-binding activity is delayed compared with that of HSF1. As occurs for HSF1, heat shock leads to the translocation of HSF3 to the nucleus. HSF exhibits the properties of a transcriptional activator, as judged from the stimulatory activity of transiently overexpressed HSF3 measured by using a heat shock element-containing reporter construct and as independently assayed by the activity of a chimeric GAL4-HSF3 protein on a GAL4 reporter construct. These results reveal that HSF3 is negatively regulated in avian cells and acquires DNA-binding activity in certain cells upon heat shock.
PMCID: PMC230774  PMID: 7565675
24.  Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings 
Journal of Experimental Botany  2008;59(8):2125-2132.
In plants, salicylic acid (SA) is a signalling molecule regulating disease resistance responses such as systemic acquired resistance (SAR) and the hypersensitive response (HR), and has been implicated in both basal and acquired thermotolerance. It has been shown that SA enhances heat-induced Hsp/Hsc70 accumulation in plants. To investigate the mechanism of how SA influences the heat shock response (HSR) in plants, tomato seedlings were treated with SA alone, heat shock, or a combination of both before analyses of hsp70 mRNA, heat shock factor (Hsf)–DNA binding, and gene expression of hsp70, hsfA1, hsfA2, and hsfB1. SA alone led to activation of Hsf–DNA binding, but not induction or transcription of hsp70 mRNA. SA had no significant effect on hsfA2 and hsfB1 gene expression, but potentiated the basal levels of hsfA1. In heat-shocked plants, Hsf–DNA binding was established, and increased hsfA1, hsfA2, and hsfB1 expression was followed by accumulation of Hsp70. SA plus heat shock showed enhanced Hsf–DNA binding, enhanced induction of hsp70 mRNA transcription, and gene expression of hsfA1, hsfA2, and hsfB1, resulting in potentiated levels of Hsp/Hsc70. Since increased hsp70 and hsf gene expression coincide with increased levels of Hsp70 accumulation, it is concluded that SA-mediated potentiation of Hsp70 is due to modulation of these Hsfs by SA. In our efforts to understand the role of Hsp70 in heat-related disease susceptibility, the degree of the complexity of the cross-talk between the pathways in which SA is involved, inter alia, the plant defence response, the HSR and thermotolerance, was further underscored.
PMCID: PMC2413278  PMID: 18468986
Heat shock; heat shock factors; HsfA1; HsfA2; HsfB1; Hsf–DNA binding; Hsp70; salicylic acid; tomato
25.  Chromatin Landscape Dictates HSF Binding to Target DNA Elements 
PLoS Genetics  2010;6(9):e1001114.
Sequence-specific transcription factors (TFs) are critical for specifying patterns and levels of gene expression, but target DNA elements are not sufficient to specify TF binding in vivo. In eukaryotes, the binding of a TF is in competition with a constellation of other proteins, including histones, which package DNA into nucleosomes. We used the ChIP-seq assay to examine the genome-wide distribution of Drosophila Heat Shock Factor (HSF), a TF whose binding activity is mediated by heat shock-induced trimerization. HSF binds to 464 sites after heat shock, the vast majority of which contain HSF Sequence-binding Elements (HSEs). HSF-bound sequence motifs represent only a small fraction of the total HSEs present in the genome. ModENCODE ChIP-chip datasets, generated during non-heat shock conditions, were used to show that inducibly bound HSE motifs are associated with histone acetylation, H3K4 trimethylation, RNA Polymerase II, and coactivators, compared to HSE motifs that remain HSF-free. Furthermore, directly changing the chromatin landscape, from an inactive to an active state, permits inducible HSF binding. There is a strong correlation of bound HSEs to active chromatin marks present prior to induced HSF binding, indicating that an HSE's residence in “active” chromatin is a primary determinant of whether HSF can bind following heat shock.
Author Summary
Many Transcription Factors (TFs) have been shown to bind DNA in a sequence-specific manner. However, only a sub-set of possible binding sites are occupied in vivo, and it remains unclear how TFs discriminate between sequences of equal predicted binding affinity. We set out to determine how a specific TF, Heat Shock Factor (HSF), distinguishes between utilized and unused potential binding sites. HSF is uniquely qualified to study this problem, because HSF is inactive and lowly bound to DNA in unstressed cells and upon stress HSF becomes active and strongly binds to DNA. We compared the properties of the unstressed chromatin between the sites that become HSF-bound or remain HSF-free following stress activation. We find that sites that are destined to be bound strongly by HSF after stress are associated with distinct chromatin marks compared to sites that are unoccupied by HSF after heat shock. Furthermore, chromatin landscape can be changed from a restrictive to a permissive state, allowing inducible HSF binding. These finding suggest that TF binding sites can be predicted based on the chromatin signatures present prior to induced TF recruitment.
PMCID: PMC2936546  PMID: 20844575

Results 1-25 (614708)