Search tips
Search criteria

Results 1-25 (499469)

Clipboard (0)

Related Articles

1.  MYH-9 Related Platelet Disorders: Strategies for Management and Diagnosis 
MYH-9 related platelet disorders belong to the group of inherited giant platelet disorders. The MYH-9 gene encodes the non-muscular myosin heavy chain IIA (NMMHCIIA), a cytoskeletal contractile protein. Several mutations in the MYH-9 gene lead to macrothrombocytopenia, and cytoplasmic inclusion bodies within leukocytes, while the number of megakaryocytes in the bone marrow is normal. Four overlapping syndromes, known as May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome and Sebastian platelet syndrome, describe different clinical manifestations of MYH9 gene mutations. Macrothrombocytopenia is present in all affected individuals, whereas only some develop additional clinical manifestations such as renal failure, hearing loss and presenile cataracts. The bleeding tendency is usually moderate, with menorrhagia and easy bruising being most frequent. The biggest risk for the individual is inappropriate treatment due to misdiagnosis of chronic autoimmune thrombocytopenia. More than 30 mutations within the 40 exons of the MYH-9 gene leading to macrothrombocytopenia have been identified, of which the upstream mutations up to amino acid ~1400 are more likely associated with syndromic manifestations than the downstream mutations. Diagnosis is based on identification of the granulocyte inclusion bodies using blood smears and immunofluorescence and is finally confirmed by identifying the mutation. Treatment is supportive and should be aimed to prevent iron deficiency anemia. Beside renal failure, the biggest risk for patients affected by a MYH-9 disorder are the adverse effects resulting form treatment based on the misdiagnosis of immune thrombocytopenia.
PMCID: PMC2980510  PMID: 21113248
MYH9 gene; Non-musclular myosin IIA; May-Hegglin anomaly; Epstein syndrome; Fechtner syndrome; Sebastian platelet syndrome; Macrothrombocytopenia
2.  Cochlear implantation is safe and effective in patients with MYH9-related disease 
MYH9-related disease (MYH9-RD) is a rare syndromic disorder deriving from mutations in MYH9, the gene for the heavy chain of non-muscle myosin IIA. Patients present with congenital thrombocytopenia and giant platelets and have a variable risk of developing sensorineural deafness, kidney damage, presenile cataract, and liver abnormalities. Almost all MYH9-RD patients develop the hearing defect, which, in many individuals, progresses to severe to profound deafness with high impact on quality of life. These patients are potential candidates for cochlear implantation (CI), however, no consistent data are available about the risk to benefit ratio of CI in MYH9-RD. The only reported patient who received CI experienced perisurgery complications that have been attributed to concurrent platelet defects and/or MYH9 protein dysfunction.
By international co-operative study, we report the clinical outcome of 10 patients with MYH9-RD and severe to profound deafness who received a CI at 8 institutions.
Nine patients benefited from CI: in particular, eight of them obtained excellent performances with restoration of a practically normal hearing function and verbal communication abilities. One patient had a slightly worse performance that could be explained by the very long duration of severe deafness before CI. Finally, one patient did not significantly benefit from CI. No adverse events attributable to MYH9-RD syndrome were observed, in particular no perisurgery bleeding complications due to the platelet defects were seen. Patients’ perioperative management is described and discussed.
CI is safe and effective in most patients with MYH9-RD and severe to profound deafness and should be offered to these subjects, possibly as soon as they develop the criteria for candidacy.
PMCID: PMC4105151  PMID: 24980457
MYH9-related disease; Genetic deafness; Inherited thrombocytopenia; Cochlear implantation; Fetchner syndrome; Epstein syndrome; May-Hegglin anomaly; Non-muscle myosin
3.  Familial hypertrophic cardiomyopathy owing to double heterozygosity for a 403Arg→ Trp mutation in exon 13 of the MYH7 gene and a novel mutation, 453Arg→ His, in exon 14 of the MYH7 gene: A case report 
An unusual clinical history of a 23-year-old male proband with obstructive hypertrophic cardiomyopathy associated with a rare genotype is presented. Genetic analysis of the proband found evidence for two distinct mutations of the MYH7 gene (the gene coding for the beta-myosin heavy chain): 403Arg→ Trp in exon 13 and a novel mutation, 453Arg→ His, in exon 14. A heterozygous site mutation was identified in exon 13 in the proband’s father but no mutation site was found in his mother. Thus, the novel mutation in exon 14 is a de novo mutation.
PMCID: PMC2859004  PMID: 20428263
Beta-myosin heavy chain; Genetic mutations; Hypertrophic cardiomyopathy; MYH7 gene
4.  Two novel MYH7 proline substitutions cause Laing Distal Myopathy-like phenotypes with variable expressivity and neck extensor contracture 
BMC Medical Genetics  2016;17:57.
Human skeletal muscles express three major myosin heavy chain (MyHC) isoforms: MyHCIIx (MYH1) in fast type 2B muscle fibers, MyHCIIa (MYH2) in fast type 2A fibers and MyHCI/β-cardiac MyHC (MYH7) in slow type I skeletal fibers and cardiac ventricles. In line with its expression pattern, MYH7 mutations have been reported in association with hypertrophic or dilated cardiomyopathy, skeletal myopathies or a combination of both. We analyzed the clinical and molecular phenotype of two unrelated families of Jewish Moroccan ancestry that presented with apparently autosomal dominant inheritance of progressive Laing-like distal myopathy with non-specific myopathic changes, but uncommon marked contractures and wasting of the neck extensors.
Clinical phenotyping, whole exome sequencing and restriction analysis, generation of mutants followed by cell culture transfection and imaging.
Using whole exome sequencing we identified in both families two novel heterozygous proline substitutions located in exon 31 of MYH7 within its rod domain: c.4309G>C (p.Ala1437Pro) and c.4301G>C (p.Arg1434Pro). Here we show that the phenotype caused by these mutations includes marked cervical muscle contracture, and report that the severity of the phenotype varies significantly, to the extent of non-penetrance in one of the families. Finally, we provide evidence that both proline substitutions impair myosin self-assembly in non-muscle cells transfected with β-myosin constructs carrying the mutations, but do not prevent incorporation of the mutant molecules into the sarcomere.
This study expands our clinical and molecular knowledge of MYH7 rod mutations causing skeletal myopathies, and underscores the importance of discussing disease penetrance during genetic counseling.
PMCID: PMC4982306  PMID: 27519903
MYH7; Laing distal myopathy; Proline mutations; Myosin rod
5.  Transfection of the mutant MYH9 cDNA reproduces the most typical cellular phenotype of MYH9-related disease in different cell lines 
PathoGenetics  2008;1:5.
Heterozygous mutations of MYH9, encoding the Non-Muscular Myosin Heavy Chain-IIA (NMMHC-IIA), cause a complex disorder named MYH9-related disease, characterized by a combination of different phenotypic features. At birth, patients present platelet macrocytosis, thrombocytopenia and leukocyte inclusions containing NMMHC-IIA. Moreover, later in life some of them develop the additional features of sensorineural hearing loss, cataracts and/or glomerulonephritis that sometimes leads to end stage renal failure.
To clarify the mechanism by which the mutant NMMHC-IIA could cause phenotypic anomalies at the cellular level, we examined the effect of transfection of the full-length mutated D1424H MYH9 cDNAs. We have observed, by confocal microscopy, abnormal distribution of the protein and formation of rod-like aggregates reminiscent of the leukocyte inclusions found in patients. Co-transfection of differently labeled wild-type and mutant full-length cDNAs showed the simultaneous presence of both forms of the protein in the intracellular aggregates.
These findings suggest that the NMMHC-IIA mutated in position 1424 is able to interact with the WT form in living cells, despite part of the mutant protein precipitates in non-functional aggregates. Transfection of the entire WT or mutant MYH9 in cell lines represents a powerful experimental model to investigate consequences of MYH9 mutations.
PMCID: PMC2633265  PMID: 19046415
6.  Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene 
Human Genetics  2010;128(3):345-350.
MYH9 has been proposed as a major genetic risk locus for a spectrum of nondiabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African-specific missense mutations (S342G and I384M) in the neighboring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. The APOL1 gene product, apolipoprotein L-1, has been studied for its roles in trypanosomal lysis, autophagic cell death, lipid metabolism, as well as vascular and other biological activities. We also show that the distribution of these newly identified APOL1 risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to MYH9.
Mapping by admixture linkage disequilibrium (MALD) localized an interval on chromosome 22, in a region that includes the MYH9 gene, which was shown to contain African ancestry risk variants associated with certain forms of ESKD (Kao et al. 2008; Kopp et al. 2008). MYH9 encodes nonmuscle myosin heavy chain IIa, a major cytoskeletal nanomotor protein expressed in many cell types, including podocyte cells of the renal glomerulus. Moreover, 39 different coding region mutations in MYH9 have been identified in patients with a group of rare syndromes, collectively termed the Giant Platelet Syndromes, with clear autosomal dominant inheritance, and various clinical manifestations, sometimes also including glomerular pathology and chronic kidney disease (Kopp 2010; Sekine et al. 2010). Accordingly, MYH9 was further explored in these studies as the leading candidate gene responsible for the MALD signal. Dense mapping of MYH9 identified individual single nucleotide polymorphisms (SNPs) and sets of such SNPs grouped as haplotypes that were found to be highly associated with a large and important group of ESKD risk phenotypes, which as a consequence were designated as MYH9-associated nephropathies (Bostrom and Freedman 2010). These included HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies (Bostrom and Freedman 2010). The MYH9 SNP and haplotype associations observed with these forms of ESKD yielded the largest odds ratios (OR) reported to date for the association of common variants with common disease risk (Winkler et al. 2010). Two specific MYH9 variants (rs5750250 of S-haplotype and rs11912763 of F-haplotype) were designated as most strongly predictive on the basis of Receiver Operating Characteristic analysis (Nelson et al. 2010). These MYH9 association studies were then also extended to earlier stage and related kidney disease phenotypes and to population groups with varying degrees of recent African ancestry admixture (Behar et al. 2010; Freedman et al. 2009a, b; Nelson et al. 2010), and led to the expectation of finding a functional African ancestry causative variant within MYH9. However, despite intensive efforts including re-sequencing of the MYH9 gene no suggested functional mutation has been identified (Nelson et al. 2010; Winkler et al. 2010). This led us to re-examine the interval surrounding MYH9 and to the detection of novel missense mutations with predicted functional effects in the neighboring APOL1 gene, which are significantly more associated with ESKD than all previously reported SNPs in MYH9.
Electronic supplementary material
The online version of this article (doi:10.1007/s00439-010-0861-0) contains supplementary material, which is available to authorized users.
PMCID: PMC2921485  PMID: 20635188
7.  Absence of MutY homologue mutation in patients with multiple sporadic adenomatous polyps in Korea 
AIM: Recently, germ-line mutation in the base excision repair gene MYH has been identified to cause a novel autosomal recessive form of familial adenomatous polyposis (FAP). Interestingly, a striking evidence for MYH mutations within different ethnic groups has been demonstrated. In this study, we screened 30 patients with multiple adenomatous polyps for MYH mutations to assess its prevalence and ethnic specificity in Korea.
METHODS: Thirty patients (21 men and 9 women; mean age 62.3 years) with multiple adenomatous polyps were examined for MYH mutations. The mean number of adenomas per patient was 10.0. Sixteen exonic regions and their intronic sequences were amplified by PCR and subjected to SSCP and DNA sequencing analyses.
RESULTS: None of the patients was identified to carry any truncating or sequence alterations in MYH. Our screening for the mutational regions, which were recognized from Caucasian patients or affected Indian families, also failed to detect sequence substitutions.
CONCLUSION: Mutation in MYH may be rarely involved in the pathogenesis of multiple sporadic colorectal adenomas in Korean population, although a large-scale analysis will be required to clarify the presence of specific MYH variants in a subset of patients and their role in the predisposition of multiple colorectal adenomas in Korean population.
PMCID: PMC4066163  PMID: 16521226
MY; Multiple adenomatous polyps; Germ-line mutation; Familial adenomatous polyposis; Ethnic difference
8.  Mutations in ATP6V1B1 and ATP6V0A4 genes cause recessive distal renal tubular acidosis in Mexican families 
Autosomal recessive distal renal tubular acidosis (dRTA) is a rare disease characterized by a hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia, nephrocalcinosis, and conserved glomerular filtration rate. In some cases, neurosensorial deafness is associated. dRTA is developed during the first months of life and the main manifestations are failure to thrive, vomiting, dehydration, and anorexia.
Nine unrelated families were studied: seven children, a teenager, and an adult with dRTA. Hearing was preserved in four children. Coding regions of the genes responsible for recessive dRTA were analysed by Sanger sequencing.
Molecular defects were found in the genes ATP6V1B1 and ATP6V0A4. We identified three homozygous variants in ATP6V1B: a frameshift mutation (p.Ile386Hisfs*56), a nucleotide substitution in exon 10 (p.Pro346Arg), and a new splicing mutation in intron 5. Three patients were homozygous for one novel (p.Arg743Trp) and one known (p.Asp411Tyr) missense mutations in the ATP6V0A4 gene. Three patients were compound heterozygous: one proband displayed two novel mutations, the frameshift mutation p.Val52Metfs*25, and a large deletion of exons 18–21; two probands showed the missense mutation p.Asp411Tyr and as a second mutation, p.Arg194Ter and c.1691+2dup, respectively.
ATP6V0A4 and ATP6V1B1 genes were involved in recessive dRTA of Mexican families. All ATP6V1B1 mutations detected were homozygous and all patients developed sensorineural hearing loss (SNHL) early in infancy. ATP6V0A4 mutations were found in one infant and three children without SNHL, and in one teenager and one adult with SNHL confirming the phenotypic variability in this trait. The mutation p.Asp411Tyr detected in four Mexican families was due to a founder effect. Screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA in this population.
PMCID: PMC4867564  PMID: 27247958
Hearing loss; hypokalemia; nephrocalcinosis; renal tubular acidosis
9.  Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system 
Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our knowledge. This patient provided us with more information regarding the genotype-phenotype correlation between mutations of MYH7 and PRKAG2. Taken together, these findings provide insight into the molecular mechanisms underlying inherited cardiomyopathy. The mutations identified in this study may be further investigated in the future in order to improve the diagnosis and treatment of patients with inherited cardiomyopathy. Furthermore, our findings indicated that sequencing using the Ion Torrent PGM system is a useful approach for the identification of pathogenic mutations associated with inherited cardiomyopathy, and it may be used for the risk evaluation of individuals with a possible susceptibility to inherited cardiomyopathy.
PMCID: PMC4867886  PMID: 27082122
hypertrophic cardiomyopathy; dilated cardiomyopathy; gene mutation; genetic testing; Ion Torrent PGM system
10.  Targeted Next-Generation Sequencing Reveals Hot Spots and Doubly Heterozygous Mutations in Chinese Patients with Familial Cardiomyopathy 
BioMed Research International  2015;2015:561819.
As a common cardiac disease mainly caused by gene mutations in sarcomeric cytoskeletal, calcium-handling, nuclear envelope, desmosomal, and transcription factor genes, inherited cardiomyopathy is becoming one of the major etiological factors of sudden cardiac death (SCD) and heart failure (HF). This disease is characterized by remarkable genetic heterogeneity, which makes it difficult to screen for pathogenic mutations using Sanger sequencing. In the present study, three probands, one with familial hypertrophic cardiomyopathy (FHCM) and two with familial dilated cardiomyopathy (FDCM), were recruited together with their respective family members. Using next-generation sequencing technology (NGS), 24 genes frequently known to be related to inherited cardiomyopathy were screened. Two hot spots (TNNI3-p.Arg145Gly, and LMNA-p.Arg190Trp) and double (LMNA-p.Arg190Trp plus MYH7-p.Arg1045His) heterozygous mutations were found to be highly correlated with familial cardiomyopathy. FDCM patients with doubly heterozygous mutations show a notably severe phenotype as we could confirm in our study; this indicates that the double mutations had a dose effect. In addition, it is proposed that genetic testing using NGS technology can be used as a cost-effective screening tool and help guide the treatment of patients with familial cardiomyopathy particularly regarding the risk of family members who are clinically asymptomatic.
PMCID: PMC4495182  PMID: 26199943
11.  Mutation spectrum and genotype-phenotype correlations in a large French cohort of MYH9-Related Disorders 
MYH9-Related Disorders are a group of rare autosomal dominant platelet disorders presenting as nonsyndromic forms characterized by macrothrombocytopenia with giant platelets and leukocyte inclusion bodies or as syndromic forms combining these hematological features with deafness and/or nephropathy and/or cataracts. They are caused by mutations in the MYH9 gene encoding the nonmuscle myosin heavy chain II-A (NMMHC-IIA). Until now, at least 49 MYH9 mutations have been reported in isolated cases or small series but only rarely in large series. We report the results of an 8-year study of a large cohort of 109 patients from 37 sporadic cases and 39 unrelated families. We have identified 43 genetic variants, 21 of which are novel to our patients. A majority, 33 (76.7%), were missense mutations and six exons were preferentially targeted, as previously published. The other alterations were three deletions of one nucleotide, one larger deletion of 21 nucleotides, and one duplication. For the first time, a substitution T>A was found in the donor splice site of intron 40 (c.5765+2T>A). Seven patients, four from the same family, had two genetic variants. The analysis of the genotype-phenotype relationships enabled us to improve the knowledge of this heterogeneous but important rare disease.
PMCID: PMC4113270  PMID: 25077172
Inherited platelet disorders; leukocyte inclusions; macrothrombocytopenia; mutation analysis; MYH9-RD
12.  A Novel Arginine to Tryptophan (R144W) Mutation in Troponin T (cTnT) Gene in an Indian Multigenerational Family with Dilated Cardiomyopathy (FDCM) 
PLoS ONE  2014;9(7):e101451.
Cardiomyopathy is a major cause of heart failure and sudden cardiac death; several mutations in sarcomeric protein genes have been associated with this disease. Our aim in the present study is to investigate the genetic variations in Troponin T (cTnT) gene and its association with dilated cardiomyopathy (DCM) in south-Indian patients. Analyses of all the exons and exon-intron boundaries of cTnT in 147 DCM and in 207 healthy controls had revealed a total of 15 SNPs and a 5 bp INDEL; of which, polymorphic SNPs were compared with the HapMap population data. Interestingly, a novel R144W mutation, that substitutes polar-neutral tryptophan for a highly conserved basic arginine in cTnT, altering the charge drastically, was identified in a DCM, with a family history of sudden-cardiac death (SCD). This mutation was found within the tropomyosin (TPM1) binding domain, and was evolutionarily conserved across species, therefore it is expected to have a significant impact on the structure and function of the protein. Family studies had revealed that the R144W is co-segregating with disease in the family as an autosomal dominant trait, but it was completely absent in 207 healthy controls and in 162 previously studied HCM patients. Further screening of the proband and three of his family members (positive for R144W mutant) with eight other genes β-MYH7, MYBPC3, TPM1, TNNI3, TTN, ACTC, MYL2 and MYL3, did not reveal any disease causing mutation, proposing the absence of compound heterozygosity. Therefore, we strongly suggest that the novel R144W unique/private mutant identified in this study is associated with FDCM. This is furthermore signifying the unique genetic architecture of Indian population.
PMCID: PMC4081629  PMID: 24992688
13.  TGFBI and CHST6 gene analysis in Chinese stromal corneal dystrophies 
To investigate whether mutations in TGFBI gene or CHST6 gene correlated with stromal corneal dystrophies (CD) in 8 Chinese probands.
Eight unrelated patients with stromal corneal dystrophies were recruited in this study; all affected members were assessed by completely ophthalmologic examinations. Genomic DNA was extracted from peripheral leukocytes, 17 exons of TGFBI gene and the exon of CHST6 gene were amplified by polymerase chain reaction (PCR), sequenced directly and compared with the reference database.
Three heterozygous mutations in TGFBI gene were identified in six patients: c. 370C>T (p.Arg124Cys) was found in exon 4 of TGFBI gene in three members, c. 371G>A (p.Arg124His) was found in one patient; c. 1663C>T (p.Arg555Trp) was found in exon 12 in other two members. In addition, four polymorphisms with the nucleotide changes rs1442, rs1054124, rs4669, and rs35151677 were found in TGFBI gene. Mutations were not identified in the rest of 2 affected individuals in TGFBI gene or CHST6 gene.
Within these patients, R124C, R124H and R555W mutations were co-segregated with the disease phenotypes and were specific mutations for lattice corneal dystrophy type I (LCD I), Avellino corneal dystrophy (ACD, GCD II), granular corneal dystrophy type I (GCD I), respectively. Our study highlights the prevalence of codon 124 and codon 555 mutations in the TGFBI gene among the Chinese stromal corneal dystrophies patients.
PMCID: PMC3388397  PMID: 22773977
corneal dystrophies; Mutation screening; TGFBI gene; TGFBI protein; carbohydrate; sulfotransferse CHST6
14.  A new variant of Glanzmann's thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg----214Trp mutation. 
Journal of Clinical Investigation  1992;89(6):1995-2004.
We describe a new variant of Glanzmann's thrombasthenia (variant Strasbourg I). The patient (M.S.) showed an absence of platelet aggregation to ADP, thrombin, and collagen, and a decreased clot retraction. Platelet fibrinogen was approximately 20% of normal levels. ADP-stimulated platelets bound markedly reduced amounts of soluble fibrinogen and platelet adhesion to surface-bound fibrinogen was defective. Normal to subnormal amounts of glycoprotein (GP) IIb-IIIa (alpha IIb beta 3) complexes, the platelet fibrinogen receptor, were revealed by SDS-PAGE, crossed immunoelectrophoresis, and antibody binding. However, the complexes were unusually sensitive to dissociation with EDTA at room temperature. Furthermore, flow cytometry showed that the platelets failed to bind the activation-dependent monoclonal antibody, PAC-1, after stimulation. In contrast, an RGDS-containing peptide induced significant binding of the anti-ligand-induced binding site antibody, D3GP3, suggesting the presence of a functional RGD binding domain on the patient's GPIIb-IIIa complex. Sequence analysis was performed after polymerase chain reaction amplification of selected patient's GPIIIa exons, and of the patient's platelet GPIIb and GPIIIa mRNAs. A point mutation (C to T) was localized in exon D (iv) of GPIIIa that resulted in an 214Arg to 214Trp amino acid substitution. The defect has been inherited from the parents who are heterozygous for the same mutation. This substitution points to an essential amino acid in a region of GPIIIa involved in the binding of fibrinogen and influencing the Ca(2+)-dependent stability of the GPIIb-IIIa complex.
PMCID: PMC295902  PMID: 1602006
15.  MYH9 nephropathy 
MYH9-related disorder is an autosomal dominant disease caused by a mutation in the MYH9 gene, which encodes nonmuscle myosin heavy chain IIA (NMMHC-IIA). This disease is characterized by giant platelets, thrombocytopenia, granulocyte inclusion bodies, proteinuria, and high-pitch sensorineural deafness. Nephropathy has been observed in 30% of patients with MYH9-related disorder. The characteristic features are early onset proteinuria and rapidly progressing renal disorder. However, the prognosis of MYH9 nephropathy remains unclear. Herein, we describe a 36-year-old woman who presented with proteinuria and was diagnosed with MYH9 nephropathy via renal biopsy and gene analysis. Her proteinuria improved after administration of an angiotensin II receptor blocker, but was aggravated after changing to a calcium channel blocker.
PMCID: PMC4570591  PMID: 26484020
Albuminuria; ARB; MYH9; Nephropathy
16.  Missense mutation in PFKM associated with muscle-type phosphofructokinase deficiency in the Wachtelhund dog 
Molecular and cellular probes  2012;26(6):243-247.
Hereditary muscle-type phosphofructokinase (PFK) deficiency causing intermittent hemolytic anemia and exertional myopathy due to a single nonsense mutation in PFKM has been previously described in English Springer and American Cocker Spaniels, Whippets, and mixed breed dogs. We report here on a new missense mutation associated with PFK deficiency in Wachtelhunds.
Coding regions of the PFKM gene were amplified from genomic DNA and/or cDNA reverse-transcribed from RNA of EDTA blood of PFK-deficient and clinically healthy Wachtelhunds and control dogs. The amplicons were sequenced and compared to the published canine PFKM sequence. A point mutation (c.550C>T, in the coding sequence of PFKM expressed in blood) was found in all 4 affected Wachtelhunds. This missense mutation results in an amino acid substitution of arginine (Arg) to tryptophan (Trp) at position 184 of the protein expressed in blood (p.Arg184Trp). The mutation is located within an alpha-helix, and based on the SIFT analysis, this amino acid substitution is not tolerated. Amplifying the region around this mutation and digesting the PCR fragment with the restriction enzyme MspI, produces fragments that readily differentiate between PFK-deficient, carrier, and normal animals. Furthermore, we document 2 additional upstream PFKM exons expressed in canine testis but not in blood.
Despite their similar phenotypic appearance and use for hunting, Wachtelhunds and English Springer Spaniels are not thought to have common ancestors. Thus, it is not surprising that different mutations are responsible for PFK deficiency in these breeds. Knowledge of the molecular basis of PFK deficiency in Wachtelhunds provides an opportunity to screen and control the spread of this deleterious trait.
PMCID: PMC3485442  PMID: 22446493
Hemolytic anemia; Red cell defect; Myopathy; Hereditary disease; Dog
17.  Mucopolysaccharidosis VII in a Cat Caused by 2 Adjacent Missense Mutations in the GUSB Gene 
Mucopolysaccharidoses (MPS) are common lysosomal storage disorders causing typically progressive skeletal and ocular abnormalities.
To describe the clinic features, metabolic profile and a unique mutation in a domestic shorthair (DSH) kitten with MPS VII.
Affected kitten and 80 healthy cats.
Serum lysosomal enzyme activities and urinary glycosaminoglycan (GAG) accumulation were assessed. Exons of the β-glucuronidase gene (GUSB) were sequenced from genomic DNA and genotyping was conducted.
A 3-month-old DSH cat was presented for stunted growth, paresis, facial dysmorphia, multiple skeletal deformities, and corneal opacities. Evaluation of blood smears disclosed metachromatic granules in leukocytes and a urinary mucopolysaccharide spot test was positive. The proband had no GUSB activity but normal or increased activities for other lysosomal enzymes. Sequencing of the GUSB gene from the proband and comparison to the sequence of 2 healthy cats and the published feline genome sequence demonstrated 2 unique single base transitions (c.1421T>G and c.1424C>T) in exon 9, altering 2 adjacent codons (p.Ser475Ala and p.Arg476Trp). These amino acid changes are in a highly conserved domain of the GUSB protein and nontolerable to maintain function. Moreover, the p.Arg476Trp mutation previously has been identified in human patients. None of the other clinically healthy cats had these mutations.
Conclusions and Clinic Importance
The diagnostic approach to MPS disorders is delineated. This is only the second mutation known to cause MPS VII in cats. Similarly, 2 different mutations have been described in MPS VII dogs, thereby showing the molecular heterogeneity of MPS VII in companion animals.
PMCID: PMC4624456  PMID: 26118695
Lysosomal storage disease; Ocular disease; Skeletal deformities; β-glucuronidase
18.  Mucopolysaccharidosis VII in a Cat Caused by 2 Adjacent Missense Mutations in the GUSB Gene 
Mucopolysaccharidoses (MPS) are common lysosomal storage disorders causing typically progressive skeletal and ocular abnormalities.
To describe the clinic features, metabolic profile and a unique mutation in a domestic shorthair (DSH) kitten with MPS VII.
Affected kitten and 80 healthy cats.
Serum lysosomal enzyme activities and urinary glycosaminoglycan (GAG) accumulation were assessed. Exons of the β‐glucuronidase gene (GUSB) were sequenced from genomic DNA and genotyping was conducted.
A 3‐month‐old DSH cat was presented for stunted growth, paresis, facial dysmorphia, multiple skeletal deformities, and corneal opacities. Evaluation of blood smears disclosed metachromatic granules in leukocytes and a urinary mucopolysaccharide spot test was positive. The proband had no GUSB activity but normal or increased activities for other lysosomal enzymes. Sequencing of the GUSB gene from the proband and comparison to the sequence of 2 healthy cats and the published feline genome sequence demonstrated 2 unique single base transitions (c.1421T>G and c.1424C>T) in exon 9, altering 2 adjacent codons (p.Ser475Ala and p.Arg476Trp). These amino acid changes are in a highly conserved domain of the GUSB protein and nontolerable to maintain function. Moreover, the p.Arg476Trp mutation previously has been identified in human patients. None of the other clinically healthy cats had these mutations.
Conclusions and Clinic Importance
The diagnostic approach to MPS disorders is delineated. This is only the second mutation known to cause MPS VII in cats. Similarly, 2 different mutations have been described in MPS VII dogs, thereby showing the molecular heterogeneity of MPS VII in companion animals.
PMCID: PMC4624456  PMID: 26118695
Lysosomal storage disease; Ocular disease; Skeletal deformities; β‐glucuronidase
19.  Molecular analysis of the CHST6 gene in Korean patients with macular corneal dystrophy: Identification of three novel mutations 
Molecular Vision  2015;21:1201-1209.
To identify the underlying genetic defect in Korean patients with macular corneal dystrophy (MCD).
Genomic DNA was isolated from peripheral blood leukocytes of seven patients from six unrelated families with MCD (three men and four women). Polymerase chain reaction was performed for coding regions of the carbohydrate sulfotransferase (CHST6), gene followed by bidirectional sequencing. Targeted mutational analysis (exons 4, 11–12, 14) of the transforming growth factor, beta-induced (TGFBI) gene was performed for all patients.
All seven patients were found to have compound heterozygous mutations in the CHST6 gene. In addition to six previously reported mutations, c.95C>A (p.Ser32*), c.521A>G (p.Lys174Arg), c.557C>G (p.Pro186Arg), c.613C>T (p.Arg205Trp), c.820G>A (p.Glu274Lys), and c.1072T>C (p.Tyr358His), three novel mutations were identified in this study, including two missense mutations, c.353C>T (p.Ser118Phe) and c.922C>T (p.His308Tyr), and one frameshift mutation, c.786delC (p.L264Cfs*117). Among the three novel mutations, only the c.353C>T mutation had been reported in the Exon Aggregation Consortium database at an extremely low frequency of 0.00005072. In addition, these three novel mutations were absent from controls in 1,000 genomes, dbSNP, and the TIARA genome database, which is a Korean personal genome database. The most frequent mutation was c.613C>T (p.Arg205Trp), revealed in four unrelated Korean families, which has not previously been reported in other populations. No mutations were detected in the TGFBI gene.
This is the first report on genetic analysis of Korean MCD patients. Three novel and six previously reported disease-causing CHST6 mutations were identified, which expands the mutational spectrum of MCD.
PMCID: PMC4626780  PMID: 26604660
20.  Identification of presumed pathogenic KRT3 and KRT12 gene mutations associated with Meesmann corneal dystrophy 
Molecular Vision  2015;21:1378-1386.
To report potentially pathogenic mutations in the keratin 3 (KRT3) and keratin 12 (KRT12) genes in two individuals with clinically diagnosed Meesmann corneal dystrophy (MECD).
Slit-lamp examination was performed on the probands and available family members to identify characteristic features of MECD. After informed consent was obtained, saliva samples were obtained as a source of genomic DNA, and screening of KRT3 and KRT12 was performed. Potentially pathogenic variants were screened for in 200 control chromosomes. PolyPhen-2, SIFT, and PANTHER were used to predict the functional impact of identified variants. Short tandem repeat genotyping was performed to confirm paternity.
Slit-lamp examination of the first proband demonstrated bilateral, diffusely distributed, clear epithelial microcysts, consistent with MECD. Screening of KRT3 revealed a heterozygous missense variant in exon 1, c.250C>T (p.(Arg84Trp)), which has a minor allele frequency of 0.0076 and was not identified in 200 control chromosomes. In silico analysis with PolyPhen-2 and PANTHER predicted the variant to be damaging to protein function; however, SIFT analysis predicted tolerance of the variant. The second proband demonstrated bilateral, diffusely distributed epithelial opacities that appeared gray-white on direct illumination and translucent on retroillumination. Neither parent demonstrated corneal opacities. Screening of KRT12 revealed a novel heterozygous insertion/deletion variant in exon 6, c.1288_1293delinsAGCCCT (p.(Arg430_Arg431delinsSerPro)). This variant was not present in either of the proband’s parents or in 200 control chromosomes and was predicted to be damaging by PolyPhen-2, PANTHER, and SIFT. Haplotype analysis confirmed paternity of the second proband, indicating that the variant arose de novo.
We present a novel KRT12 mutation, representing the first de novo mutation and the first indel in KRT12 associated with MECD. In addition, we report a variant of uncertain significance in KRT3 in an individual with MECD. Although the potential pathogenicity of this variant is unknown, it is the first variant affecting the head domain of K3 to be reported in an individual with MECD and suggests that disease-causing variants associated with MECD may not be restricted to primary sequence alterations of either the helix-initiation or helix-termination motifs of K3 and K12.
PMCID: PMC4704769  PMID: 26788030
21.  The fraction of strongly bound cross-bridges is increased in mice that carry the myopathy-linked myosin heavy chain mutation MYH4L342Q 
Disease Models & Mechanisms  2013;6(3):834-840.
Myosinopathies have emerged as a new group of diseases and are caused by mutations in genes encoding myosin heavy chain (MyHC) isoforms. One major hallmark of these diseases is skeletal muscle weakness or paralysis, but the underlying molecular mechanisms remain unclear. Here, we have undertaken a detailed functional study of muscle fibers from Myh4arl mice, which carry a mutation that provokes an L342Q change within the catalytic domain of the type IIb skeletal muscle myosin protein MYH4. Because homozygous animals develop rapid muscle-structure disruption and lower-limb paralysis, they must be killed by postnatal day 13, so all experiments were performed using skeletal muscles from adult heterozygous animals (Myh4arl/+). Myh4arl/+ mice contain MYH4L342Q expressed at 7% of the levels of the wild-type (WT) protein, and are overtly and histologically normal. However, mechanical and X-ray diffraction pattern analyses of single membrane-permeabilized fibers revealed, upon maximal Ca2+ activation, higher stiffness as well as altered meridional and equatorial reflections in Myh4arl/+ mice when compared with age-matched WT animals. Under rigor conditions, by contrast, no difference was observed between Myh4arl/+ and WT mice. Altogether, these findings prove that, in adult MYH4L342Q heterozygous mice, the transition from weak to strong myosin cross-bridge binding is facilitated, increasing the number of strongly attached myosin heads, thus enhancing force production. These changes are predictably exacerbated in the type IIb fibers of homozygous mice, in which the embryonic myosin isoform is fully replaced by MYH4L342Q, leading to a hypercontraction, muscle-structure disruption and lower-limb paralysis. Overall, these findings provide important insights into the molecular pathogenesis of skeletal myosinopathies.
PMCID: PMC3634666  PMID: 23335206
22.  The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy 
In this study, we investigated the association between brain natriuretic peptide (BNP) levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM). We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17), 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm) and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19) and BNP in the patients. The patients were divided into two groups according to the presence (Group 1) or absence (Group 2) of left ventricular (LV) outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA) volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score >6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.
PMCID: PMC4765941  PMID: 26773184
Hypertrophic cardiomyopathy; molecular genetics; brain natriuretic peptide; tissue Doppler flow; left ventricular outflow tract obstruction
23.  Four different mutations in codon 28 of alpha spectrin are associated with structurally and functionally abnormal spectrin alpha I/74 in hereditary elliptocytosis. 
Journal of Clinical Investigation  1991;88(3):743-749.
Hereditary elliptocytosis (HE) Sp alpha I/74 is a disorder associated with defective spectrin (Sp) heterodimer self-association and an abnormal tryptic cleavage of the 80-kD alpha I domain of Sp resulting in increased amounts of a 74-kD peptide. The molecular basis of this disorder is heterogeneous and mutations in codons 28, 46, 48, and 49 (codons 22, 40, 42, and 43 in the previous nomenclature which did not include the six NH2-terminal amino acids) have been reported. In this study we present data on seven unrelated HE Sp alpha I/74 kindred from diverse racial backgrounds in whom we identified four different mutations all occurring in exon 2 of alpha Sp at codon 28. Utilizing the polymerase chain reaction we established a CGT----CTT; Arg----Leu 28 mutation in one kindred of Arab/Druze origin. In two unrelated white kindred of English/European origin the substitution is CGT----AGT; Arg----Ser 28 and in two apparently unrelated white kindred from New Zealand, the mutation is CGT----TGT; Arg----Cys 28. Finally, in one American black kindred and in a black kindred from Ghana the mutation involves CGT----CAT; Arg----His 28. Allele specific oligonucleotide hybridization confirmed that the probands are heterozygous for the respective mutant alleles. All four point mutations abolished an Aha II restriction enzyme site which allowed verification of linkage of the mutation with HE Sp alpha I/74. Our results imply that codon 28 of alpha Sp is a "hot spot" for mutations and also indicate that Arg 28 is critical for the conformational stability and functional self association of Sp heterodimers.
PMCID: PMC295451  PMID: 1679439
24.  Double heterozygosity for mutations in the β-myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy 
Journal of Medical Genetics  1999;36(7):542-545.
Familial hypertrophic cardiomyopathy is a genetically heterogeneous autosomal dominant disease, caused by mutations in several sarcomeric protein genes. So far, seven genes have been shown to be associated with the disease with the β-myosin heavy chain (MYH7) and the cardiac myosin binding protein C (MYBPC3) genes being the most frequently involved.
We performed electrocardiography (ECG) and echocardiography in 15 subjects with hypertrophic cardiomyopathy from a French Caribbean family. Genetic analyses were performed on genomic DNA by haplotype analysis with microsatellite markers at each locus involved and mutation screening by single strand conformation polymorphism analysis. Based on ECG and echocardiography, eight subjects were affected and presented a classical phenotype of hypertrophic cardiomyopathy. Two new mutations cosegregating with the disease were found, one located in the MYH7 gene exon 15 (Glu483Lys) and the other in the MYBPC3 gene exon 30 (Glu1096 termination codon). Four affected subjects carried the MYH7 gene mutation, two the MYBPC3 gene mutation, and two were doubly heterozygous for the two mutations. The doubly heterozygous patients exhibited marked left ventricular hypertrophy, which was significantly greater than in the other affected subjects.
We report for the first time the simultaneous presence of two pathological mutations in two different genes in the context of familial hypertrophic cardiomyopathy. This double heterozygosity is not lethal but is associated with a more severe phenotype.

Keywords: hypertrophic cardiomyopathy; genetics; β-myosin heavy chain gene; cardiac myosin binding protein C gene
PMCID: PMC1734410  PMID: 10424815
25.  Myozenin 2 Is a Novel Gene for Human Hypertrophic Cardiomyopathy 
Circulation research  2007;100(6):766-768.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in sarcomeric proteins (excluding phenocopy). The causal genes in approximately one-third of the cases remain unknown. We identified a family comprised of 6 clinically affected members. The phenotype was characterized by early onset of symptoms, pronounced cardiac hypertrophy, and cardiac arrhythmias. We excluded MYH7, MYBPC3, TNNT2, and ACTC1 as the causal gene either by direct sequencing or by haplotype analysis. To map the putative candidate sarcomeric gene, we perforbold locus-specific haplotyping to detect cosegregation of the locus haplotype with the phenotype, followed by mutation screening. We genotyped 5 short-tandem-repeat markers that spanned a 4.4-centimorgan region on 4q26-q27 locus and encompassed myozenin 2 (MYOZ2), a Z-disk protein. The maximum logarithm of odds score was 2.03 (P=0.005). All affected members shared a common haplotype, implicating MYOZ2 as the causal gene. To detect the causal mutation, we sequenced all exons and exon–intron boundaries of MYOZ2 in 10 family members and identified a T→C missense mutation corresponding to S48P substitution, which cosegregated with inheritance of HCM (N=6). It was absent in 4 clinically normal family members and in 658 additional normal individuals. To determine frequency of the MYOZ2 mutations in HCM, we sequenced MYOZ2 in 516 HCM probands and detected another missense mutation (I246M). It was absent in 2 normal family members and 517 controls. Both mutations affect highly conserved amino acids. We conclude MYOZ2 is a novel causal gene for human HCM.
PMCID: PMC2775141  PMID: 17347475
mutation; gene; hypertrophic cardiomyopathy; calsarcin 1

Results 1-25 (499469)