PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (587805)

Clipboard (0)
None

Related Articles

1.  Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina 
Background
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity.
Methods
Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts.
Results
These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+.
Conclusion
The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves.
doi:10.1186/1476-0711-10-37
PMCID: PMC3267653  PMID: 22132863
2.  Mutagenicity and antimutagenicity of (−)-hinokinin a trypanosomicidal compound measured by Salmonella microsome and comet assays 
Background
The dibenzylbutyrolactone lignan (−)-hinokinin (HK) was derived by partial synthesis from (−)-cubebin, isolated from the dry seeds of the pepper, Piper cubeba. Considering the good trypanosomicidal activity of HK and recalling that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the (anti) mutagenic∕ genotoxic activities of HK.
Methods
The mutagenic∕ genotoxic activities were evaluated by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and the comet assay, so as to assess the safe use of HK in the treatment of Chagas’ disease. The antimutagenic ∕antigenotoxic potential of HK were also tested against the mutagenicity of a variety of direct and indirect acting mutagens, such as 4- nitro-o-phenylenediamine (NOPD), sodium azide (SA), mitomycin C (MMC), benzo[a]pyrene (B[a]P), aflatoxin B1 (AFB1), 2-aminoanthracene (2-AA) and 2-aminofluorene (2-AF), by the Ames test, and doxorubicin (DXR) by the comet assay.
Results
The mutagenicity∕genotoxicity tests showed that HK did not induce any increase in the number of revertants or extent of DNA damage, demonstrating the absence of mutagenic and genotoxic activities. On the other hand, the results on the antimutagenic potential of HK showed a strong inhibitory effect against some direct and indirect-acting mutagens.
Conclusions
Regarding the use of HK as an antichagasic drug, the absence of mutagenic effects in animal cell and bacterial systems is encouraging. In addition, HK may be a new potential antigenotoxic ∕ antimutagenic agent from natural sources. However, the protective activity of HK is not general and varies with the type of DNA damage-inducing agent used.
doi:10.1186/1472-6882-12-203
PMCID: PMC3545969  PMID: 23114276
Hinokinin; Ames test; Comet assay; Mutagenicity; Antimutagenicity
3.  Antioxidant and antigenotoxic activities of Angelica keiskei, Oenanthe javanica and Brassica oleracea in the Salmonella mutagenicity assay and in HCT116 human colon cancer cells 
BioFactors (Oxford, England)  2006;26(4):231-244.
Epidemiological studies indicate that consumption of green-yellow vegetables rich in chlorophyll, vitamin C, vitamin E, and carotenoids reduce the risk of cancer. We sought to examine the antigenotoxic and antioxidant properties of chlorophyll-rich methanol extracts of Angelica keiskei, Oenanthe javanica, and Brassica oleracea (kale). In the Salmonella mutagenicity assay, A. keiskei caused dose-dependent inhibition against three heterocyclic amine mutagens in the presence of S9, O. javanica was antimutagenic only at the highest concentration in the assay (2 mg/plate), and B. oleracea showed no consistent inhibitory activity at non-toxic levels. None of the extracts were effective against three direct-acting mutagens in the absence of S9. Extracts of A. keiskei and, to a lesser extent O. javanica, inhibited two of the major enzymes that play a role in the metabolic activation of heterocyclic amines, based on ethoxyresorufin-O-deethylase and methoxyresorufin-O-demethylase assays in vitro. All three plant extracts were highly effective in assays which measured ferric reducing/antioxidant power, oxygen radical absorbance capacity, and Fe2+/H2O2-mediated DNA nicking. Finally, using the ‘comet’ assay, all three plant extracts protected against H2O2-induced genotoxic damage in human HCT116 colon cancer cells. These findings provide support for the antigenotoxic and antioxidant properties of chlorophyll-rich extracts of A. keiskei, O. javanica, and B. oleracea, through mechanisms that include inhibition of carcinogen activation and scavenging of reactive oxygen species.
PMCID: PMC2267880  PMID: 17119270
Antimutagen; antioxidant; heterocyclic amines; phytochemical; comet assay; D NA breaks
4.  Cytoprotective and antioxidant effects of phenolic compounds from Haberlea rhodopensis Friv. (Gesneriaceae) 
Pharmacognosy Magazine  2013;9(36):294-301.
Background:
Haberlea rhodopensis Friv. (Gesneriaceae) is a rare poikilohydric endemic and preglacial relict growing in Balkan Peninsula. Previous investigations demonstrated strong antioxidant, antimicrobial and antimutagenic potential of alcoholic extract from the plant.
Objective:
The isolation of known caffeoyl phenylethanoid glucoside – myconoside and flavone-C-glycosides hispidulin 8-C-(2-O-syringoyl-β-glucopyranoside), hispidulin 8-C-(6-O-acetyl-2-O-syringoyl-β-glucopyranoside), and hispidulin 8-C-(6-O-acetyl-β-glucopyranoside) from the leaves of H. rhodopensis was carried out. The aim of this study was to investigate cyto-protective and antioxidant effects of isolated compounds.
Materials and Methods:
Antioxidant activity of isolated substances was examined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals; ferric reducing antioxidant power (FRAP) assay and inhibition of lipid peroxidation (LPO) in linoleic acid system by ferric thyocianate method. The compounds were investigated for their possible protective and antioxidant effects against tert-butyl hydroperoxide-induced oxidative stress in isolated rat hepatocytes. The levels of thiobarbituric acid reactive substances were assayed as an index of LPO. Lactate dehydrogenase leakage, cell viability, and reduced glutathione depletion were used as signs of cytotoxicity.
Results:
Myconoside demonstrated the highest DPPH radical scavenging, ABTS, FRAP, and antioxidant activity in linoleic acid system as well as the highest and statistically most significant protection and antioxidant activity against the toxic agent.
Conclusion:
Phenolic compounds isolated from H. rhodopensis demonstrated significant cytoprotective, radical scavenging potential, and inhibit lipid peroxidation, moreover, myconoside was found to be a new powerful natural antioxidant.
doi:10.4103/0973-1296.117822
PMCID: PMC3793333  PMID: 24124280
Antioxidant activity flavone-C-glycosides; cytoprotection; Haberlea rhodopensis; myconoside
5.  Mutagenicity and antimutagenicity of six Brazilian Byrsonima species assessed by the Ames test 
Background
In various regions of Brazil, several species of the genus Byrsonima (Malpighiaceae) are widely used to treat gastrointestinal complications. This genus has about 150 species of shrubs and trees distributed over the entire Neotropical region. Various biological activities have been identified in these plants, especially antioxidant, antimicrobial and topical and systemic anti-inflammatory activities. The aim of this study was to investigate the mutagenicity and antimutagenicity of hydroalcoholic leaf extracts of six species of Byrsonima: B. verbascifolia, B. correifolia, B. coccolobifolia, B. ligustrifolia, B. fagifolia and B. intermedia by the Salmonella microsome assay (Ames test).
Methods
Mutagenic and antimutagenic activity was assessed by the Ames test, with the Salmonella typhimurium tester strains TA100, TA98, TA97a and TA102, with (+S9) and without (-S9) metabolization, by the preincubation method.
Results
Only B. coccolobifolia and B. ligustrifolia showed mutagenic activity. However, the extracts of B. verbascifolia, B. correifolia, B. fagifolia and B. intermedia were found to be strongly antimutagenic against at least one of the mutagens tested.
Conclusions
These results contribute to valuable data on the safe use of medicinal plants and their potential chemopreventive effects. Considering the excellent antimutagenic activities extracted from B. verbascifolia, B. correifolia, B. fagifolia and B. intermedia, these extracts are good candidate sources of chemopreventive agents. However, B. coccolobifolia and B. ligustrifolia showed mutagenic activity, suggesting caution in their use.
doi:10.1186/1472-6882-14-182
PMCID: PMC4052806  PMID: 24898326
Salmonella/microsome assay; Chemoprevention; Medicinal plants
6.  Determination of the antimutagenicity of an aqueous extract of Rhizophora mangle L. (Rhizophoraceae), using in vivo and in vitro test systems 
Genetics and Molecular Biology  2010;33(1):176-181.
An aqueous extract of Rhizophora mangle L. bark is used as raw material in pottery making in the State of Espirito Santo, Brazil. This extract presents large quantities of tannins, compounds possessing antioxidant properties. Tannin antioxidant activity, as a plant chemical defense mechanism in the process of stabilizing free radicals, has been an incentive to studies on anti-mutagenicity. The present work aimed to evaluate possible antimutagenic activity of a R. mangle aqueous extract, using the Allium cepa test-system and micronuclear (MN) assay with blockage of cytokinesis in Chinese hamster ovary cells (CHO-K1). The Allium cepa test-system indicated antimutagenic activity against the damage induced by the mutagenic agent methyl methanesulfonate. A reduction in both MN cell frequency and chromosome breaks occurred in both the pre and post-treatment protocols. The MN testing of CHO-K1 cells revealed anti-mutagenic activity of the R. mangle extract against methyl methanesulfonate and doxorubicin in pre, simultaneous and post-treatment protocols. These results suggest the presence of phyto-constituents in the extract presenting demutagenic and bio-antimutagenic activities. Since the chemical constitution of Rhizophora mangle species presents elevated tannin content, it is highly probable that these compounds are the antimutagenic promoters themselves.
doi:10.1590/S1415-47572009005000106
PMCID: PMC3036080  PMID: 21637623
Rhizophora mangle; antimutagenicity; Allium cepa; CHO-K1
7.  Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts 
Background
Plants play a significant role in maintaining human health and improving the quality of human life. They serve humans well as valuable components of food, as well as in cosmetics, dyes, and medicines. In fact, many plant extracts prepared from plants have been shown to exert biological activity in vitro and in vivo. The present study explored antioxidant and antigenotoxic effects of Daphne gnidium leaf extracts.
Methods
The genotoxic potential of petroleum ether, chloroform, ethyl acetate, methanol and total oligomer flavonoid (TOF) enriched extracts from leaves of Daphne gnidium, was assessed using Escherichia coli PQ37. Likewise, the antigenotoxicity of the same extracts was tested using the “SOS chromotest test”. Antioxidant activities were studied using non enzymatic and enzymatic method: NBT/Riboflavine and xantine oxidase.
Results
None of the different extracts produced a genotoxic effect, except TOF extract at the lowest tested dose. Our results showed that D. gnidium leaf extracts possess an antigenotoxic effect against the nitrofurantoin a mutagen of reference. Ethyl acetate and TOF extracts were the most effective in inhibiting xanthine oxidase activity. While, methanol extract was the most potent superoxide scavenger when tested with the NBT/Riboflavine assay.
Conclusions
The present study has demonstrated that D. gnidium leaf extract possess antioxidant and antigenotoxic effects. These activities could be ascribed to compounds like polyphenols and flavonoid. Further studies are required to isolate the active molecules.
doi:10.1186/1472-6882-12-153
PMCID: PMC3462690  PMID: 22974481
Daphne gnidium; Antioxidant; Antigenotoxic
8.  Potential antimutagenic activity of berberine, a constituent of Mahonia aquifolium 
Background
As part of a study aimed at developing new pharmaceutical products from natural resources, the purpose of this research was twofold: (1) to fractionate crude extracts from the bark of Mahonia aquifolium and (2) to evaluate the strength of the antimutagenic activity of the separate components against one of the common direct-acting chemical mutagens.
Methods
The antimutagenic potency was evaluated against acridine orange (AO) by using Euglena gracilis as an eukaryotic test model, based on the ability of the test compound/fraction to prevent the mutagen-induced damage of chloroplast DNA.
Results
It was found that the antimutagenicity of the crude Mahonia extract resides in both bis-benzylisoquinoline (BBI) and protoberberine alkaloid fractions but only the protoberberine derivatives, jatrorrhizine and berberine, showed significant concentration-dependent inhibitory effect against the AO-induced chloroplast mutagenesis of E. gracilis. Especially berberine elicited, at a very low dose, remarkable suppression of the AO-induced mutagenicity, its antimutagenic potency being almost three orders of magnitude higher when compared to its close analogue, jatrorrhizine. Possible mechanisms of the antimutagenic action are discussed in terms of recent literature data. While the potent antimutagenic activity of the protoberberines most likely results from the inhibition of DNA topoisomerase I, the actual mechanism(s) for the BBI alkaloids is hard to be identified.
Conclusions
Taken together, the results indicate that berberine possesses promising antimutagenic/anticarcinogenic potential that is worth to be investigated further.
doi:10.1186/1472-6882-2-2
PMCID: PMC101396  PMID: 11943071
9.  Comparative study of the antimutagenic properties of vitamins C and E against mutation induced by norfloxacin 
BMC Pharmacology  2008;8:2.
Background
Norfloxacin like other fluoroquinolones, is known to be mutagenic for Salmonella typhimurium TA102 strain. This mutagenic effect is due to free oxygen radicals (ROS), because it is inhibited by antioxidants such as β-carotene and naturally occurring antioxidants of Roheo discolor and other plants. The aim of this work was to evaluate combination therapy with norfloxacin and vitamins C and E, to reduce the possible genotoxic risk associated with fluoroquinolones.
Method
The antimutagenicity of α-tocoferol (Vitamin E) and ascorbic acid (Vitamin C) against norfloxacin-induced mutation was evaluated on S. typhimurium TA102, using the aroclor-1254-induced S9 rat liver homogenate. The minimum inhibitory concentration (MIC) a measure of the bactericidal effect of norfloxacin, was obtained in vitro by the plate dilution method.
Results
Vitamin E (0.5 mg per Petri dish) induced a statistically significant reduction (P < 0.001) in the mutagenicity of norfloxacin, whereas Vitamin C (1 mg per Petri dish) had no such effect. Neither of these vitamins altered the MIC for norfloxacin against 25 uropathogenic strains of Escherichia coli.
Conclusion
These results suggest that Vitamin E is a potent antimutagen that would be worthwhile being used in conjunction with fluoroquinolone treatment. The minimal antimutagenic effect of Vitamin C observed under these experimental conditions may have been because Vitamin C in the Ames test induces a Fenton reaction, and if divalent cations are present, it can act as a pro-oxidant rather than an antioxidant. Ascorbic acid should be further evaluated in the presence of different divalent cations concentrations.
doi:10.1186/1471-2210-8-2
PMCID: PMC2276188  PMID: 18267022
10.  Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2,2′-bichalcophenes and aza-analogs 
Evaluation of the potential antimutagenic activities of new compounds by Ames assay has been of great interest for the development of novel therapeutics for many diseases including cancer. Ten novel bichalcophenes with in vitro and in vivo broad spectrum activities against various microbial strains were investigated throughout the present study for their cytotoxic, antioxidant, and antimutagenic potential in a Salmonella reverse mutation assay system against sodium azide (NaN3) and benzo[a]pyrene (B[a]P). At nontoxic concentrations, all bichalcophenes alone or in combination with NaN3 (1 μg/plate) or B[a]P (20 μM) with S9 mix were not mutagenic. The bichalcophenes significantly reduced NaN3- and B[a]P-induced mutagenicity under pre-exposure and co-exposure conditions in a concentration-independent manner. However, the antimutagenic activity of bichalcophenes against B[a]P varied depending on the exposure regimen, being more effective under pre-exposure conditions. The antimutagenic activity was correlated with a high antioxidant activity that could promote the DNA repair system. Bichalcophenes are least likely to interfere with the microsomal bioactivation of B[a]P. Monocationic bichalcophenes were superior to the corresponding mononitriles as antimutagenic agents against both mutagens investigated, possibly due to the higher nucleophilic centers they have which could bind and protect the bacterial DNA. Three monocationic compounds were shown to have a strong anticancer activity against the 58 cell line. Based on the results of the present investigation, monocationic compounds (1, 4, and 5B) will be selected for further time consuming and costly chemoprevention studies in animal models.
doi:10.2147/DDDT.S40129
PMCID: PMC3573810  PMID: 23430305
bichalcophenes; Salmonella typhimurium; sodium azide; benzo[a]pyrene; antimutagenicity
11.  Antioxidant Capacity and Antimutagenic Potential of Murraya koenigii 
BioMed Research International  2013;2013:263509.
It is well known that the intake of antioxidants with increased consumption of fruits and vegetables and medicinal herbs contributes towards reduced risk of certain diseases including cancers. This study aims to evaluate the broad-spectrum antioxidant and antimutagenic activities as well as to elucidate phytochemical profile of an Indian medicinal plant Murraya koenigii (curry) leaves. Leaves of the plant were successively fractionated in various organic solvents. Benzene fraction demonstrated the highest phenolic content followed by petroleum ether. The benzene fraction showed maximum antioxidant activity in all tested assays, namely, phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, ferric reducing antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays. Based on the promising broad-spectrum antioxidant activity, benzene fraction was further evaluated for antimutagenic activity and showed a dose-dependent antimutagenic response in Ames Salmonella mutagenicity assay. It inhibited 72–86% mutagenicity induced by sodium azide, methyl methanesulfonate, benzo(a)pyrene, and 2-aminoflourene at the maximum tested concentration (100 μg/mL) in Salmonella typhimurium tester strains. At least 21 compounds were detected by GC/MS. The findings clearly demonstrated that phenolic-rich benzene fraction has promising broad-spectrum antioxidant and antimutagenic property and needs further evaluation to exploit its therapeutic potential.
doi:10.1155/2013/263509
PMCID: PMC3703397  PMID: 23853769
12.  Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea 
Background
In South Africa, Calpurnia aurea (Ait.) Benth is used to destroy lice and to relieve itches, to destroy maggots and to treat allergic rashes, particularly those caused by caterpillars. Antioxidants play an important role protecting against damage by reactive oxygen species. Plants containing flavonoids have been reported to possess strong antioxidant properties.
Methods
The antibacterial, antioxidant activities and phenolic contents of the methanol extracts of the leaves and stems of Calpurnia aurea were evaluated using in vitro standard methods. Spectrophotometry was the basis for the determinations of total phenol, total flavonoids, flavonols, and proanthocyanidins. Tannins, quercetin and catechin equivalents were used for these parameters. The antioxidant activities of the stem extract of Calpurnia aurea were determined by ABTS, DPPH, and ferrous reducing antioxidant property (FRAP) methods. Laboratory isolates of 10 bacteria species which included five Gram-positive and five Gram-negative strains were used to assay for antibacterial activity of this plant.
Results
The results from this study showed that the antioxidant activities of the stem extract of Calpurnia aurea as determined by the total phenol, flavonoids, and FRAP methods were higher than that of the leaves. On the other hand, the leaf extract of the plant has higher level of total flavonols and proanthocyanidins. The leaf extract also has higher radical scavenging activity as shown in 1, 1-Diphenyl-2-picrylhydrazyl (DPPH), and 2,2¿-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS) assay. The leaf extract showed activity against seven of the bacterial organisms.
Conclusion
The results from this study indicate that the leaves and stem extracts of Calpurnia aurea possess antioxidant properties and could serve as free radical inhibitors or scavenger or, acting possibly as primary antioxidants. Although, the antibacterial properties of Calpurnia aurea are not as effective as the standard drugs- Chloramphenicol and Streptomycin, they still possess some activity against bacterial strains used in this study. Calpurnia aurea may therefore be a good candidate for functional foods as well as pharmaceutical plant-based products.
doi:10.1186/1472-6882-8-53
PMCID: PMC2556645  PMID: 18803865
13.  Evaluation of comparative and combined antimutagenic potential of vitamin C and vitamin E using histidine mutant Salmonella typhimurium strains 
Chemoprevention represents a new intervention strategy to control some type of carcinogenesis especially in subjects at high risk for cancer development. Experimental and epidemiological data indicate that a variety of nutritional factors including vitamin C and E are effective to lower the risk of some types of cancer. However large prospective studies have failed to find such significant association. A comparative and combined in vitro antimutagenic potential of two antioxidant vitamins ascorbic acid (vitamin C) and α-tocopherol (vitamin E) were evaluated using Ame’s Salmonella typhimurium test assay. Directly acting mutagens such as sodium azide (NaN3) and 4-Nitro-o-phenylenediamine (NPDA), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were used to induce mutation in salmonella strains TA 98 and TA 100. Vitamin C significantly (P < 0.01) and dose dependently inhibited the mutagenicity induced by all the three mutagens. The percent inhibitions of vitamin C at 15 mg/plate were 33.8% (NaN3), 52.5 % (MNNG) and 55.4 % (NPDA). Vitamin E (15 mg/plate) was effective to inhibit mutagenicity induced by NaN3 and MNNG but did not inhibit mutation induced by NPDA. Combination of vitamins (vitamin C plus vitamin E) produced only an additive antimutagenic activity when compared to their activity at 5 mg/plate. The results of the study concluded that vitamin C is a better antimutagenic agent than vitamin E and combination of vitamins did not produce any synergistic activity.
doi:10.1007/s12291-008-0006-6
PMCID: PMC3453667  PMID: 23105714
Antimutagenicity; Antioxidant; Cancer chemoprevention; Vitamins
14.  Punicalagin and Ellagic Acid Demonstrate Antimutagenic Activity and Inhibition of Benzo[a]pyrene Induced DNA Adducts 
BioMed Research International  2014;2014:467465.
Punicalagin (PC) is an ellagitannin found in the fruit peel of Punica granatum. We have demonstrated antioxidant and antigenotoxic properties of Punica granatum and showed that PC and ellagic acid (EA) are its major constituents. In this study, we demonstrate the antimutagenic potential, inhibition of BP-induced DNA damage, and antiproliferative activity of PC and EA. Incubation of BP with rat liver microsomes, appropriate cofactors, and DNA in the presence of vehicle or PC and EA showed significant inhibition of the resultant DNA adducts, with essentially complete inhibition (97%) at 40 μM by PC and 77% inhibition by EA. Antimutagenicity was tested by Ames test. PC and EA dose-dependently and markedly antagonized the effect of tested mutagens, sodium azide, methyl methanesulfonate, benzo[a]pyrene, and 2-aminoflourine, with maximum inhibition of mutagenicity up to 90 percent. Almost all the doses tested (50–500 μM) exhibited significant antimutagenicity. A profound antiproliferative effect on human lung cancer cells was also shown with PC and EA. Together, our data show that PC and EA are pomegranate bioactives responsible for inhibition of BP-induced DNA adducts and strong antimutagenic, antiproliferative activities. However, these compounds are to be evaluated in suitable animal model to assess their therapeutic efficacy against cancer.
doi:10.1155/2014/467465
PMCID: PMC4052943  PMID: 24949451
15.  Antimutagenic compounds and their possible mechanisms of action 
Journal of Applied Genetics  2014;55:273-285.
Mutagenicity refers to the induction of permanent changes in the DNA sequence of an organism, which may result in a heritable change in the characteristics of living systems. Antimutagenic agents are able to counteract the effects of mutagens. This group of agents includes both natural and synthetic compounds. Based on their mechanism of action among antimutagens, several classes of compounds may be distinguished. These are compounds with antioxidant activity; compounds that inhibit the activation of mutagens; blocking agents; as well as compounds characterized with several modes of action. It was reported previously that several antitumor compounds act through the antimutagenic mechanism. Hence, searching for antimutagenic compounds represents a rapidly expanding field of cancer research. It may be observed that, in recent years, many publications were focused on the screening of both natural and synthetic compounds for their beneficial muta/antimutagenicity profile. Thus, the present review attempts to give a brief outline on substances presenting antimutagenic potency and their possible mechanism of action. Additionally, in the present paper, a screening strategy for mutagenicity testing was presented and the characteristics of the most widely used antimutagenicity assays were described.
doi:10.1007/s13353-014-0198-9
PMCID: PMC3990861  PMID: 24615570
Antimutagen; Antimutagenicity; DNA damage; Mutagen; Mutagenicity
16.  Bilirubin and Related Tetrapyrroles Inhibit Food-Borne Mutagenesis: A Mechanism for Antigenotoxic Action against a Model Epoxide 
Journal of Natural Products  2013;76(10):1958-1965.
Bilirubin exhibits antioxidant and antimutagenic effects in vitro. Additional tetrapyrroles that are naturally abundant were tested for antigenotoxicity in Salmonella. Un-/conjugated bilirubin (1 and 2), biliverdin (4), bilirubin and biliverdin dimethyl esters (3 and 5), stercobilin (6), urobilin (7), and protoporphyrin (8) were evaluated at physiological concentrations (0.01–2 μmol/plate; 3.5–714 μM) against the metabolically activated food-borne mutagens aflatoxin B1 (9) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (10). Compound 8 most effectively inhibited the mutagenic effects of 9 in strain TA102 and 10 in TA98. Compound 7 inhibited 9-induced mutagenesis in strain TA98 most effectively, while 1 and 4 were promutagenic in this strain. This is likely due to their competition with mutagens for phase-II detoxification. Mechanistic investigations into antimutagenesis demonstrate that tetrapyrroles react efficiently with a model epoxide of 9, styrene epoxide (11), to form covalent adducts. This reaction is significantly faster than that of 11 with guanine. Hence, the evaluated tetrapyrroles inhibited genotoxicity induced by poly-/heterocyclic amines found in foods, and novel evidence obtained in the present investigation suggests this may occur via chemical scavenging of genotoxic metabolites of the mutagens investigated. This may have important ramifications for maintaining health, especially with regard to cancer prevention.
doi:10.1021/np4005807
PMCID: PMC3812704  PMID: 24156291
17.  Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra 
Background
Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island) for their in vitro anticancer, antimicrobial and antioxidant activities.
Methods
The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7) by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done.
Results
Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values < 50 μg/ml. The greatest antimicrobial activity was exhibited by extracts from Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia, Euclea divinorum, Euphorbia socotrana, Leucas samhaensis, Leucas virgata, Rhus thyrsiflora, and Teucrium sokotranum with inhibition zones > 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential at low concentrations (more than 80% at 50 μg/ml).
Conclusion
Our results show once again that medicinal plants can be promising sources of natural products with potential anticancer, antimicrobial and antioxidative activity. The results will guide the selection of some plant species for further pharmacological and phytochemical investigations.
doi:10.1186/1472-6882-9-7
PMCID: PMC2667473  PMID: 19320966
18.  Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamide-induced chromosomal aberrations in Allium cepa L. cells 
In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals’ scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P≤0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent.
doi:10.1631/jzus.B1000315
PMCID: PMC3208171  PMID: 22042656
Allium cepa; Antioxidants; Chromosomal aberration; Cyclophosphamide; Mitotic index
19.  Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera 
Background
Acokanthera oppositifolia Lam (family: Apocynaceae) is a shrub or small tree with white latex, and the leaves of this plant are used in the form of a snuff to treat headaches and in infusions for abdominal pains and convulsions and septicaemia. Adenia gummifera Harv of the family Passifloraceae is a distinctive woody climber whose infusions are used as emetics and are said to help with some forms of depression. Lipid peroxidation has gained more importance today because of its involvement in pathogenesis of many diseases. Free radicals are the main agents in lipid peroxidation. Antioxidants thus play an important role of protecting the human body against damage by the free radicals. Plants containing phenolic compounds have been reported to possess strong antioxidant properties.
Methods
The antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera were evaluated using in vitro standard procedures. Spectrophotometry was the basis for the determinations of total phenol, total flavonoids, flavonols, and proanthocyanidins. Tannins, quercetin and catechin equivalents were used for these parameters. The antioxidant activities of the stem extract of Acokanthera oppositifolia were determined by the 2,2'-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS), 1,1-Diphenyl-2-picrylhydrazyl (DPPH), and ferrous reducing antioxidant property (FRAP) methods.
Results
The results from this study showed that the antioxidant activities of the stem extract of Acokanthera oppositifolia as determined by the 1,1-Diphenyl-2-picrylhydrazyl (DPPH), and ferrous reducing antioxidant property (FRAP) methods, were higher than that of Adenia gummifera. The levels of total phenols and flavonols for A. oppositifolia were also higher. On the other hand, the stem extract of Adenia gummifera had higher level of total flavonoids and proanthocyanidins than that of Acokanthera oppositifolia. The 2, 2'-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS) activities of the 2 plant extracts were similar and comparable to that of BHT.
Conclusion
Thus, the present results indicate clearly that the extracts of Acokanthera oppositifolia and Adenia gummifera possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. This study has to some extent validated the medicinal potential of the stems of Acokanthera oppositifolia and Adenia gummifera.
doi:10.1186/1472-6882-8-54
PMCID: PMC2566552  PMID: 18817535
20.  Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia 
Background
Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed.
Methods
The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i) the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH) and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) and (ii) ferric reducing power. Total phenolic and total flavonoid contents were also determined.
Results
Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml), Beyeria leshnaultii (0.39 μg/ml), Mucuna pruriens (0.8 μg/ml) and Boerhaavia diffusa (1.72 μg/ml) exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796.
Conclusion
The results obtained in this study showed that most of the plant extracts have good potential for the management of hyperglycemia, diabetes and the related condition of oxidative stress.
doi:10.1186/1472-6882-12-77
PMCID: PMC3502323  PMID: 22713130
Anti-diabetic; Enzyme inhibition; Antioxidant
21.  Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L. (St. John’s wort), on vegetal and animal test systems 
Background
St. John’s wort (Hypericum perforatum L.) is an herbaceous plant that is native to Europe, West Asia and North Africa and that is recognized and used worldwide for the treatment of mild and moderate depression. It also has been shown to be therapeutic for the treatment of burns, bruises and swelling and can be used for its wound healing, antiviral, antimicrobial, antioxidant, analgesic, hepato-protective and anxiolytic properties. The aim of this study was to evaluate the potential cytotoxic, mutagenic and antimutagenic action of H. Perforatum.
Methods
Meristematic cells were used as the test system for Allium cepa L., and bone marrow cells from Rattus norvegicus, ex vivo, were used to calculate the mitotic index and the percentage of chromosomal aberration. Statistical analysis was performed using the chi-square test.
Results
This medicinal plant had no cytotoxic potential in the vegetal test system evaluated. In the animal test system, none of the acute treatments, including intraperitoneal gavage and subchronic gavage, were cytotoxic or mutagenic. Moreover, this plant presented antimutagenic activity against the clastogenic action of cyclophosphamide, as confirmed in pre-treatment (76% reduction in damage), simultaneous treatment (95%) and post-treatment (97%).
Conclusions
Thus, the results of this study suggest that the administration of H. perforatum, especially by gavage similar to oral consumption used by humans, is safe and with beneficial antimutagenic potential.
doi:10.1186/1472-6882-13-97
PMCID: PMC3653805  PMID: 23647762
Chromosomal aberration; Pharmacological action; Wistar rats; Medicinal plant; Allium cepa L.; Mitotic index
22.  Antimutagenic and mutagenic potentials of Chinese radish. 
Environmental Health Perspectives  1993;101(Suppl 3):247-252.
The edible part of fresh Chinese radish was chopped into small pieces, lyophilized, and then extracted sequentially with hexane, chloroform, and methanol. The solvent in each fraction was removed by evaporation under reduced pressure at 50-55 degrees C, and the residue was dissolved in dimethylsufoxide just before being tested for antimutagenicity as well as mutagenicity using the Salmonella/mammalian microsome mutagenicity test. We found that none of the three fractions exhibited any mutagenicity toward S. typhimurium strains TA98 and TA100 when tested either in the presence or absence of S-9 mix. Interestingly, however, hexane and chloroform extracts could strongly inhibit the mutagenicities of both direct mutagens (e.g., 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide and sodium azide) and indirect mutagens (e.g., aflatoxin B1). In contrast, however, these two fractions did not inhibit the mutagenicity of benzo[a]pyrene, which is also an indirect mutagen. Both hexane and chloroform extracts could also markedly inhibit the activities of rat liver aniline hydroxylase and aminopyrine demethylase. The methanol fraction could inhibit neither the mutagenicities of direct or indirect mutagens tested nor the activities of those two rat liver enzymes. Results of the present study demonstrate that Chinese radish may not contain any mutagenic compound but does contain some nonpolar compounds with antimutagenic activity toward both direct and indirect mutagens. In addition, the antimutagenic activity toward aflatoxin B1 may be partly due to the inhibition of enzymes necessary for activation of this mutagen.
PMCID: PMC1521162  PMID: 8143625
23.  Antioxidant Capacities, Phenolic Profile and Cytotoxic Effects of Saxicolous Lichens from Trans-Himalayan Cold Desert of Ladakh 
PLoS ONE  2014;9(6):e98696.
Fourteen saxicolous lichens from trans-Himalayan Ladakh region were identified by morpho-anatomical and chemical characteristics. The n-hexane, methanol and water extracts of the lichens were evaluated for their antioxidant capacities. The lichen extracts showing high antioxidant capacities and rich phenolic content were further investigated to determine their cytotoxic activity on human HepG2 and RKO carcinoma cell lines. The ferric reducing antioxidant power (FRAP), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities and β-carotene-linoleic acid bleaching property exhibited analogous results where the lichen extracts showed high antioxidant action. The lichen extracts were also found to possess good amount of total proanthocyanidin, flavonoid and polyphenol. The methanolic extract of Lobothallia alphoplaca exhibited highest FRAP value. Methanolic extract of Xanthoparmelia stenophylla showed the highest ABTS radical scavenging capacity. The n-hexane extract of Rhizoplaca chrysoleuca exhibited highest DPPH radical scavenging capacity. Highest antioxidant capacity in terms of β-carotene linoleic acid bleaching property was observed in the water extract of Xanthoria elegans. Similarly, Melanelia disjuncta water extract showed highest NO scavenging capacity. Among n-hexane, methanol and water extracts of all lichens, the methanolic extract of Xanthoparmelia mexicana showed highest total proanthocyanidin, flavonoid and polyphenol content. From cytotoxic assay, it was observed that the methanolic extracts of L. alphoplaca and M. disjuncta were exhibiting high cytotoxic effects against cancer cell growth. Similarly, the water extract of Dermatocarpon vellereum, Umbilicaria vellea, X. elegans and M. disjuncta and the methanolic extract of M. disjuncta and X. stenophylla were found to possess high antioxidant capacities and were non-toxic and may be used as natural antioxidants for stress related problems. Our studies go on to prove that the unique trans-Himalayan lichens are a hitherto untapped bioresource with immense potential for discovery of new chemical entities, and this biodiversity needs to be tapped sustainably.
doi:10.1371/journal.pone.0098696
PMCID: PMC4061001  PMID: 24937759
24.  Cancer Chemopreventive Mechanisms of Tea Against Heterocyclic Amine Mutagens from Cooked Meat (44373) 
Cooking meat and fish under normal conditions produces heterocyclic amine mutagens, several of which have been shown to induce colon tumors in experimental animals. In our search for natural dietary components that might protect against these mutagens, it was found that green tea and black tea inhibit the formation of heterocyclic amine-induced colonic aberrant crypt foci (ACF) in the rat. Since ACF are considered to be putative preneoplastic lesions, we examined the inhibitory mechanisms of tea against the heterocyclic amines. In the initial studies using the Salmonella mutagenicity assay, green tea and black tea inhibited according to the concentration of tea leaves during brewing and the time of brewing; a 2–3-min brew of 5% green tea (w/v) was sufficient for >90% antimutagenic activity. N-hydroxylated heterocyclic amines, which are direct-acting mutagens in Salmonella, were inhibited by complete tea beverage and by individual components of tea, such as epigallocatechin-3-gallate (EGCG). Inhibition did not involve enhanced mutagen degradation, and EGCG and other catechins complexed only weakly with the mutagens, suggesting electrophile scavenging as an alternative mechanism. Enzymes that contribute to the metabolic activation of heterocyclic amines, namely microsomal NADPH-cytochrome P450 reductase and N,O-acetyltransferase, were inhibited by tea in vitro. Studies in vivo established that tea also induces cytochromes P450 and Phase II enzymes in a manner consistent with the rapid metabolism and excretion of heterocyclic amines. Collectively, the results indicate that tea possesses anticarcinogenic activity in the colon, and this most likely involves multiple inhibitory mechanisms.
PMCID: PMC2268949  PMID: 10202396
25.  Assessment of genotoxicity and antigenotoxicity of an aqueous extract of Cleistocalyx nervosum var. paniala in in vitro and in vivo models 
Interdisciplinary Toxicology  2012;5(4):201-206.
Cleistocalyx nervosum var. paniala, an edible fruit found in Northern Thailand, contains high amounts of phenolic compounds with in vitro antioxidant activity. The aqueous extract of the ripe fruit was evaluated for its safety and beneficial effects using genotoxicity and toxicity tests. The C. nervosum extract was not only non-mutagenic in Salmonella typhimurium strains TA98 and TA100 in the presence and absence of metabolic activation, but exhibited also moderate antimutagenic effects against aflatoxin B1 and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline-induced mutagenesis. Electrospray ionization-mass spectrometric analysis revealed the major anthocyanins, which included cyanidin-3,5-diglucoside, cyanidin-3-glucoside and cyanidin-5-glucoside. The administration of C. nervosum at concentration of 5,000 mg/kg bw did not induce acute toxicity in rats. A liver micronucleus test was performed to detect clastogenicity and anticlastogenicity. The extract in the dose of 1,000 mg/kg did not cause micronucleus formation in the liver of rats. Furthermore, in rats administered 100–1,000 mg/kg of the extract, no anticlastogenic effect against diethylnitrosamine-induced hepatic micronucleus formation was observed. These studies provide data concerning the safety and antimutagenic potency of an aqueous extract of C. nervosum fruit.
doi:10.2478/v10102-012-0033-2
PMCID: PMC3600524  PMID: 23554564
Cleistocalyx nervosum var. paniala; acute toxicity; ames test; liver micronucleus assay

Results 1-25 (587805)