PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (755690)

Clipboard (0)
None

Related Articles

1.  Molecular Inferences Suggest Multiple Host Shifts of Rabies Viruses from Bats to Mesocarnivores in Arizona during 2001–2009 
PLoS Pathogens  2012;8(6):e1002786.
In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.
Author Summary
Host shifts of the rabies virus (RABV) from bats to carnivores are important for our understanding of viral evolution and emergence, and have significant public health implications, particularly for the areas where “terrestrial” rabies has been eliminated. In this study we addressed several rabies outbreaks in carnivores that occurred in the Flagstaff area of Arizona during 2001–2009, and caused by the RABV variant associated with big brown bats (Eptesicus fuscus). Based on phylogenetic analysis we demonstrated that each outbreak resulted from a separate introduction of bat RABV into populations of carnivores. No post-shift changes in viral genomes were detected under the positive selection analysis. Trying to answer the question why certain bat RABV variants are capable for host shifts to carnivores and other variants are not, we developed a convergent evolution analysis, and implemented it for multiple RABV lineages circulating worldwide. This analysis identified several amino acids in RABV proteins which may facilitate host shifts from bats to carnivores. Precise roles of these amino acids require additional investigations, using reverse genetics and animal experimentation. In general, our approach and the results obtained can be used for prediction of host shifts and emergence of other zoonotic pathogens.
doi:10.1371/journal.ppat.1002786
PMCID: PMC3380930  PMID: 22737076
2.  Bat Rabies in Guatemala 
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.
Author Summary
In this study we provide results of the first active and extensive surveillance effort for rabies virus (RABV) circulation among bats in Guatemala. The survey included multiple geographic areas and multiple species of bats, to assess the broader public and veterinary health risks associated with rabies in bats in Guatemala. RABV was isolated from vampire bats (Desmodus rotundus) collected in two different locations in Guatemala. Sequencing of the isolates revealed a closer relationship to Mexican and Central American vampire bat isolates than to South American isolates. The detection of RABV neutralizing antibodies in 11 species, including insectivorous, frugivorous, and sanguivorous bats, demonstrates viral circulation in both hematophagous and non-hematophagous bat species in Guatemala. The presence of bat RABV in rural communities requires new strategies for public health education regarding contact with bats, improved laboratory-based surveillance of animals associated with human exposures, and novel techniques for modern rabies prevention and control. Additionally, healthcare practitioners should emphasize the collection of a detailed medical history, including questions regarding bat exposure, for patients presenting with clinical syndromes compatible with rabies or any clinically diagnosed progressive encephalitis.
doi:10.1371/journal.pntd.0003070
PMCID: PMC4117473  PMID: 25080103
3.  Enzootic and Epizootic Rabies Associated with Vampire Bats, Peru 
Emerging Infectious Diseases  2013;19(9):1463-1469.
During the past decade, incidence of human infection with rabies virus (RABV) spread by the common vampire bat (Desmodus rotundus) increased considerably in South America, especially in remote areas of the Amazon rainforest, where these bats commonly feed on humans. To better understand the epizootiology of rabies associated with vampire bats, we used complete sequences of the nucleoprotein gene to infer phylogenetic relationships among 157 RABV isolates collected from humans, domestic animals, and wildlife, including bats, in Peru during 2002–2007. This analysis revealed distinct geographic structuring that indicates that RABVs spread gradually and involve different vampire bat subpopulations with different transmission cycles. Three putative new RABV lineages were found in 3 non–vampire bat species that may represent new virus reservoirs. Detection of novel RABV variants and accurate identification of reservoir hosts are critically important for the prevention and control of potential virus transmission, especially to humans.
doi:10.3201/eid1909.130083
PMCID: PMC3810916
rabies; molecular epidemiology; bats; Peru; viruses; zoonoses; vampire bats
4.  Ecology and Geography of Transmission of Two Bat-Borne Rabies Lineages in Chile 
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.
Author Summary
The situation of rabies in America has been changing: rabies in dogs has decreased considerably, but bats are increasingly documented as natural reservoirs of other rabies variants. A significant gap exists in understanding of bat-borne rabies in Latin America. We identified bat species known to be connected with enzootic rabies with different antigenic variants in Chile, and compiled large-scale data sets by which to test for ecological niche differences among virus lineages and bat hosts. Our results begin to characterize important ecological factors affecting rabies distribution; modeling rabies in Chile allows comparisons across different latitudes and diverse landscapes. We found that rabies virus strains are found in similar environments, regardless of the bat host involved. This research improves understanding of bat-borne rabies dynamics, and important step towards preventing and controlling this and other emergent diseases linked to bats.
doi:10.1371/journal.pntd.0002577
PMCID: PMC3861194  PMID: 24349592
5.  Evolutionary History of Rabies in Ghana 
Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme.
Author Summary
Rabies virus (RABV) is widespread throughout Africa, with the domestic dog being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages (Africa 1 and 2) are thought to circulate in western and central Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected from 2007 to 2009. In addition we developed and tested a novel molecular diagnostic assay for the detection of RABV, which offers an alternative RABV diagnostic tool for African laboratories. Our analysis of the genetic sequences obtained confirmed all viruses to be RABV, however, unlike previous studies we detected two sub-Saharan African RABV viruses (Africa 1 and 2) in this cohort, which included a single virus previously undetected in West Africa. We suggest that there has been repeated introduction of new RABVs into Ghana over a prolonged period from other West African countries and more recently from eastern Africa. These observations further highlight the problems of individual developing nations implementing rabies control programmes at a local, rather than regional level.
doi:10.1371/journal.pntd.0001001
PMCID: PMC3071360  PMID: 21483707
6.  Molecular Diversity of Rabies Viruses Associated with Bats in Mexico and Other Countries of the Americas 
Journal of Clinical Microbiology  2006;44(5):1697-1710.
Bat rabies and its transmission to humans and other species in Mexico were investigated. Eighty-nine samples obtained from rabid livestock, cats, dogs, and humans in Mexico were studied by antigenic typing and partial sequence analysis. Samples were further compared with enzootic rabies associated with different species of bats in the Americas. Patterns of nucleotide variation allowed the definition of at least 20 monophyletic clusters associated with 9 or more different bat species. Several lineages associated with distinctive antigenic patterns were found in rabies viruses related to rabies in vampire bats in Mexico. Vampire bat rabies virus lineages associated with antigenic variant 3 are widely spread from Mexico to South America, suggesting these lineages as the most likely ancestors of vampire bat rabies and the ones that have been moved by vampire bat populations throughout the Americas. Rabies viruses related to Lasiurus cinereus, Histiotus montanus, and some other not yet identified species of the genus Lasiurus were found circulating in Mexico. Long-range dissemination patterns of rabies are not necessarily associated with migratory bat species, as in the case of rabies in Desmodus rotundus and Histiotus montanus. Human rabies was associated with vampire bat transmission in most cases, and in one case, rabies transmission from free-tailed bats was inferred. The occurrence of rabies spillover from bats to domestic animals was also demonstrated. Genetic typing of rabies viruses allowed us to distinguish trends of disease dissemination and to address, in a preliminary fashion, aspects of the complex evolution of rabies viruses in different host-reservoir species.
doi:10.1128/JCM.44.5.1697-1710.2006
PMCID: PMC1479161  PMID: 16672396
7.  Recent Emergence and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal 
Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal.
Author Summary
Rabies is endemic in most Asian countries and represents a serious public health issue, with an estimated 31,000 people dying each year of this disease. The majority of human cases are transmitted by domestic dogs, which act as the principal reservoir host and vector. However, molecular epidemiology and evolutionary dynamics of the main etiological agent, the rabies virus (RABV), remains largely unappreciated in some regions such as in Nepal. Based on a subset of 24 new Nepalese isolates collected from 2003 to 2011 and representative RABV strains at a global scale, phylogenetic analysis based on the complete nucleoprotein and glycoprotein genes sequences revealed the presence of a surprising wide genetic diversity of RABV circulating in this country. The presence of three different co-existing phylogenetic groups was identified: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade, namely Arctic-like (AL)-1, lineage a (AL-1a), and AL-3. Among these clusters, the AL-3 sub-clade appears as the major Nepalese phylogroup which emerged relatively recently in this country, within the last 30 years. These data has raised some concerns about the exchange of RABV between different countries, and provided key elements for implementation of effective control measures of rabies in Nepal.
doi:10.1371/journal.pntd.0002560
PMCID: PMC3836727  PMID: 24278494
8.  Evolutionary History and Phylogeography of Rabies Viruses Associated with Outbreaks in Trinidad 
Bat rabies is an emerging disease of public health significance in the Americas. The Caribbean island of Trinidad experiences periodic outbreaks within the livestock population. We performed molecular characterisation of Trinidad rabies virus (RABV) and used a Bayesian phylogeographic approach to investigate the extent to which outbreaks are a result of in situ evolution versus importation of virus from the nearby South American mainland. Trinidadian RABV sequences were confirmed as bat variant and clustered with Desmodus rotundus (vampire bat) related sequences. They fell into two largely temporally defined lineages designated Trinidad I and II. The Trinidad I lineage which included sequences from 1997–2000 (all but two of which were from the northeast of the island) was most closely related to RABV from Ecuador (2005, 2007), French Guiana (1990) and Venezuela (1993, 1994). Trinidad II comprised sequences from the southwest of the island, which clustered into two groups: Trinidad IIa, which included one sequence each from 2000 and 2007, and Trinidad IIb including all 2010 sequences. The Trinidad II sequences were most closely related to sequences from Brazil (1999, 2004) and Uruguay (2007, 2008). Phylogeographic analyses support three separate RABV introductions from the mainland from which each of the three Trinidadian lineages arose. The estimated dates for the introductions and subsequent lineage expansions suggest periods of in situ evolution within Trinidad following each introduction. These data also indicate co-circulation of Trinidad lineage I and IIa during 2000. In light of these findings and the likely vampire bat origin of Trinidadian RABV, further studies should be conducted to investigate the relationship between RABV spatiotemporal dynamics and vampire bat population ecology, in particular any movement between the mainland and Trinidad.
Author Summary
The Caribbean island of Trinidad experiences periodic rabies virus (RABV) outbreaks within the livestock population. In this study, we inferred the evolutionary history of RABV in the Americas and reconstructed past patterns of RABV geographic spread in order to address the question of whether Trinidadian outbreaks arise from locally maintained RABV or are the result of virus importation from the mainland (presumably via infected bats). Our results provide statistical support for three importation events that gave rise to each of three Trinidadian vampire bat-associated lineages identified in the study. They also indicate limited periods of in situ evolution within Trinidad following each of these introductions. The results also support Mexico and Brazil as major epicenters for the expansion of RABV associated with vampire bats throughout the Americas and consequently to Trinidad. The findings of our study are particularly relevant to local RABV monitoring and control. In addition to justifying vampire bats as the main target for active rabies surveillance and control activities in Trinidad, they suggest that more intense surveillance of regions that lie close to the mainland may be warranted. Finally, in light of these findings, further studies should be conducted to investigate the relationship between RABV spatiotemporal dynamics and vampire bat population ecology.
doi:10.1371/journal.pntd.0002365
PMCID: PMC3749974  PMID: 23991230
9.  Susceptibility and Pathogenesis of Little Brown Bats (Myotis lucifugus) to Heterologous and Homologous Rabies Viruses 
Journal of Virology  2013;87(16):9008-9015.
Rabies virus (RABV) maintenance in bats is not well understood. Big brown bats (Eptesicus fuscus), little brown bats (Myotis lucifugus), and Mexican free-tailed bats (Tadarida brasiliensis) are the most common bats species in the United States. These colonial bat species also have the most frequent contact with humans and domestic animals. However, the silver-haired bat (Lasionycteris noctivagans) RABV is associated with the majority of human rabies virus infections in the United States and Canada. This is of interest because silver-haired bats are more solitary bats with infrequent human interaction. Our goal was to determine the likelihood of a colonial bat species becoming infected with and transmitting a heterologous RABV. To ascertain the potential of heterologous RABV infection in colonial bat species, little brown bats were inoculated with a homologous RABV or one of two heterologous RABVs. Additionally, to determine if the route of exposure influenced the disease process, bats were inoculated either intramuscularly (i.m.) or subcutaneously (s.c.) with a homologous or heterologous RABV. Our results demonstrate that intramuscular inoculation results in a more rapid progression of disease onset, whereas the incubation time in bats inoculated s.c. is significantly longer. Additionally, cross protection was not consistently achieved in bats previously inoculated with a heterologous RABV following a challenge with a homologous RABV 6 months later. Finally, bats that developed rabies following s.c. inoculation were significantly more likely to shed virus in their saliva and demonstrated increased viral dissemination. In summary, bats inoculated via the s.c. route are more likely to shed virus, thus increasing the likelihood of transmission.
doi:10.1128/JVI.03554-12
PMCID: PMC3754046  PMID: 23741002
10.  Enhanced Passive Bat Rabies Surveillance in Indigenous Bat Species from Germany - A Retrospective Study 
In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.
Author Summary
According to the World Health Organization rabies is considered both a neglected zoonotic and a tropical disease. The causative agents are lyssaviruses which have their primary reservoir in bats. Although bat rabies is notifiable in Germany, the number of submitted bats during routine surveillance is rarely representative of the natural bat population. Therefore, the aim of this study was to include dead bats from various sources for enhanced bat rabies surveillance. The results show that a considerable number of additional bat rabies cases can be detected, thus improving the knowledge on the frequency, geographical distribution and reservoir-association of bat lyssavirus infections in Germany. The overall proportion of positives was lower than during routine surveillance in Germany. While the majority of cases were found in the Serotine bat and characterized as European bat lyssavirus type 1 (EBLV-1), three of the four EBLV-2 infections detected in Germany were found in Myotis daubentonii during this study.
doi:10.1371/journal.pntd.0002835
PMCID: PMC4006713  PMID: 24784117
11.  Bat rabies surveillance in Finland 
Background
In 1985, a bat researcher in Finland died of rabies encephalitis caused by European bat lyssavirus type 2 (EBLV-2), but an epidemiological study in 1986 did not reveal EBLV-infected bats. In 2009, an EBLV-2-positive Daubenton’s bat was detected. The EBLV-2 isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related. In order to assess the prevalence of EBLVs in Finnish bat populations and to gain a better understanding of the public health risk that EBLV-infected bats pose, a targeted active surveillance project was initiated.
Results
Altogether, 1156 bats of seven species were examined for lyssaviruses in Finland during a 28–year period (1985–2012), 898 in active surveillance and 258 in passive surveillance, with only one positive finding of EBLV-2 in a Daubenton’s bat in 2009. In 2010–2011, saliva samples from 774 bats of seven species were analyzed for EBLV viral RNA, and sera from 423 bats were analyzed for the presence of bat lyssavirus antibodies. Antibodies were detected in Daubenton’s bats in samples collected from two locations in 2010 and from one location in 2011. All seropositive locations are in close proximity to the place where the EBLV-2 positive Daubenton’s bat was found in 2009. In active surveillance, no EBLV viral RNA was detected.
Conclusions
These data suggest that EBLV-2 may circulate in Finland, even though the seroprevalence is low. Our results indicate that passive surveillance of dead or sick bats is a relevant means examine the occurrence of lyssavirus infection, but the number of bats submitted for laboratory analysis should be higher in order to obtain reliable information on the lyssavirus situation in the country.
doi:10.1186/1746-6148-9-174
PMCID: PMC3846527  PMID: 24011337
EBLV; Lyssavirus; Rabies; Seroprevalence
12.  Epidemiology of vampire bat-transmitted rabies virus in Goiás, central Brazil: re-evaluation based on G-L intergenic region 
BMC Research Notes  2010;3:288.
Background
Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region.
Findings
The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges.
Conclusions
This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations.
doi:10.1186/1756-0500-3-288
PMCID: PMC2993726  PMID: 21059233
13.  Rabies-Related Knowledge and Practices Among Persons At Risk of Bat Exposures in Thailand 
Background
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. A cross-sectional study was conducted in Thailand to assess rabies-related knowledge and practices among persons regularly exposed to bats and bat habitats. The objectives were to identify deficiencies in rabies awareness, describe the occurrence of bat exposures, and explore factors associated with transdermal bat exposures.
Methods
A survey was administered to a convenience sample of adult guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. The questionnaire elicited information on demographics, experience with bat exposures, and rabies knowledge. Participants were also asked to describe actions they would take in response to a bat bite as well as actions for a bite from a potentially rabid animal. Bivariate analysis was used to compare responses between groups and multivariable logistic regression was used to explore factors independently associated with being bitten or scratched by a bat.
Findings
Of 106 people interviewed, 11 (10%) identified bats as a potential source of rabies. A history of a bat bite or scratch was reported by 29 (27%), and 38 (36%) stated either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of rabies transmission (68% vs. 90%, p = 0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p = 0.003). Guano mining, bat hunting, and being in a bat cave or roost area more than 5 times a year were associated with history of a bat bite or scratch.
Conclusions
These findings indicate the need for educational outreach to raise awareness of bat rabies, promote exposure prevention, and ensure appropriate health-seeking behaviors for bat-inflicted wounds, particularly among at-risk groups in Thailand.
Author Summary
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. We surveyed persons regularly exposed to bats and bat habitats in Thailand to assess rabies‐related knowledge and practices. Targeted groups included guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. Of the 106 people interviewed, 11 (10%) identified bats as a source of rabies. History of a bat bite/scratch was reported by 29 (27%), and 38 (36%) expressed either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of transmission (68% vs. 90%, p=0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p=0.003). These findings indicate a need for educational outreach in Thailand to raise awareness of bat rabies, promote exposure prevention, and ensure health‐seeking behaviors for bat‐inflicted wounds, particularly among at‐risk groups.
doi:10.1371/journal.pntd.0001054
PMCID: PMC3125144  PMID: 21738801
14.  Ecology of Rabies Virus Exposure in Colonies of Brazilian Free-Tailed Bats (Tadarida brasiliensis) at Natural and Man-Made Roosts in Texas 
Abstract
Previous studies have investigated rabies virus (RABV) epizootiology in Brazilian free-tailed bats (Tadarida brasiliensis) in natural cave roosts. However, little is known about geographic variation in RABV exposure, or if the use of man-made roosts by this species affects enzootic RABV infection dynamics within colonies. We sampled rabies viral neutralizing antibodies in bats at three bridge and three cave roosts at multiple time points during the reproductive season to investigate temporal and roost variation in RABV exposure. We report seropositive bats in all age and sex classes with minimal geographic variation in RABV seroprevalence among Brazilian free-tailed bat colonies in south-central Texas. While roost type was not a significant predictor of RABV seroprevalence, it was significantly associated with seasonal fluctuations, suggesting patterns of exposure that differ between roosts. Temporal patterns suggest increased RABV seroprevalence after parturition in cave colonies, potentially related to an influx of susceptible young, in contrast to more uniform seroprevalence in bridge colonies. This study highlights the importance of life history and roost ecology in understanding patterns of RABV seroprevalence in colonies of the Brazilian free-tailed bat.
doi:10.1089/vbz.2008.0163
PMCID: PMC2944840  PMID: 19492942
Brazilian free-tailed bat; Epizootiology; Rabies virus; Roost ecology
15.  BAT-BORNE RABIES IN LATIN AMERICA 
The situation of rabies in America is complex: rabies in dogs has decreased dramatically, but bats are increasingly recognized as natural reservoirs of other rabies variants. Here, bat species known to be rabies-positive with different antigenic variants, are summarized in relation to bat conservation status across Latin America. Rabies virus is widespread in Latin American bat species, 22.5%75 of bat species have been confirmed as rabies-positive. Most bat species found rabies positive are classified by the International Union for Conservation of Nature as “Least Concern”. According to diet type, insectivorous bats had the most species known as rabies reservoirs, while in proportion hematophagous bats were the most important. Research at coarse spatial scales must strive to understand rabies ecology; basic information on distribution and population dynamics of many Latin American and Caribbean bat species is needed; and detailed information on effects of landscape change in driving bat-borne rabies outbreaks remains unassessed. Finally, integrated approaches including public health, ecology, and conservation biology are needed to understand and prevent emergent diseases in bats.
doi:10.1590/S0036-46652015000100009
PMCID: PMC4325525  PMID: 25651328
Rabies virus; Bats; Geographic distribution; Biodiversity
16.  Molecular epidemiology of livestock rabies viruses isolated in the northeastern Brazilian states of Paraíba and Pernambuco from 2003 - 2009 
BMC Research Notes  2012;5:32.
Background
Limited or no epidemiological information has been reported for rabies viruses (RABVs) isolated from livestock in the northeastern Brazilian states of Paraíba (PB) and Pernambuco (PE). The aim of this study was to clarify the molecular epidemiology of RABVs circulating in livestock, especially cattle, in these areas between 2003 and 2009.
Findings
Phylogenetic analysis based on 890 nt of the nucleoprotein (N) gene revealed that the 52 livestock-derived RABV isolates characterized here belonged to a single lineage. These isolates clustered with a vampire bat-related RABV lineage previously identified in other states in Brazil; within PB and PE, this lineage was divided between the previously characterized main lineage and a novel sub-lineage.
Conclusions
The occurrences of livestock rabies in PB and PE originated from vampire bat RABVs, and the causative RABV lineage has been circulating in this area of northeastern Brazil for at least 7 years. This distribution pattern may correlate to that of a vampire bat population isolated by geographic barriers.
doi:10.1186/1756-0500-5-32
PMCID: PMC3285087  PMID: 22243739
17.  Potential and Actual Terrestrial Rabies Exposures in People and Domestic Animals, Upstate South Carolina, 1994–2004: A Surveillance Study 
BMC Public Health  2009;9:65.
Background
Although there has been a reduction of rabies in pets and domestic animals during recent decades in the United States, rabies remains enzootic among bats and several species of terrestrial wildlife. Spillover transmission of wildlife rabies to domestic animals therefore remains a public health threat
Methods
Retrospective analysis of surveillance data of reported animal incidents (bites, scratches, mucous membrane contacts) from South Carolina, 1995 to 2003, was performed to assess risk factors of potential rabies exposures among human and animal victims.
Results
Dogs and cats contributed the majority (66.7% and 26.4%, respectively) of all reported incidents, with stray dogs and cats contributing 9.0% and 15.1 respectively. Current rabies vaccination status of dogs and cats (40.2% and 13.8%, respectively) were below World Health Organization recommended levels. Owned cats were half as likely to be vaccinated for rabies as dogs (OR 0.53, 95% CI 0.48, 0.58). Animal victims were primarily exposed to wildlife (83.0%), of which 27.5% were rabid. Almost 90% of confirmed rabies exposures were due to wildlife. Skunks had the highest prevalence of rabies among species of exposure animals (63.2%). Among rabid domestic animals, stray cats were the most commonly reported (47.4%).
Conclusion
While the majority of reported potential rabies exposures are associated with dog and cat incidents, most rabies exposures derive from rabid wildlife. Stray cats were most frequently rabid among domestic animals. Our results underscore the need for improvement of wildlife rabies control and the reduction of interactions of domestic animals, including cats, with wildlife.
doi:10.1186/1471-2458-9-65
PMCID: PMC2651164  PMID: 19236696
18.  Rabies Virus Infection in Eptesicus fuscus Bats Born in Captivity (Naïve Bats) 
PLoS ONE  2013;8(5):e64808.
The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.
doi:10.1371/journal.pone.0064808
PMCID: PMC3669413  PMID: 23741396
19.  Bat Rabies in France: A 24-Year Retrospective Epidemiological Study 
PLoS ONE  2014;9(6):e98622.
Since bat rabies surveillance was first implemented in France in 1989, 48 autochthonous rabies cases without human contamination have been reported using routine diagnosis methods. In this retrospective study, data on bats submitted for rabies testing were analysed in order to better understand the epidemiology of EBLV-1 in bats in France and to investigate some epidemiological trends. Of the 3176 bats submitted for rabies diagnosis from 1989 to 2013, 1.96% (48/2447 analysed) were diagnosed positive. Among the twelve recognised virus species within the Lyssavirus genus, two species were isolated in France. 47 positive bats were morphologically identified as Eptesicus serotinus and were shown to be infected by both the EBLV-1a and the EBLV-1b lineages. Isolation of BBLV in Myotis nattereri was reported once in the north-east of France in 2012. The phylogenetic characterisation of all 47 French EBLV-1 isolates sampled between 1989 and 2013 and the French BBLV sample against 21 referenced partial nucleoprotein sequences confirmed the low genetic diversity of EBLV-1 despite its extensive geographical range. Statistical analysis performed on the serotine bat data collected from 1989 to 2013 showed seasonal variation of rabies occurrence with a significantly higher proportion of positive samples detected during the autumn compared to the spring and the summer period (34% of positive bats detected in autumn, 15% in summer, 13% in spring and 12% in winter). In this study, we have provided the details of the geographical distribution of EBLV-1a in the south-west of France and the north-south division of EBLV-1b with its subdivisions into three phylogenetic groups: group B1 in the north-west, group B2 in the centre and group B3 in the north-east of France.
doi:10.1371/journal.pone.0098622
PMCID: PMC4044004  PMID: 24892287
20.  Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems 
PLoS ONE  2011;6(1):e16502.
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.
doi:10.1371/journal.pone.0016502
PMCID: PMC3027674  PMID: 21298059
21.  Evaluation of Rabies Biologics against Irkut Virus Isolated in China 
Journal of Clinical Microbiology  2013;51(11):3499-3504.
An Irkut virus (IRKV) was recently isolated from a bat in China. The protective ability of rabies biologics available in the Chinese market and experimental biologics against the rabies virus (RABV) and IRKV were assessed in a hamster model via preexposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) experiments. The results demonstrated that a single dose of rabies vaccine did not induce adequate protection against IRKV infection. However, routine PrEP with three doses of vaccine induced complete protection against IRKV infection. Higher doses of RABV immunoglobulins and alpha interferon were required during PEP to protect hamsters against IRKV versus RABV infection. Experimental recombinant vaccines containing IRKV glycoproteins induced more-reliable protection against IRKV than against RABV infection. Those findings may be explained by limited cross-neutralization of these viruses (confirmed via in vitro tests) in conjunction with antigenic distances between RABV and IRKV. These results indicate that the development and evaluation of new biologics for PrEP and PEP are required to ensure sufficient protection against IRKV infection in China and other territories where this virus is present.
doi:10.1128/JCM.01565-13
PMCID: PMC3889725  PMID: 23946522
22.  Rabies in Iraq: Trends in Human Cases 2001–2010 and Characterisation of Animal Rabies Strains from Baghdad 
Control of rabies requires a consistent supply of dependable resources, constructive cooperation between veterinary and public health authorities, and systematic surveillance. These are challenging in any circumstances, but particularly during conflict. Here we describe available human rabies surveillance data from Iraq, results of renewed sampling for rabies in animals, and the first genetic characterisation of circulating rabies strains from Iraq. Human rabies is notifiable, with reported cases increasing since 2003, and a marked increase in Baghdad between 2009 and 2010. These changes coincide with increasing numbers of reported dog bites. There is no laboratory confirmation of disease or virus characterisation and no systematic surveillance for rabies in animals. To address these issues, brain samples were collected from domestic animals in the greater Baghdad region and tested for rabies. Three of 40 brain samples were positive using the fluorescent antibody test and hemi-nested RT-PCR for rabies virus (RABV). Bayesian phylogenetic analysis using partial nucleoprotein gene sequences derived from the samples demonstrated the viruses belong to a single virus variant and share a common ancestor with viruses from neighbouring countries, 22 (95% HPD 14–32) years ago. These include countries lying to the west, north and east of Iraq, some of which also have other virus variants circulating concurrently. These results suggest possible multiple introductions of rabies into the Middle East, and regular trans-boundary movement of disease. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
Author Summary
Control of rabies requires cooperation between government departments, consistent funding, and an understanding of the epidemiology of the disease obtained through surveillance. Here we describe human rabies surveillance data from Iraq and the results of renewed sampling for rabies in animals. In Iraq, it is obligatory by law to report cases of human rabies. These reports were collated and analysed. Reported cases have increased since 2003, with a marked increase in Baghdad 2009–2010. There is no system for detecting rabies in animals and the strains circulating in Iraq have not previously been characterized. To address this, samples were collected from domestic animals in Baghdad and tested for rabies. Three out of 40 were positive for rabies virus. Comparison of part of the viral genetic sequence with other viruses from the region demonstrated that the viruses from Iraq are more closely related to each other than those from surrounding countries, but diverged from viruses isolated in neighbouring countries approximately 22 (95% HPD 14–32) years ago. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
doi:10.1371/journal.pntd.0002075
PMCID: PMC3585036  PMID: 23469303
23.  A universal real-time assay for the detection of Lyssaviruses 
Journal of Virological Methods  2011;177(1-24):87-93.
Highlights
► Universal real-time PCR primer pair demonstrated to hybridize to and detect each of the known Lyssaviruses (including Rabies virus) with greater sensitivity than a standard pan-Lyssavirus hemi-nested RT-PCR typically used. ► Target sequences of bat derived virus species unavailable for analysis (Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus) were synthesized to produce oligonucleotides and the synthetic DNA was used as a target for primer hybridization.
Rabies virus (RABV) is enzootic throughout most of the world. It is now widely accepted that RABV had its origins in bats. Ten of the 11 Lyssavirus species recognised, including RABV, have been isolated from bats. There is, however, a lack of understanding regarding both the ecology and host reservoirs of Lyssaviruses. A real-time PCR assay for the detection of all Lyssaviruses using universal primers would be beneficial for Lyssavirus surveillance. It was shown that using SYBR® Green, a universal real-time PCR primer pair previously demonstrated to detect European bat Lyssaviruses 1 and 2, and RABV, was able to detect reverse transcribed RNA for each of the seven virus species available to us. Target sequences of bat derived virus species unavailable for analysis were synthesized to produce oligonucleotides. Lagos Bat-, Duvenhage- and Mokola virus full nucleoprotein gene clones enabled a limit of 5–50 plasmid copies to be detected. Five copies of each of the synthetic DNA oligonucleotides of Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus were detected. The single universal primer pair was therefore able to detect each of the most divergent known Lyssaviruses with great sensitivity.
doi:10.1016/j.jviromet.2011.07.002
PMCID: PMC3191275  PMID: 21777619
Lyssavirus; Rabies; Bat; SYBR Green; Real-time PCR; Synthetic DNA
24.  Demonstration of antigenic variation among rabies virus isolates by using monoclonal antibodies to nucleocapsid proteins. 
Journal of Clinical Microbiology  1986;24(4):573-580.
Rabies virus isolates from terrestrial animals in six areas of the United States were examined with a panel of monoclonal antibodies to nucleocapsid proteins. Characteristic differences in immunofluorescence reactions permitted the formation of four antigenically distinct reaction groups from the 231 isolates tested. The geographic distribution of these groups corresponded well with separate rabies enzootic areas recognized by surveillance of sylvatic rabies in the United States. Distinctive reaction patterns were also identified for viral proteins from four infected bat species, and identical patterns were found in eight isolated cases of rabies in terrestrial animals. These findings suggest that monoclonal antibodies can be used to study the prevalence, distribution, and transmission of rabies among wildlife species.
PMCID: PMC268974  PMID: 2429983
25.  The origin and phylogeography of dog rabies virus 
The Journal of General Virology  2008;89(Pt 11):2673-2681.
Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV.
doi:10.1099/vir.0.2008/003913-0
PMCID: PMC3326349  PMID: 18931062

Results 1-25 (755690)