PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1202823)

Clipboard (0)
None

Related Articles

1.  An Alphavirus-Based Adjuvant Enhances Serum and Mucosal Antibodies, T Cells, and Protective Immunity to Influenza Virus in Neonatal Mice 
Journal of Virology  2014;88(16):9182-9196.
ABSTRACT
Neonatal immune responses to infection and vaccination are biased toward TH2 at the cost of proinflammatory TH1 responses needed to combat intracellular pathogens. However, upon appropriate stimulation, the neonatal immune system can induce adult-like TH1 responses. Here we report that a new class of vaccine adjuvant is especially well suited to enhance early life immunity. The GVI3000 adjuvant is a safe, nonpropagating, truncated derivative of Venezuelan equine encephalitis virus that targets dendritic cells (DCs) in the draining lymph node (DLN) and produces intracellular viral RNA without propagating to other cells. RNA synthesis strongly activates the innate immune response so that in adult animals, codelivery of soluble protein antigens induces robust humoral, cellular, and mucosal responses. The adjuvant properties of GVI3000 were tested in a neonatal BALB/c mouse model using inactivated influenza virus (iFlu). After a single immunization, mice immunized with iFlu with the GVI3000 adjuvant (GVI3000-adjuvanted iFlu) had significantly higher and sustained influenza virus-specific IgG antibodies, mainly IgG2a (TH1), compared to the mice immunized with antigen only. GVI3000 significantly increased antigen-specific CD4+ and CD8+ T cells, primed mucosal immune responses, and enhanced protection from lethal challenge. As seen in adult mice, the GVI3000 adjuvant increased the DC population in the DLNs, caused activation and maturation of DCs, and induced proinflammatory cytokines and chemokines in the DLNs soon after immunization, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and interleukin 6 (IL-6). In summary, the GVI3000 adjuvant induced an adult-like adjuvant effect with an influenza vaccine and has the potential to improve the immunogenicity and protective efficacy of new and existing neonatal vaccines.
IMPORTANCE The suboptimal immune responses in early life constitute a significant challenge for vaccine design. Here we report that a new class of adjuvant is safe and effective for early life immunization and demonstrate its ability to significantly improve the protective efficacy of an inactivated influenza virus vaccine in a neonatal mouse model. The GVI3000 adjuvant delivers a truncated, self-replicating viral RNA into dendritic cells in the draining lymph node. Intracellular RNA replication activates a strong innate immune response that significantly enhances adaptive antibody and cellular immune responses to codelivered antigens. A significant increase in protection results from a single immunization. Importantly, this adjuvant also primed a mucosal IgA response, which is likely to be critical for protection during many early life infections.
doi:10.1128/JVI.00327-14
PMCID: PMC4136293  PMID: 24899195
2.  Polymorphisms in the CCR5 genes of African green monkeys and mice implicate specific amino acids in infections by simian and human immunodeficiency viruses. 
Journal of Virology  1997;71(11):8642-8656.
CCR5, a receptor for the CC chemokines RANTES, Mip1alpha, and Mip1beta, has been identified as a coreceptor for infections by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). To study its structure and function, we isolated cDNA clones of human, African green monkey (AGM), and NIH/Swiss mouse CCR5s, and we quantitatively analyzed infections by macrophage-tropic HIV-1 and SIVmac251 after transfecting human HeLa-CD4 cells with the CCR5 expression vectors. The AGM and NIH/Swiss mouse CCR5 proteins are 97.7 to 98.3% and 79.8% identical to the human protein, respectively. In addition, we analyzed site-directed mutants and chimeras of these CCR5s. Cell surface expression of CCR5 proteins was monitored by using a specific rabbit antiserum and by binding the chemokine [125I]Mip1beta. Our major results were as follows. (i) Two distinct AGM CCR5 sequences were reproducibly found in DNA from CV-1 cells. The AGM clone 1 CCR5 protein differs from that of clone 2 by two substitutions, Y14N in the amino-terminal extracellular region and L352F at the carboxyl terminus. Interestingly, AGM clone 1 CCR5 was inactive as a coreceptor for all tested macrophage-tropic isolates of HIV-1, whereas AGM clone 2 CCR5 was active. As shown by chimera studies and site-directed mutagenesis, the Y14N substitution in AGM clone 1 CCR5 was solely responsible for blocking HIV-1 infections. In contrast, both AGM CCR5 clones were active coreceptors for SIVmac251. Studies of DNA samples from other AGMs indicated frequent additional CCR5 polymorphisms, and we cloned an AGM clone 2 variant with a Q93R substitution in the extracellular loop 1 from one heterozygote. This variant CCR5 was active as a coreceptor for SIVmac251 but was only weakly active for macrophage-tropic isolates of HIV-1. In addition, SIVmac251 appeared to be dependent on the extracellular amino terminus and loop 2 regions of human CCR5 for maximal infection. Our results suggest major differences in the interactions of SIVmac251 and macrophage-tropic HIV-1 isolates with 19, N13, and Y14 in the amino terminus; with Q93 in extracellular loop 1; and with extracellular loop 2 of human CCR5. (ii) The NIH/Swiss mouse CCR5 protein differs at multiple positions from sequences recently reported for other inbred strains of mice. This CCR5 was inactive as a coreceptor for HIV-1 and SIVmac251. Studies of chimeras that contained different portions of NIH/Swiss mouse CCR5 substituted into human CCR5, as well as the reciprocal chimeras, indicated that the amino-terminal region and extracellular loops 1 and 2 of human CCR5 contribute to its coreceptor activity for macrophage-tropic isolates of HIV-1. Specific differences with previous CCR5 chimera results occurred because the NIH/Swiss mouse CCR5 contains a unique substitution corresponding to P183L in extracellular loop 2 that is nonpermissive for coreceptor activity. We conclude that diverse CCR5 sequences occur in AGMs and mice, that SIVmac251 and macrophage-tropic HIV-1 isolates interact differently with specific CCR5 amino acids, and that multiple regions of human CCR5 contribute to its coreceptor functions. In addition, we have identified naturally occurring amino acid polymorphisms in three extracellular regions of CCR5 (Y14N, Q93R, and P183L) that do not interfere with cell surface expression or Mip1beta binding but prevent infections by macrophage-tropic isolates of HIV-1. In contrast to previous evidence, these results suggest that CCR5 contains critical sites that are essential for HIV-1 infections.
PMCID: PMC192328  PMID: 9343222
3.  Complement Mediated Signaling on Pulmonary CD103+ Dendritic Cells Is Critical for Their Migratory Function in Response to Influenza Infection 
PLoS Pathogens  2013;9(1):e1003115.
Trafficking of lung dendritic cells (DCs) to the draining lymph node (dLN) is a crucial step for the initiation of T cell responses upon pathogen challenge. However, little is known about the factors that regulate lung DC migration to the dLN. In this study, using a model of influenza infection, we demonstrate that complement component C3 is critically required for efficient emigration of DCs from the lung to the dLN. C3 deficiency affect lung DC-mediated viral antigen transport to the dLN, resulting in severely compromised priming of virus-specific T cell responses. Consequently, C3-deficient mice lack effector T cell response in the lungs that affected viral clearance and survival. We further show that direct signaling by C3a and C5a through C3aR and C5aR respectively expressed on lung DCs is required for their efficient trafficking. However, among lung DCs, only CD103+ DCs make a significant contribution to lung C5a levels and exclusively produce high levels of C3 and C5 during influenza infection. Collectively, our findings show that complement has a profound impact on immune regulation by controlling tissue DC trafficking and highlights a potential utility for complement as an adjuvant in novel vaccine strategies.
Author Summary
Influenza is a global health problem frequented by epidemics and pandemics. Current vaccines against influenza offer limited protection hence the need for reformulation and repeated vaccination. There is a pressing need to develop newer vaccines that are able to generate T cell response. In order to develop such vaccines, there is a need to understand how T cell responses are generated during influenza infection. Influenza specific T cell responses are generated by the dendritic cells (DCs) in the lung. Upon influenza infection, DCs in the lung carry viral peptides to the draining lymph node (dLN) to initiate an immune response. Thus, migration of DCs from the lung to the dLN is an important step in the initiation of influenza specific T cell response. We now show that activation products of the complement system interact with their receptors on the DCs, which signals for the DCs to migrate from the lung to the dLN. Thus, our results reveal a previously unknown function for complement in mediating lung DC migration during influenza infection and highlight its potential as an adjuvant in novel vaccine strategies.
doi:10.1371/journal.ppat.1003115
PMCID: PMC3542115  PMID: 23326231
4.  Human Peripheral Blood T Cells, Monocytes, and Macrophages Secrete Macrophage Inflammatory Proteins 1α and 1β following Stimulation with Heat-Inactivated Brucella abortus 
Infection and Immunity  2001;69(6):3817-3826.
Heat-killed Brucella abortus (HBa) has been proposed as a carrier for therapeutic vaccines for individuals with immunodeficiency, due to its abilities to induce interleukin-2 (IL-2) and gamma interferon (IFN-γ) in both CD4+ and CD8+ T cells and to upregulate antigen-presenting cell functions (including IL-12 production). In the current study, we investigated the ability of HBa or lipopolysaccharide isolated from HBa (LPS-Ba) to elicit β-chemokines, known to bind to the human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 and to block viral cell entry. It was found that human peripheral blood mononuclear cells secreted β-chemokines following stimulation with HBa, and this effect could not be blocked by anti-IFN-γ neutralizing antibodies. Among purified T cells, macrophage inflammatory protein 1α and 1β (MIP-1α and MIP-1β, respectively) secretion was observed primarily in human CD8+ T cells. The kinetics of β-chemokine induction in T cells were slow (3 to 4 days). The majority of β-chemokine-producing CD8+ T cells also produced IFN-γ following HBa stimulation, as determined by triple-color intracellular staining. A significant number of CD8+ T cells contained stored MIP-1β that was released after HBa stimulation. Both HBa and LPS-Ba stimulated high levels of MIP-1α and MIP-1β production in elutriated monocytes and even higher levels in macrophages. In these cells, β-chemokine mRNA was upregulated within 30 min and proteins were secreted within 4 h of stimulation. The monocyte- and macrophage-derived β-chemokines were sufficient to block CCR5-dependent HIV-1 envelope-mediated cell fusion. These data suggest that, in addition to the ability of HBa to elicit antigen-specific humoral and cellular immune responses, HBa-conjugated HIV-1 proteins or peptides would also generate innate chemokines with antiviral activity that could limit local viral spread during vaccination in vivo.
doi:10.1128/IAI.69.6.3817-3826.2001
PMCID: PMC98399  PMID: 11349047
5.  The Cc Chemokine Thymus-Derived Chemotactic Agent 4 (Tca-4, Secondary Lymphoid Tissue Chemokine, 6ckine, Exodus-2) Triggers Lymphocyte Function–Associated Antigen 1–Mediated Arrest of Rolling T Lymphocytes in Peripheral Lymph Node High Endothelial Venules 
T cell homing to peripheral lymph nodes (PLNs) is defined by a multistep sequence of interactions between lymphocytes and endothelial cells in high endothelial venules (HEVs). After initial tethering and rolling via L-selectin, firm adhesion of T cells requires rapid upregulation of lymphocyte function–associated antigen 1 (LFA-1) adhesiveness by a previously unknown pathway that activates a Gαi-linked receptor. Here, we used intravital microscopy of murine PLNs to study the role of thymus-derived chemotactic agent (TCA)-4 (secondary lymphoid tissue chemokine, 6Ckine, Exodus-2) in homing of adoptively transferred T cells from T-GFP mice, a transgenic strain that expresses green fluorescent protein (GFP) selectively in naive T lymphocytes (TGFP cells). TCA-4 was constitutively presented on the luminal surface of HEVs, where it was required for LFA-1 activation on rolling TGFP cells. Desensitization of the TCA-4 receptor, CC chemokine receptor 7 (CCR7), blocked TGFP cell adherence in wild-type HEVs, whereas desensitization to stromal cell–derived factor (SDF)-1α (the ligand for CXC chemokine receptor 4 [CXCR4]) did not affect TGFP cell behavior. TCA-4 protein was not detected on the luminal surface of PLN HEVs in plt/plt mice, which have a congenital defect in T cell homing to PLNs. Accordingly, TGFP cells rolled but did not arrest in plt/plt HEVs. When TCA-4 was injected intracutaneously into plt/plt mice, the chemokine entered afferent lymph vessels and accumulated in draining PLNs. 2 h after intracutaneous injection, luminal presentation of TCA-4 was detectable in a subset of HEVs, and LFA-1–mediated TGFP cell adhesion was restored in these vessels. We conclude that TCA-4 is both required and sufficient for LFA-1 activation on rolling T cells in PLN HEVs. This study also highlights a hitherto undocumented role for chemokines contained in afferent lymph, which may modulate leukocyte recruitment in draining PLNs.
PMCID: PMC2195804  PMID: 10620605
homing; intravital microscopy; adhesion; T cell
6.  Distinct Transcriptional Signatures of Bone Marrow-Derived C57BL/6 and DBA/2 Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes 
Background/Objectives
The inoculation of a low number (104) of L. amazonensis metacyclic promastigotes into the dermis of C57BL/6 and DBA/2 mouse ear pinna results in distinct outcome as assessed by the parasite load values and ear pinna macroscopic features monitored from days 4 to 22-phase 1 and from days 22 to 80/100-phase 2. While in C57BL/6 mice, the amastigote population size was increasing progressively, in DBA/2 mice, it was rapidly controlled. This latter rapid control did not prevent intracellular amastigotes to persist in the ear pinna and in the ear-draining lymph node/ear-DLN. The objectives of the present analysis was to compare the dendritic leukocytes-dependant immune processes that could account for the distinct outcome during the phase 1, namely, when phagocytic dendritic leucocytes of C57BL/6 and DBA/2 mice have been subverted as live amastigotes-hosting cells.
Methodology/Principal Findings
Being aware of the very low frequency of the tissues' dendritic leucocytes/DLs, bone marrow-derived C57BL/6 and DBA/2 DLs were first generated and exposed or not to live DsRed2 expressing L. amazonensis amastigotes. Once sorted from the four bone marrow cultures, the DLs were compared by Affymetrix-based transcriptomic analyses and flow cytometry. C57BL/6 and DBA/2 DLs cells hosting live L. amazonensis amastigotes do display distinct transcriptional signatures and markers that could contribute to the distinct features observed in C57BL/6 versus DBA/2 ear pinna and in the ear pinna-DLNs during the first phase post L. amazonensis inoculation.
Conclusions/Significance
The distinct features captured in vitro from homogenous populations of C57BL/6 and DBA/2 DLs hosting live amastigotes do offer solid resources for further comparing, in vivo, in biologically sound conditions, functions that range from leukocyte mobilization within the ear pinna, the distinct emigration from the ear pinna to the DLN of live amastigotes-hosting DLs, and their unique signalling functions to either naive or primed T lymphocytes.
Author Summary
The rapid and long term establishment of parasites such as L. amazonensis, otherwise known to strictly rely on subversion of macrophage and dendritic leucocyte (DL) lineages, is expected to reflect stepwise processes taking place in both the skin dermis where the infective form of the parasite and the skin-draining lymph node (DLN) were inoculated. Relying on mice of two distinct inbred strains—C57BL/6 and DBA/2—that rapidly and durably display distinct phenotypes at the two sites of establishment of L. amazonensis, we were curious to address the following question: could live L. amazonensis-hosting DL display unique signatures that account for the distinct phenotypes? Based on flow cytometry, genechip and real-time quantitative PCR analyses, our results did evidence that, once subverted as cells hosting live L. amazonensis, DLs from C57BL/6 or DBA/2 do display distinct profiles that could account for the i) distinct parasite load profiles, ii) as well as the distinct macroscopic features of ear pinna observed once the L. amazonensis metacyclic promastigotes completed their four day developmental program along the amastigote morphotype.
doi:10.1371/journal.pntd.0001980
PMCID: PMC3521701  PMID: 23272268
7.  Cc Chemokine Receptor (Ccr)2 Is Required for Langerhans Cell Migration and Localization of T Helper Cell Type 1 (Th1)-Inducing Dendritic Cells 
There is growing evidence that chemokines and their receptors regulate the movement and interaction of antigen-presenting cells such as dendritic cells (DCs) and T cells. We tested the hypothesis that the CC chemokine receptor (CCR)2 and CCR5 and the chemokine macrophage inflammatory protein (MIP)-1α, a ligand for CCR5, influence DC migration and localization. We found that deficiency of CCR2 but not CCR5 or MIP-1α led to distinct defects in DC biology. Langerhans cell (skin DC) density in CCR2-null mice was normal, and their ability to migrate into the dermis was intact; however, their migration to the draining lymph nodes was markedly impaired. CCR2-null mice had lower numbers of DCs in the spleen, and this was primarily due to a reduction in the CD8α1 T helper cell type 1 (Th1)-inducing subset of DCs. Additionally, there was a block in the Leishmania major infection–induced relocalization of splenic DCs from the marginal zone to the T cell areas. We propose that these DC defects, in conjunction with increased expression of B lymphocyte chemoattractant, a B cell–specific chemokine, may collectively contribute to the striking B cell outgrowth and Th2 cytokine–biased nonhealing phenotype that we observed in CCR2-deficient mice infected with L. major. This disease phenotype in mice with an L. major–resistant genetic background but lacking CCR2 is strikingly reminiscent of that observed typically in mice with an L. major–susceptible genetic background. Thus, CCR2 is an important determinant of not only DC migration and localization but also the development of protective cell-mediated immune responses to L. major.
PMCID: PMC2193245  PMID: 10899907
infectious immunity; chemokine; cytokine; knockout; T helper cell
8.  Simian immunodeficiency Virus Infection Potently Modulates Chemokine Networks and Immune Environments in Hilar Lymph Nodes of Cynomolgus Macaques 
Background
Chemokines provide critical immune cell homing and activation signals that if altered could affect the inflammatory milieu and cellular composition of lymphoid tissues. During HIV-1 and SIV infection, the virus triggers an increase in inflammation/activation, leading to immunodeficiency and development of opportunistic infections, such as in the lungs – a massive interface between the host and the environment.
Methods
Chemokine, cytokine, and chemokine receptor expression profiles were determined using real-time RT-PCR and in situ hybridization in hilar lymph nodes from cynomolgus macaques at different stages after infection with SIV/DeltaB670. Immunostaining of tissue sections and flow cytometric analysis of cryopreserved cells were used to examine cellular compositions of lymph nodes.
Results
IFN-γ, type 1 chemokine and cognate chemokine receptor mRNAs were up-regulated, whereas type 2 and homeostatic chemokine and chemokine receptor mRNAs were down-regulated in hilar lymph nodes after SIV infection. Local SIV and IFN-γ levels were positively correlated with type 1 chemokine levels, but negatively correlated with type 2 and homeostatic chemokine levels. Using in situ hybridization, Pneumocystis carrini rRNA was detected in lung-draining lymph nodes from animals with P. carrini pneumonia. Changes in the cellular composition of hilar lymph nodes included decreased proportions of CD4+ cells and dendritic cells, and increased proportions of CD8+, CXCR3+ and CCR5+ cells.
Conclusions
SIV infection of cynomolgus macaques dramatically alters the cellular homing signals of lung-draining lymph nodes, which correlated with changes in the immune cellular composition. These changes could contribute to the loss of immune function that defines AIDS.
doi:10.1097/QAI.0b013e31828ac85f
PMCID: PMC3688692  PMID: 23429503
SIV; AIDS; chemokine; interferon; chemokine receptor; real-time RT-PCR
9.  Absence of Monocyte Chemoattractant Protein 1 in Mice Leads to Decreased Local Macrophage Recruitment and Antigen-Specific T Helper Cell Type 1 Immune Response in Experimental Autoimmune Encephalomyelitis 
Monocyte chemoattractant protein (MCP)-1 plays a critical role in innate immunity by directing the migration of monocytes into inflammatory sites. Recent data indicated a function for this chemokine in adaptive immunity as a regulator of T cell commitment to T helper cell type 2 (Th2) effector function. Studies in a Th1-dependent animal model, experimental autoimmune encephalomyelitis (EAE), showed that MCP-1 was highly expressed in the central nervous system (CNS) of affected rodents, and MCP-1 antibodies could block relapses of the disease. Mice deficient for the major MCP-1 receptor, CC chemokine receptor (CCR)2, did not develop EAE after active immunization but generated effector cells that could transfer the disease to naive wild-type recipients. We analyzed EAE in mice deficient for MCP-1 to define the relevant ligand for CCR2, which responds to murine MCP-1, MCP-2, MCP-3, and MCP-5. We found that C57BL/6 MCP-1–null mice were markedly resistant to EAE after active immunization, with drastically impaired recruitment of macrophages to the CNS, yet able to generate effector T cells that transferred severe disease to naive wild-type recipients. By contrast, adoptive transfer of primed T cells from wild-type mice into naive MCP-1–null recipients did not mediate clinical EAE. On the SJL background, disruption of the MCP-1 gene produced a milder EAE phenotype with diminished relapses that mimicked previous findings using anti–MCP-1 antibodies. There was no compensatory upregulation of MCP-2, MCP-3, or MCP-5 in MCP-1–null mice with EAE. These results indicated that MCP-1 is the major CCR2 ligand in mice with EAE, and provided an opportunity to define the role of MCP-1 in EAE. Compared with wild-type littermates, MCP-1−/− mice exhibited reduced expression of interferon γ in draining lymph node and CNS and increased antigen-specific immunoglobulin G1 antibody production. Taken together, these data demonstrate that MCP-1 is crucial for Th1 immune responses in EAE induction and that macrophage recruitment to the inflamed CNS target organ is required for primed T cells to execute a Th1 effector program in EAE.
PMCID: PMC2193420  PMID: 11257138
autoimmune disease; chemokine; chemokine receptor; macrophage; T helper cell type 1/T helper cell type 2
10.  Production of CXC and CC Chemokines by Human Antigen-Presenting Cells in Response to Lassa Virus or Closely Related Immunogenic Viruses, and in Cynomolgus Monkeys with Lassa Fever 
The pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC) release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV) harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP), induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome.
Author Summary
Lassa virus (LASV) causes a viral hemorrhagic fever that affects about 300,000 people and leads to 5,000 deaths annually. Lassa fever (LF) is a public health problem in West Africa, where it is endemic, because of the number of cases, deaths and disabling effects. There is no vaccine against LASV and the only treatment, ribavirin, is not useful in the field. Little is known about the pathogenesis and immune responses associated with LF. Chemokines are involved in the induction of immunity and attraction of immune cells to inflamed sites. We compared the ability of antigen-presenting cells to produce chemokines in response to infection with LASV, the closely related but nonpathogenic Mopeia virus (MOPV) and a LASV unable to inhibit the type I IFN response due to mutations in its nucleoprotein gene. We found that MOPV and the mutant LASV, but not wild-type LASV, strongly induced CC and CXC chemokine production by dendritic cells and macrophages, in a type I IFN-dependent manner. We confirmed in cynomolgus monkeys that these mediators probably play a role during LF. These results highlight the role of innate immunity in LF control and provide insight into the mechanisms leading to survival or death after infection.
doi:10.1371/journal.pntd.0002637
PMCID: PMC3888467  PMID: 24421914
11.  Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines 
Background
The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5) melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site.
Methods
These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN), were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO) was determined using GRIES reagent.
Results
We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC), MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin-deficient (PKO) effector T cells induced macrophages to secrete nitric oxide (NO), providing an additional effector mechanism for T cell-mediated tumor regression.
Conclusion
These data suggest two possible sources for chemokine secretion that stimulates macrophage recruitment to the site of tumor metastases. Both appear to be initiated by T cell recognition of specific antigen, but one is dependent on the tumor cells to produce the chemokines that recruit macrophages.
doi:10.1186/1479-5876-5-56
PMCID: PMC2203985  PMID: 18001476
12.  Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection 
Virology Journal  2004;1:5.
Inflammatory cytokines and infiltrating T cells are readily detected in herpes simplex virus (HSV) infected mouse cornea and trigeminal ganglia (TG) during the acute phase of infection, and certain cytokines continue to be expressed at lower levels in infected TG during the subsequent latent phase. Recent results have shown that HSV infection activates Toll-like receptor signaling. Thus, we hypothesized that chemokines may be broadly expressed at both primary sites and latent sites of HSV infection for prolonged periods of time. Real-time reverse transcriptase-polymrease chain reaction (RT-PCR) to quantify expression levels of transcripts encoding chemokines and their receptors in cornea and TG following corneal infection. RNAs encoding the inflammatory-type chemokine receptors CCR1, CCR2, CCR5, and CXCR3, which are highly expressed on activated T cells, macrophages and most immature dendritic cells (DC), and the more broadly expressed CCR7, were highly expressed and strongly induced in infected cornea and TG at 3 and 10 days postinfection (dpi). Elevated levels of these RNAs persisted in both cornea and TG during the latent phase at 30 dpi. RNAs for the broadly expressed CXCR4 receptor was induced at 30 dpi but less so at 3 and 10 dpi in both cornea and TG. Transcripts for CCR3 and CCR6, receptors that are not highly expressed on activated T cells or macrophages, also appeared to be induced during acute and latent phases; however, their very low expression levels were near the limit of our detection. RNAs encoding the CCR1 and CCR5 chemokine ligands MIP-1α, MIP-1β and RANTES, and the CCR2 ligand MCP-1 were also strongly induced and persisted in cornea and TG during the latent phase. These and other recent results argue that HSV antigens or DNA can stimulate expression of chemokines, perhaps through activation of Toll-like receptors, for long periods of time at both primary and latent sites of HSV infection. These chemokines recruit activated T cells and other immune cells, including DC, that express chemokine receptors to primary and secondary sites of infection. Prolonged activation of chemokine expression could provide mechanistic explanations for certain aspects of HSV biology and pathogenesis.
doi:10.1186/1743-422X-1-5
PMCID: PMC524517  PMID: 15507126
13.  Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites  
DCs (dendritic cells) function as sentinels of the immune system. They traffic from the blood to the tissues where, while immature, they capture antigens. They then leave the tissues and move to the draining lymphoid organs where, converted into mature DC, they prime naive T cells. This suggestive link between DC traffic pattern and functions led us to investigate the chemokine responsiveness of DCs during their development and maturation. DCs were differentiated either from CD34+ hematopoietic progenitor cells (HPCs) cultured with granulocyte/macrophage colony–stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-α or from monocytes cultured with GM-CSF plus interleukin 4. Immature DCs derived from CD34+ HPCs migrate most vigorously in response to macrophage inflammatory protein (MIP)-3α, but also to MIP-1α and RANTES (regulated on activation, normal T cell expressed and secreted). Upon maturation, induced by either TNF-α, lipopolysaccharide, or CD40L, DCs lose their response to these three chemokines when they acquire a sustained responsiveness to a single other chemokine, MIP-3β. CC chemokine receptor (CCR)6 and CCR7 are the only known receptors for MIP-3α and MIP-3β, respectively. The observation that CCR6 mRNA expression decreases progressively as DCs mature, whereas CCR7 mRNA expression is sharply upregulated, provides a likely explanation for the changes in chemokine responsiveness. Similarly, MIP-3β responsiveness and CCR7 expression are induced upon maturation of monocyte- derived DCs. Furthermore, the chemotactic response to MIP-3β is also acquired by CD11c+ DCs isolated from blood after spontaneous maturation. Finally, detection by in situ hybridization of MIP-3α mRNA only within inflamed epithelial crypts of tonsils, and of MIP-3β mRNA specifically in T cell–rich areas, suggests a role for MIP-3α/CCR6 in recruitment of immature DCs at site of injury and for MIP-3β/CCR7 in accumulation of antigen-loaded mature DCs in T cell–rich areas.
PMCID: PMC2212459  PMID: 9670049
dendritic cells; chemokines; migration; maturation; regulation; in vivo expression
14.  Deficiency of Lymph Node-Resident Dendritic Cells (DCs) and Dysregulation of DC Chemoattractants in a Malnourished Mouse Model of Leishmania donovani Infection 
Infection and Immunity  2014;82(8):3098-3112.
Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways.
doi:10.1128/IAI.01778-14
PMCID: PMC4136237  PMID: 24818662
15.  LAPCs promote follicular helper T cell differentiation of Ag-primed CD4+ T cells during respiratory virus infection 
The Journal of Experimental Medicine  2012;209(10):1853-1867.
Late activator antigen-presenting cells promote Tfh differentiation of antigen-primed CD4+ T cells and antibody responses in influenza A virus infection.
The humoral immune response to most respiratory virus infections plays a prominent role in virus clearance and is essential for resistance to reinfection. T follicular helper (Tfh) cells are believed to support the development both of a potent primary antibody response and of the germinal center response critical for memory B cell development. Using a model of primary murine influenza A virus (IAV) infection, we demonstrate that a novel late activator antigen-presenting cell (LAPC) promotes the Tfh response in the draining lymph nodes (dLNs) of the IAV-infected lungs. LAPCs migrate from the infected lungs to the dLN “late,” i.e., 6 d after infection, which is concomitant with Tfh differentiation. LAPC migration is CXCR3-dependent, and LAPC triggering of Tfh cell development requires ICOS–ICOSL–dependent signaling. LAPCs appear to play a pivotal role in driving Tfh differentiation of Ag-primed CD4+ T cells and antiviral antibody responses.
doi:10.1084/jem.20112256
PMCID: PMC3457726  PMID: 22987801
16.  Migratory Properties of Naive, Effector, and Memory Cd8+ T Cells 
It has been proposed that two different antigen-experienced T cell subsets may be distinguishable by their preferential ability to home to lymphoid organs (central memory cells) or nonlymphoid tissues (effector memory/effector cells). We have shown recently that murine antigen-primed CD8+ T cells cultured in interleukin (IL)-15 (CD8IL-15) resemble central memory cells in phenotype and function. In contrast, primed CD8+ T cells cultured in IL-2 (CD8IL-2) become cytotoxic effector cells. Here, the migratory behavior of these two subsets was investigated. Naive, CD8IL-15 cells and, to a lesser degree, CD8IL-2 cells localized to T cell areas in the spleen, but only naive and CD8IL-15 cells homed to lymph nodes (LNs) and Peyer's patches. Intravital microscopy of peripheral LNs revealed that CD8IL-15 cells, but not CD8IL-2 cells, rolled and arrested in high endothelial venules (HEVs). Migration of CD8IL-15 cells to LNs depended on L-selectin and required chemokines that bind CC chemokine receptor (CCR)7. Both antigen-experienced populations, but not naive T cells, responded to inflammatory chemokines and accumulated at sites of inflammation. However, CD8IL-2 cells were 12 times more efficient in migrating to inflamed peritoneum than CD8IL-15 cells. Furthermore, CD8IL-15 cells proliferated rapidly upon reencounter with antigen at sites of inflammation. Thus, central memory-like CD8IL-15 cells home avidly to lymphoid organs and moderately to sites of inflammation, where they mediate rapid recall responses, whereas CD8IL-2 effector T cells accumulate in inflamed tissues, but are excluded from most lymphoid organs.
PMCID: PMC2193483  PMID: 11581317
lymphocyte homing; lymph node; chemokines; adhesion molecules; inflammation
17.  Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection 
PLoS Pathogens  2014;10(12):e1004548.
Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV) is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs), three populations of dermal dendritic cells (DCs), and macrophages. Using samples of normal human skin we detected productive infection of CD14+ and CD1c+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response.
Author Summary
Dengue virus (DENV) is transmitted by mosquitoes with skin as point of entry for the virus. Here, we investigated DENV infection in primary human skin cells and their initial immune response. Using skin from normal human donors for infection with DENV in vitro we identified antigen-presenting cells (APCs) as main targets of DENV. Further analysis showed that only distinct subsets of dendritic cells (DCs) and macrophages were infected and efficiently produced viral progeny. Langerhans cells were most susceptible to infection despite lacking DC-SIGN, a previously described DENV receptor. Infection of the other DC subsets and macrophages was also independent of DC-SIGN expression. Genes of the interferon pathway and CCL5, a chemokine attracting immune cells to sites of inflammation, were highly up-regulated in the infected DC subsets. Using a mouse infection model, we showed that murine dermal DCs were also susceptible to DENV and migrated to draining lymph nodes. At the same time infiltrating monocytes differentiated into monocyte-derived cells at the site of infection and became an additional target for DENV in vivo. These data demonstrate that DENV differentially infects and activates primary human skin APCs and that infected cell types individually contribute to inflammation and the adaptive response.
doi:10.1371/journal.ppat.1004548
PMCID: PMC4256468  PMID: 25474532
18.  Regulatory T cells sequentially migrate from the site of tissue inflammation to the draining LN to suppress the alloimmune response 
Immunity  2009;30(3):458-469.
To determine site and mechanism of suppression, regulatory T cell (Treg) migration and function were investigated in an islet allograft model. Treg first migrated from blood to the inflammed allografts, this depended on CCR2, CCR4, CCR5, and P- and E-selectin ligands, and was essential for suppression of alloimmunity. In the allograft, Treg were activated, upregulated effector molecules, migrated to the draining lymph nodes (dLN) in a CCR2, CCR5, and CCR7 fashion, and this movement was essential for optimal suppression. Treg inhibited dendritic cell migration in a TGFβ and IL-10 dependent fashion; and suppressed antigen specific T effector cell migration, accumulation, and proliferation in dLNs and allografts. These results showed that sequential migration from blood to the target tissue and then to dLNs were required for nTreg to differentiate and execute fully their suppressive function, by inhibiting DC in the peripheral tissue, and T effector cell responses in dLN and allografts.
doi:10.1016/j.immuni.2008.12.022
PMCID: PMC2737741  PMID: 19303390
19.  Regulation of Inflammatory Monocyte/Macrophage Recruitment from the Bone Marrow during Murine Cytomegalovirus Infection: Role for Type I Interferons in Localized Induction of CCR2 Ligands1 
Monocytes/macrophages are critical early innate immune responders during murine CMV (MCMV) infection. It has been established that inflammatory monocyte/macrophages are released from the bone marrow and into the peripheral blood before entry into infected tissue sites. We previously reported a role for IFN-α/β in promotion of CCR2-mediated recruitment of monocyte/macrophages into the liver in response to MCMV infection. However, the mechanisms that support the migration of monocyte/macrophages from the bone marrow and into the peripheral blood under conditions of MCMV infection have not been elucidated. Herein, we demonstrate an accumulation of monocyte/macrophages in the bone marrow of MCMV-infected CCR2-deficient mice, whereas circulating monocyte/macrophages are profoundly diminished. The CCR2 ligands MCP-1, MCP-3, and MCP-5 are detected in bone marrow and in serum from MCMV-infected mice. Furthermore, bone marrow leukocytes from naive mice produce high levels of MCP-1 and MCP-5, and moderate levels of MCP-3, when stimulated with recombinant IFN-α in culture. We identify bone marrow F4/80+ cells as major producers of MCP-1, MCP-3, and MCP-5. Moreover, induction of CCR2 ligands is dependent on IFN-α/β-mediated signals and MCMV infection. Taken together, the results reveal a critical role for inflammatory cytokines in stimulating production of CCR2-binding chemokines from F4/80+ cells in the bone marrow, and they suggest that local production of chemokines supports monocyte/macrophage egress from the bone marrow into the blood during a virus infection.
doi:10.4049/jimmunol.0900205
PMCID: PMC2911023  PMID: 19620305
20.  Nonmucosal Alphavirus Vaccination Stimulates a Mucosal Inductive Environment in the Peripheral Draining Lymph Node1 
The strongest mucosal immune responses are induced following mucosal Ag delivery and processing in the mucosal lymphoid tissues, and much is known regarding the immunological parameters which regulate immune induction via this pathway. Recently, experimental systems have been identified in which mucosal immune responses are induced following nonmucosal Ag delivery. One such system, footpad delivery of Venezuelan equine encephalitis virus replicon particles (VRP), led to the local production of IgA Abs directed against both expressed and codelivered Ags at multiple mucosal surfaces in mice. In contrast to the mucosal delivery pathway, little is known regarding the lymphoid structures and immunological components that are responsible for mucosal immune induction following nonmucosal delivery. In this study, we have used footpad delivery of VRP to probe the constituents of this alternative pathway for mucosal immune induction. Following nonmucosal VRP delivery, J chain-containing, polymeric IgA Abs were detected in the peripheral draining lymph node (DLN), at a time before IgA detection at mucosal surfaces. Further analysis of the VRP DLN revealed up-regulated α4β7 integrin expression on DLN B cells, expression of mucosal addressin cell adhesion molecule 1 on the DLN high endothelia venules, and production of IL-6 and CC chemokines, all characteristics of mucosal lymphoid tissues. Taken together, these results implicate the peripheral DLN as an integral component of an alternative pathway for mucosal immune induction. A further understanding of the critical immunological and viral components of this pathway may significantly improve both our knowledge of viral-induced immunity and the efficacy of viral-based vaccines.
PMCID: PMC3603373  PMID: 18566424
21.  Virus-specific antigen presentation by different subsets of cells from lung and mediastinal lymph node tissues of influenza virus-infected mice. 
Journal of Virology  1995;69(10):6359-6366.
Immune responses at mucosal sites are thought to be initiated in the draining lymph nodes, where dendritic cells present viral antigens and induce naive T cells to proliferate and to become effectors. Formal proof that antigen-presenting cells (APC) do indeed localize to the regional lymph nodes has been lacking for viral infections of the respiratory tract. Influenza virus was detected in the draining mediastinal lymph nodes (MLN) early after intranasal inoculation, with peak virus titers in this tissue measured at 2 days postinfection. Virus-specific cytotoxic T-lymphocyte responses were first detected in the MLN 1 day later. Macrophages, dendritic cells, and B lymphocytes were isolated from influenza virus-infected mice and assayed for the capacity to stimulate a major histocompatibility complex class I-restricted virus-specific T-cell hybridoma. All APC populations from lungs and MLN contained virus and thus had the potential to present antigen to CD8+ T cells. The APC recovered from the lungs of influenza virus-infected mice and dendritic cells from the MLN were able to stimulate virus-specific responses. The lack of a virus-specific T-cell response to B cells corresponds to the small number of virus-positive B lymphocytes in the MLN. These results indicate that dendritic cells and macrophages are antigen positive in mice acutely infected with an influenza A virus and that dendritic cells are probably responsible for initiating the cytotoxic T-lymphocyte response to influenza virus in the draining lymph nodes.
PMCID: PMC189535  PMID: 7666537
22.  Skin-Infiltrating Monocytes/Macrophages Migrate to Draining Lymph Nodes and Produce IL-10 After Contact Sensitizer Exposure to UV-Irradiated Skin 
Low-dose UVB exposure induces antigen-specific unresponsiveness to antigen(s) introduced through UV-irradiated skin (tolerance). Analysis of cytokine expression in murine draining lymph nodes (DLNs) revealed that IL-12p40 mRNA and protein expression as well as IL-12p70 protein were upregulated after application of the contact sensitizer 2,4 dinitro-1-fluorobenzene (DNFB) to normal skin. The cellular source of IL-12p40 mRNA was CD11c+ cells. By contrast, following DNFB application to UV-irradiated skin (UV + DNFB), IL-12p40 mRNA was not upregulated, and DLN IL-12p40 and p70 proteins were reduced. UVB irradiation alone did not upregulate IL-10 mRNA, but UV + DNFB upregulated IL-10 mRNA as early as 3–6 hours after DNFB application, immediately preceding a decrease of IL-12p40 mRNA from the level induced by UVB. The infiltration of F4/80+ cells into UV-irradiated skin was followed by a rapid and remarkable increase of F4/80+CD11c− cells in DLN 3 hours following DNFB application. FITC/DNFB skin painting and subsequent enzyme-linked immunospot assay demonstrated that flow-sorted FITC+F4/80+CD11c− cells from the DLN produce IL-10. Thus, monocytes/macrophages that infiltrated into the skin following UVB exposure migrate to the DLN triggered by contact sensitizers. Production of IL-10 by migrating macrophages, in conjunction with IL-12 inhibition in the DLN, likely reflects a role as mobile suppressive mediators for locally induced UV tolerance.
doi:10.1038/jid.2008.137
PMCID: PMC3910256  PMID: 18509360
23.  Adjuvant immunotherapy of Experimental Autoimmune Encephalomyelitis: Immature Myeloid Cells Expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the CNS 1,2 
CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of EAE and spontaneous diabetes in rodents. Here we investigated immune responses during adjuvant immunotherapy of experimental autoimmune encephalomyelitis (EAE). Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b+Gr-1+ myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4+ T cells co-expressing the cognate chemokine receptors, CXCR3 and CXCR6, and myelin oligodendrocyte glycoprotein (MOG)-specific CD4+ T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4+ T cells toward dLN cells was abolished by depleting the CD11b+ cells and was also mediated by the CD11b+ cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant-treatment suppressed development of MOG-specific IL-17. Thus, CFA-adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17-response, and diverts autoreactive T cells away from the CNS towards immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.
doi:10.4049/jimmunol.1101118
PMCID: PMC3987917  PMID: 22287719
24.  Local and Regional Re-Establishment of Cellular Immunity during Curative Antibiotherapy of Murine Mycobacterium ulcerans Infection 
PLoS ONE  2012;7(2):e32740.
Background
Buruli ulcer (BU) is a neglected necrotizing disease of the skin, subcutaneous tissue and bone, caused by Mycobacterium ulcerans. BU pathogenesis is associated with mycolactone, a lipidic exotoxin with cytotoxic and immunosuppressive properties. Since 2004, the World Health Organization recommends the treatment of BU with a combination of rifampicin and streptomycin (RS). Histological analysis of human tissue samples suggests that such antibiotic treatment reverses the mycolactone-induced local immunosuppression, leading to increased inflammatory infiltrations and phagocytosis of bacilli.
Methodology/Principal Findings
We used a mouse model of M. ulcerans footpad infection, followed by combined RS treatment. Time-lapsed analyses of macroscopic lesions, bacterial burdens, histology and immunohistochemistry were performed in footpads. We also performed CFU counts, histology and immunohistochemistry in the popliteal draining lymph nodes (DLN). We observed a shift in the cellular infiltrates from a predominantly neutrophilic/macrophagic to a lymphocytic/macrophagic profile in the infected footpads of antibiotic-treated mice. This shift occurred before the elimination of viable M. ulcerans organisms, which were ultimately eradicated as demonstrated by the administration of dexamethasone. This reduction of bacillary loads was accompanied by an increased expression of inducible nitric oxide synthase (NOS2 or iNOS). Predominantly mononuclear infiltrates persisted in the footpads during and after treatment, coincident with the long persistence of non-viable poorly stained acid-fast bacilli (AFB). We additionally observed that antibiotherapy prevented DLN destruction and lymphocyte depletion, which occurs during untreated experimental infections.
Conclusions/Significance
Early RS treatment of M. ulcerans mouse footpad infections results in the rapid elimination of viable bacilli with pathogen eradication. However, non-viable AFB persisted for several months after lesion sterilization. This RS regimen prevented DLN destruction, allowing the rapid re-establishment of local and regional cell mediated immune responses associated with macrophage activation. Therefore it is likely that this re-establishment of protective cellular immunity synergizes with antibiotherapy.
doi:10.1371/journal.pone.0032740
PMCID: PMC3290623  PMID: 22393444
25.  Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice 
PLoS Pathogens  2009;5(10):e1000636.
Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease.
Author Summary
Severe Acute Respiratory Syndrome (SARS) occurred in human populations in 2002–2003 and was caused by a novel coronavirus (CoV). Human SARS was characterized by prolonged virus excretion, lymphopenia and delayed adaptive immune responses in patients with severe disease. Recently, small animal models have been developed that mimic some of the features of the human disease. Specifically, BALB/c mice infected with mouse-adapted SARS-CoV develop severe respiratory disease. Here, we show that the T cell response is defective in these mice and that this results from inefficient activation of the initial immune response to the virus. This defect can be corrected by several treatments, including depletion of inhibitory macrophages from the lungs and direct activation of respiratory dendritic cells, important in initiating the immune response or transfer of activated dendritic cells prior to infection. All of these modalities result in improved initiation of the immune response and an enhanced anti-virus T cell response. Inefficient activation of the immune response may play a role in human SARS, and our results suggest possible strategies that might be used to develop novel anti-viral therapies.
doi:10.1371/journal.ppat.1000636
PMCID: PMC2762542  PMID: 19851468

Results 1-25 (1202823)