PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (975854)

Clipboard (0)
None

Related Articles

1.  Studies of Vascular Endothelial Growth Factor in Asthma and Chronic Obstructive Pulmonary Disease 
Vascular endothelial growth factor (VEGF) is a potent stimulator of vascular angiogenesis, permeability, and remodeling that also plays important roles in wound healing and tissue cytoprotection. To begin to define the roles of VEGF in diseases like asthma and COPD, we characterized the effects of lung-targeted transgenic VEGF165 and defined the innate immune pathways that regulate VEGF tissue responses. The former studies demonstrated that VEGF plays an important role in Th2 inflammation because, in addition to stimulating angiogenesis and edema, VEGF induced eosinophilic inflammation, mucus metaplasia, subepithelial fibrosis, myocyte hyperplasia, dendritic cell activation, and airways hyperresponsiveness via IL-13–dependent and -independent mechanisms. VEGF was also produced at sites of aeroallergen-induced Th2 inflammation, and VEGF receptor blockade ameliorated adaptive Th2 inflammation and Th2 cytokine elaboration. The latter studies demonstrated that activation of the RIG-like helicase (RLH) innate immune pathway using viral pathogen–associated molecular patterns such as Poly(I:C) or viruses ameliorated VEGF-induced tissue responses. In accord with these findings, Poly(I:C)-induced RLH activation also abrogated aeroallergen-induced Th2 inflammation. When viewed in combination, these studies suggest that VEGF excess can contribute to the pathogenesis of Th2 inflammatory disorders such as asthma and that abrogation of VEGF signaling via RLH activation can contribute to the pathogenesis of viral disorders such as virus-induced COPD exacerbations. They also suggest that RLH activation may be a useful therapeutic strategy in asthma and related disorders.
doi:10.1513/pats.201102-018MW
PMCID: PMC3359071  PMID: 22052929
asthma; chronic obstructive pulmonary disease; virus; RIG-like helicase; mitochondrial antiviral signaling molecule
2.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Background
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
Conclusions
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Background
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050094.
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050094
PMCID: PMC2386836  PMID: 18494554
3.  Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17-mediated autoimmunity in the CNS 
Immunology and Cell Biology  2012;90(5):505-509.
Different viruses trigger pattern recognition receptor systems, such as Toll-like receptors or cytosolic RIG-I like helicases (RLH), and thus induce early type I interferon (IFN-I) responses. Such responses may confer protection until adaptive immunity is activated to an extent that the pathogen can be eradicated. Interestingly, the same innate immune mechanisms that are relevant for early pathogen defense have a role in ameliorating experimental autoimmune encephalomyelitis (EAE), a rodent model of human multiple sclerosis. We and others found that mice devoid of a component of the IFN-I receptor (Ifnar1−/−) showed significantly enhanced autoimmune disease of the central nervous system (CNS). A detailed analysis revealed that in wild-type mice IFN-I triggering of myeloid cells was instrumental in reducing brain damage. A more recent study indicated that similar to Ifnar1−/− mice, RLH-signaling-deficient mice showed enhanced autoimmune disease of the CNS as well. Moreover, when peripherally treated with synthetic RLH ligands wild-type animals with EAE disease showed reduced clinical scores. Under such conditions, IFN-I receptor triggering of dendritic cells had a crucial role. The therapeutic effect of treatment with RLH ligands was associated with negative regulation of Th1 and Th17 T-cell responses within the CNS. These experiments are consistent with the hypothesis that spatiotemporal conditions of, and cell types involved in, disease-ameliorating IFN-I responses differ significantly, depending on whether they were endogenously induced in the context of EAE pathogenesis within the CNS or upon therapeutic RLH triggering in the periphery. It is attractive to speculate that RLH triggering represents a new strategy to treat multiple sclerosis by stimulating endogenous immunoregulatory IFN-I responses.
doi:10.1038/icb.2012.8
PMCID: PMC3365287  PMID: 22430251
experimental autoimmune encephalomyelitis; interferon-beta; new therapy approach
4.  Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches 
PLoS Computational Biology  2006;2(12):e180.
Angiogenesis (neovascularization) plays a crucial role in a variety of physiological and pathological conditions including cancer, cardiovascular disease, and wound healing. Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Multiple VEGF receptors are expressed on endothelial cells, including signaling receptor tyrosine kinases (VEGFR1 and VEGFR2) and the nonsignaling co-receptor Neuropilin-1. Neuropilin-1 binds only the isoform of VEGF responsible for pathological angiogenesis (VEGF165), and is thus a potential target for inhibiting VEGF signaling. Using the first molecularly detailed computational model of VEGF and its receptors, we have shown previously that the VEGFR–Neuropilin interactions explain the observed differential effects of VEGF isoforms on VEGF signaling in vitro, and demonstrated potent VEGF inhibition by an antibody to Neuropilin-1 that does not block ligand binding but blocks subsequent receptor coupling. In the present study, we extend that computational model to simulation of in vivo VEGF transport and binding, and predict the in vivo efficacy of several Neuropilin-targeted therapies in inhibiting VEGF signaling: (a) blocking Neuropilin-1 expression; (b) blocking VEGF binding to Neuropilin-1; (c) blocking Neuropilin–VEGFR coupling. The model predicts that blockade of Neuropilin–VEGFR coupling is significantly more effective than other approaches in decreasing VEGF–VEGFR2 signaling. In addition, tumor types with different receptor expression levels respond differently to each of these treatments. In designing human therapeutics, the mechanism of attacking the target plays a significant role in the outcome: of the strategies tested here, drugs with similar properties to the Neuropilin-1 antibody are predicted to be most effective. The tumor type and the microenvironment of the target tissue are also significant in determining therapeutic efficacy of each of the treatments studied.
Synopsis
Neuropilin is a co-receptor for some of the isoforms of the vascular endothelial growth factor (VEGF) family. The presence of Neuropilin on endothelial or other cells increases binding of these isoforms to their signaling receptor VEGFR2, thus increasing pro-angiogenesis signaling and stimulating vascular growth. Neuropilin is thus a suitable target for anti-angiogenesis therapy, which holds promise for the treatment of vasculature-dependent diseases such as cancer and diabetic retinopathy. In this study, Mac Gabhann and Popel perform computational simulations of VEGF transport in breast cancer, using a previously validated model of VEGF–VEGF receptor interactions, as well as geometrical information on the tumor itself—tumor cells, vasculature, and extracellular matrix. Three different molecular therapies targeting Neuropilin are tested in silico, and the simulations predict that one of these therapies will be effective at reducing VEGFR2 signaling in certain types (or subtypes) of tumors, while the others will not. Thus, we demonstrate that identification of a target molecule is not sufficient; different therapeutic strategies targeting the same molecule may result in different outcomes.
doi:10.1371/journal.pcbi.0020180
PMCID: PMC1761657  PMID: 17196035
5.  Granzyme B Releases Vascular Endothelial Growth Factor from Extracellular Matrix and Induces Vascular Permeability 
The formation of unstable, leaky neovessels underlies the pathogenesis of many chronic inflammatory diseases. Granzyme B (GZMB) is an immune-derived serine protease that accumulates in the extracellular matrix (ECM) during chronic inflammation and is capable of cleaving fibronectin (FN). Vascular endothelial growth factor (VEGF) is a potent vascular permeabilizing agent that is sequestered in the ECM through its interaction with FN. As GZMB levels are elevated in chronic inflammatory diseases that are associated with increased vascular permeability, the role of GZMB in the regulation of VEGF bioavailability and vascular permeability were assessed.
Methods and Results
GZMB was added to either VEGF-bound to FN or VEGF-bound to endothelial cell (EC)-derived ECM. Supernatants containing released VEGF were assessed to determine VEGF activity by treating EC and evaluating VEGF receptor-2 (VEGFR2) phosphorylation. GZMB released VEGF from both FN and from EC-derived matrix, while GZMB inhibition prevented FN cleavage and VEGF release. GZMB-mediated VEGF release resulted in significant phosphorylation of VEGFR2. The role of GZMB-mediated VEGF release in altering vascular permeability was also assessed in vivo using a Miles/Evan’s Blue permeability assay. GZMB induced a significant VEGF-dependent increase in vascular permeability in vivo that was reduced in the presence of an anti-VEGF neutralizing antibody. Inflammatory-mediated vascular leakage was also assessed in GZMB-KO mice using a delayed-type hypersensitivity model. GZMB-KO mice exhibited reduced microvascular leakage compared to C57\B6 controls.
Conclusions
GZMB increases vascular permeability in part through the proteolytic release of ECM-sequestered VEGF leading to VEGFR2 activation and increased vascular permeability in vivo. These findings present a novel role for GZMB as a modulator of vascular response during chronic inflammation.
doi:10.1038/labinvest.2014.62
PMCID: PMC4074428  PMID: 24791744 CAMSID: cams4292
Fibronectin; Granzyme B; Inflammation; VEGF; Vascular permeability
6.  The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells 
Vascular Cell  2011;3:9.
Background
Vascular endothelial growth factors (VEGFs) are key regulators of endothelial cell function and angiogenesis. We and others have previously demonstrated that VEGF-A stimulates AMP-activated protein kinase (AMPK) in cultured endothelial cells. Furthermore, AMPK has been reported to regulate VEGF-mediated angiogenesis. The role of AMPK in the function of VEGF-B remains undetermined, as does the role of AMPK in VEGF-stimulated endothelial cell proliferation, a critical process in angiogenesis.
Methods
Human aortic endothelial cells (HAECs) were incubated with VEGF-A and VEGF-B prior to examination of HAEC AMPK activity, proliferation, migration, fatty acid oxidation and fatty acid transport. The role of AMPK in the functional effects of VEGF-A and/or VEGF-B was assessed after downregulation of AMPK activity with chemical inhibitors or infection with adenoviruses expressing a dominant negative mutant AMPK.
Results
Incubation of HAECs with VEGF-B rapidly stimulated AMPK activity in a manner sensitive to an inhibitor of Ca2+/calmodulin-dependent kinase kinase (CaMKK), without increasing phosphorylation of endothelial NO synthase (eNOS) phosphorylation at Ser1177. Downregulation of AMPK abrogated HAEC proliferation in response to VEGF-A or VEGF-B. However, activation of AMPK by agents other than VEGF inhibited proliferation. Downregulation of AMPK abrogated VEGF-A-stimulated HAEC migration, whereas infection with adenoviruses expressing constitutively active mutant AMPK stimulated chemokinesis. Neither VEGF-A nor VEGF-B had any significant effect on HAEC fatty acid oxidation, yet prolonged incubation with VEGF-A stimulated fatty acid uptake in an AMPK-dependent manner. Inhibition of eNOS abrogated VEGF-mediated proliferation and migration, but was without effect on VEGF-stimulated fatty acid transport, ERK or Akt phosphorylation.
Conclusions
These data suggest that VEGF-B stimulates AMPK by a CaMKK-dependent mechanism and stimulation of AMPK activity is required for proliferation in response to either VEGF-A or VEGF-B and migration in response to VEGF-A. AMPK activation alone was not sufficient, however, to stimulate proliferation in the absence of VEGF. VEGF-stimulated NO synthesis is required for the stimulation of proliferation by VEGF-A or VEGF-B, yet this may be independent of eNOS Ser1177 phosphorylation.
doi:10.1186/2045-824X-3-9
PMCID: PMC3094250  PMID: 21507243
7.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
Background
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
Conclusions
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
Background.
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040186.
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0040186
PMCID: PMC1885450  PMID: 17550303
8.  Lung vascular endothelial growth factor expression induces local myeloid dendritic cell activation 
Clinical immunology (Orlando, Fla.)  2009;132(3):371-384.
We previously demonstrated that vascular endothelial growth factor (VEGF) expression in the murine lung increases local CD11c+ MHCII+ DC number and activation. In this study, employing a multicolor flow cytometry, we report increases in both myeloid (mDC) and plasmacytoid (pDC) DC in the lungs of VEGF transgenic (tg) compared to WT mice. Lung pDC from VEGF tg mice exhibited higher levels of activation with increased expression of MHCII and costimulatory molecules. As VEGF tg mice display an asthma-like phenotype and lung mDC play a critical role in asthmatic setting, studies were undertaken to further characterize murine lung mDC. Evaluations of sorted mDC from VEGF tg lungs demonstrated a selective upregulation of cathepsin K, MMP-8, -9, -12, and -14, and chemokine receptors as compared to those obtained from WT control mice. They also had increased VEGFR2 but downregulated VEGFR1 expression. Analysis of chemokine and regulatory cytokine expression in these cells showed an upregulation of macrophage chemotactic protein-3 (MCP-3), thymus-expressed chemokine (TECK), secondary lymphoid organ chemokine (SLC), macrophage-derived chemokine (MDC), IL-1β, IL-6, IL-12 and IL-13. The antigen (Ag) OVA-FITC uptake by lung DC and the migration of Ag-loaded DC to local lymph nodes were significantly increased in VEGF tg mice compared to WT mice. Thus, VEGF may predispose the lung to inflammation and/or repair by activating local DC. It regulates lung mDC expression of innate immunity effector molecules. The data presented here demonstrate how lung VEGF expression functionally affects local mDC for the transition from the innate response to a Th2-type inflammatory response.
doi:10.1016/j.clim.2009.05.016
PMCID: PMC2780370  PMID: 19553159
Rodent; lung; inflammation; dendritic cells; cell activation
9.  AUF1-RGG peptides up-regulate the VEGF antagonist, soluble VEGF receptor-1 (sFlt-1) 
Cytokine  2013;64(1):337-342.
The macrophage is essential to the innate immune response, but also contributes to human disease by aggravating inflammation. Under severe inflammation, macrophages and other immune cells over-produce immune mediators, including vascular endothelial growth factor (VEGF). The VEGF protein stimulates macrophage activation and induces macrophage migration. A natural inhibitor of VEGF, the soluble VEGF receptor (sFlt-1) is also produced by macrophages and sFlt-1 has been used clinically to block VEGF. In macrophages, we have shown that the mRNA regulatory protein AUF1/hnRNP D represses VEGF gene expression by inhibiting translation of AURE-regulated VEGF mRNA. Peptides (AUF1-RGG peptides) that are modeled on the arginine- glycine-glycine (RGG) motif in AUF1 also block VEGF expression. This report shows that the AUF1-RGG peptides reduce two other AURE-regulated genes, TNF and GLUT1. Three alternative splice variants of sFlt-1 contain AURE in their 3′UTR, and in an apparent paradox, AUF1-RGG peptides stimulate expression of these three sFlt-1 variants. The AUF1-RGG peptides likely act by distinct mechanisms with complimentary effects to repress VEGF gene expression and over-express the endogenous VEGF blocking agent, sFlt-1. The AUF1-RGG peptides are novel reagents that reduce VEGF and other inflammatory mediators, and may be useful tools to suppress severe inflammation.
doi:10.1016/j.cyto.2013.05.019
PMCID: PMC3770750  PMID: 23769804
AUF1; hnRNP D; VEGF; soluble VEGFR-1; sFlt-1; AUF1-RGG peptide; AU-rich elements; AURE; inflammation
10.  The early responses of VEGF and its receptors during acute lung injury: implication of VEGF in alveolar epithelial cell survival 
Critical Care  2006;10(5):R130.
Introduction
The function of the vascular endothelial growth factor (VEGF) system in acute lung injury (ALI) is controversial. We hypothesized that the role of VEGF in ALI may depend upon the stages of pathogenesis of ALI.
Methods
To determine the responses of VEGF and its receptors during the early onset of ALI, C57BL6 mice were subjected to intestinal ischemia or sham operation for 30 minutes followed by intestinal ischemia-reperfusion (IIR) for four hours under low tidal volume ventilation with 100% oxygen. The severity of lung injury, expression of VEGF and its receptors were assessed. To further determine the role of VEGF and its type I receptor in lung epithelial cell survival, human lung epithelial A549 cells were treated with small interference RNA (siRNA) to selectively silence related genes.
Results
IIR-induced ALI featured interstitial inflammation, enhancement of pulmonary vascular permeability, increase of total cells and neutrophils in the bronchoalveolar lavage (BAL), and alveolar epithelial cell death. In the BAL, VEGF was significantly increased in both sham and IIR groups, while the VEGF and VEGF receptor (VEGFR)-1 in the lung tissues were significantly reduced in these two groups. The increase of VEGF in the BAL was correlated with the total protein concentration and cell count. Significant negative correlations were observed between the number of VEGF or VEGFR-1 positive cells, and epithelial cells undergoing cell death. When human lung epithelial A549 cells were pre-treated with 50 nM of siRNA either against VEGF or VEGFR-1 for 24 hours, reduced VEGF and VEGFR-1 levels were associated with reduced cell viability.
Conclusion
These results suggest that VEGF may have dual roles in ALI: early release of VEGF may increase pulmonary vascular permeability; reduced expression of VEGF and VEGFR-1 in lung tissue may contribute to the death of alveolar epithelial cells.
doi:10.1186/cc5042
PMCID: PMC1751039  PMID: 16968555
11.  Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding 
eLife  2014;3:e03720.
During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. In this study, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1VEGF−). Nrp1VEGF− mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1-targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease.
DOI: http://dx.doi.org/10.7554/eLife.03720.001
eLife digest
Blood flows through blood vessels to carry oxygen and nutrients towards, and waste away from, the cells of the body. New blood vessels are formed not only during development but also throughout life as part of normal tissue growth and repair. However, blood vessels may also form as a consequence of diseases, such as cancer. For example, tumors often stimulate the growth of new blood vessels to ensure a good supply of blood carrying nutrients and oxygen. As such, some anti-cancer therapies try to stop blood vessels from developing in an attempt to slow down or prevent tumor growth.
New blood vessels often form by branching off from existing vessels. One molecule that stimulates this branching process is called vascular endothelial growth factor (or VEGF for short). Three ‘receptor’ proteins found on the outside of cells can bind to the VEGF molecule and then trigger a response inside the cell that guides the development of new blood vessels. VEGF and its receptor proteins—including one called NRP1—are being investigated as a possible target for drugs that could treat cancer and other diseases affecting blood vessels. However, the exact mechanisms that control the formation of new blood vessels are not fully understood, which makes it difficult to develop these treatments.
Now Gelfand et al. have created mice whose NRP1 receptors cannot bind VEGF. These mice unexpectedly survive to adulthood and develop normal blood vessels. This outcome is in contrast to mice that lack NRP1, which normally die as embryos and have severe defects with their nerves and blood vessels. Gelfand et al. instead found that mice that only lack NRP1 in the cells of their blood vessels had less of another receptor protein called VEGFR2 on the surface of these cells. This result suggests that NRP1 controls blood vessel development, not by binding to VEGF but by affecting how much of the VEGFR2 receptor is available to interact with VEGF.
These findings challenge the long-held view of how NRP1 functions and lead Gelfand et al. to suggest a new mechanism: NRP1 interacts with VEGFR2, rather than with VEGF, to control the formation of new blood vessels. Future work will aim to uncover how these interactions regulate the normal development of blood vessels, and if other molecules that bind to NRP1 are involved in this process. Furthermore, these findings may help to guide the on-going efforts to develop drugs that target NRP1 into treatments that are effective against diseases that involve problems with blood vessels—including diabetes, immune disorders, and cancer.
DOI: http://dx.doi.org/10.7554/eLife.03720.002
doi:10.7554/eLife.03720
PMCID: PMC4197402  PMID: 25244320
Neuropilin-1; developmental angiogenesis; VEGFR2; VEGF; mouse genetics; mouse
12.  Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia☆ 
Neurobiology of Disease  2014;71:245-259.
Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform.
We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event – leading to the preferential expression of VEGF-A165b over VEGF165a – prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a.
After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain.
We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy.
Graphical abstract
Highlights
•The different vegf-a splice variants, VEGF-A165a and VEGF-A165b have pro- and anti-nociceptive actions respectively.•Pro-nociceptive actions of VEGF-A165a are dependent on TRPV1.•Alternative pre-mRNA splicing underpins peripheral sensitization by VEGF-A isoforms in normal and neuropathic animals.
doi:10.1016/j.nbd.2014.08.012
PMCID: PMC4194316  PMID: 25151644
VEGF-A, vascular endothelial growth factor-A; SRPK1, serine arginine protein kinase 1; SRSF1, serine arginine splice factor 1; VEGFR2, vascular endothelial growth factor receptor 2; IB4, isolectin B4; TRPV1, transient receptor potential vanilloid 1; CV, conduction velocity; PSNI, partial saphenous nerve ligation injury; DRG, dorsal root ganglia; Vascular endothelial growth factor A; Alternative mRNA splicing; Neuropathy; Nociceptors
13.  Induction of Aberrant Vascular Growth, But Not of Normal Angiogenesis, by Cell-Based Expression of Different Doses of Human and Mouse VEGF Is Species-Dependent 
Human Gene Therapy Methods  2013;24(1):28-37.
Abstract
Therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery is an attractive approach to treat ischemia. VEGF remains localized around each producing cell in vivo, and overexpression of mouse VEGF164 (mVEGF164) induces normal or aberrant angiogenesis, depending strictly on its dose in the microenvironment in vivo. However, the dose-dependent effects of the clinically relevant factor, human VEGF165 (hVEGF165), are unknown. Here we exploited a highly controlled gene delivery platform, based on clonal populations of transduced myoblasts overexpressing specific VEGF levels, to rigorously compare the in vivo dose-dependent effects of hVEGF165 and mVEGF164 in skeletal muscle of severe combined immune deficient (SCID) mice. While low levels of both factors efficiently induced similar amounts of normal angiogenesis, only high levels of mVEGF164 caused widespread angioma-like structures, whereas equivalent or even higher levels of hVEGF165 induced exclusively normal and mature capillaries. Expression levels were confirmed both in vitro and in vivo by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). However, in vitro experiments showed that hVEGF165 was significantly more effective in activating VEGF receptor signaling in human endothelial cells than mVEGF164, while the opposite was true in murine endothelial cells. In conclusion, we found that, even though hVEGF is similarly efficient to the syngenic mVEGF in inducing angiogenesis at lower doses in a widely adopted and convenient mouse preclinical model, species-dependent differences in the relative activation of the respective receptors may specifically mask the toxic effects of high doses of the human factor.
Mujagic and colleagues evaluate dose-dependent effects of cell-based overexpression of human or mouse vascular endothelial growth factor (hVEGF, mVEGF) in human and mouse endothelial cell cultures as well as in the skeletal muscle of immunocompromised mice. At low levels, both factors similarly induced normal angiogenesis in vivo, whereas at high levels, mVEGF resulted in widespread angiomalike structures. In vitro, hVEGF was significantly more effective in activating VEGF receptor signaling in human cells than mVEGF, with the opposite effect observed in murine cultures.
doi:10.1089/hgtb.2012.197
PMCID: PMC4015081  PMID: 23360398
14.  Thioredoxin-Interacting Protein Expression Is Required for VEGF-Mediated Angiogenic Signal in Endothelial Cells 
Antioxidants & Redox Signaling  2013;19(18):2199-2212.
Abstract
Aims: Thioredoxin-interacting protein (TXNIP) contributes to cellular redox-state homeostasis via binding and inhibiting thioredoxin (TRX). Increasing evidence suggests that cellular redox homeostasis regulates vascular endothelial growth factor (VEGF)-mediated signaling. This study aims to examine the redox-dependant role of TXNIP in regulating VEGF-mediated S-glutathionylation and angiogenic signaling. TXNIP-knockout mice (TKO) or wild-type (WT) treated with the reduced glutathione (GSH)-precursor, N-acetyl cysteine (WT-NAC, 500 mg/kg) were compared to WT using hypoxia-induced neovascularization model. Results: In response to hypoxia, retinas from TKO and WT-NAC mice showed significant decreases in reparative revascularization and pathological neovascularization with similar VEGF expression compared with WT. VEGF failed to stimulate vascular sprouting from aortic rings of TKO compared to WT mice. TKO mice or WT+NAC experienced reductive stress as indicated by twofold increase in TRX reductase activity and fourfold increase in reduced-GSH levels compared with WT. In human microvascular endothelial (HME) cells, VEGF stimulated co-precipitation between vascular endothelial growth factor receptor 2 (VEGFR2) with low molecular weight protein tyrosine phosphatase (LMW-PTP). Silencing TXNIP expression blunted VEGF-induced oxidation of GSH and S-glutathionylation of the LMW-PTP in HME cells. These effects were associated with impaired VEGFR2 phosphorylation that culminated in inhibiting cell migration and tube formation. Overexpression of TXNIP restored VEGFR2 phosphorylation and cell migration in TKO-endothelial cells. Innovation: TXNIP expression is required for VEGF-mediated VEGFR2 activation and angiogenic response in vivo and in vitro. TXNIP expression regulates VEGFR-2 phosphorylation via S-glutathionylation of LMW-PTP in endothelial cells. Conclusion: Our results provide novel mechanistic insight into modulating TXNIP expression as a potential therapeutic target in diseases characterized by aberrant angiogenesis. Antioxid. Redox Signal. 19, 2199–2212.
doi:10.1089/ars.2012.4761
PMCID: PMC3869450  PMID: 23718729
15.  Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy 
PLoS Computational Biology  2006;2(9):e127.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
Synopsis
It is not currently possible to experimentally quantify the gradients of protein concentration in the extracellular space in vivo. However, the concentration gradients of vascular endothelial growth factor (VEGF) are essential for both initiation and directed guidance of new blood vessels. The authors develop a computational model of VEGF transport in tissue in vivo (skeletal muscle, though the method is applicable to other tissues and other proteins) with realistic geometry and including biophysical interactions of VEGF, its receptors, and the extracellular matrix. Using this model, the authors predict for the first time the distribution of VEGF concentration and VEGF receptor activation throughout the tissue. VEGF concentration gradients are significant, up to 12% change in VEGF concentration over 10 μm in resting muscle. Transplanting VEGF-overexpressing myocytes (for therapeutic induction of blood vessel growth) increases the gradients significantly. Endothelial cells in sprouting vessels are approximately 50 μm long, and therefore the predicted gradients across the cell are high and sufficient for chemotactic guidance of the new vessels. The VEGF concentration gradients also result in significant heterogeneity in the activation of VEGF receptors on blood vessels throughout the tissue, a possible reason for the sporadic nature of sprout initiation.
doi:10.1371/journal.pcbi.0020127
PMCID: PMC1570371  PMID: 17002494
16.  Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung 
Nature medicine  2004;10(10):1095-1103.
Exaggerated levels of VEGF (vascular endothelial growth factor) are present in persons with asthma, but the role(s) of VEGF in normal and asthmatic lungs has not been defined. We generated lung-targeted VEGF165 transgenic mice and evaluated the role of VEGF in T-helper type 2 cell (TH2)-mediated inflammation. In these mice, VEGF induced, through IL-13–dependent and –independent pathways, an asthma-like phenotype with inflammation, parenchymal and vascular remodeling, edema, mucus metaplasia, myocyte hyperplasia and airway hyper-responsiveness. VEGF also enhanced respiratory antigen sensitization and TH2 inflammation and increased the number of activated DC2 dendritic cells. In antigen-induced inflammation, VEGF was produced by epithelial cells and preferentially by TH2 versus TH1 cells. In this setting, it had a critical role in TH2 inflammation, cytokine production and physiologic dysregulation. Thus, VEGF is a mediator of vascular and extravascular remodeling and inflammation that enhances antigen sensitization and is crucial in adaptive TH2 inflammation. VEGF regulation may be therapeutic in asthma and other TH2 disorders.
doi:10.1038/nm1105
PMCID: PMC3434232  PMID: 15378055
17.  Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies 
BMC Systems Biology  2011;5:193.
Background
Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, and its role in cancer biology has been widely studied. Many cancer therapies target angiogenesis, with a focus being on VEGF-mediated signaling such as antibodies to VEGF. However, it is difficult to predict the effects of VEGF-neutralizing agents. We have developed a whole-body model of VEGF kinetics and transport under pathological conditions (in the presence of breast tumor). The model includes two major VEGF isoforms VEGF121 and VEGF165, receptors VEGFR1, VEGFR2 and co-receptors Neuropilin-1 and Neuropilin-2. We have added receptors on parenchymal cells (muscle fibers and tumor cells), and incorporated experimental data for the cell surface density of receptors on the endothelial cells, myocytes, and tumor cells. The model is applied to investigate the action of VEGF-neutralizing agents (called "anti-VEGF") in the treatment of cancer.
Results
Through a sensitivity study, we examine how model parameters influence the level of free VEGF in the tumor, a measure of the response to VEGF-neutralizing drugs. We investigate the effects of systemic properties such as microvascular permeability and lymphatic flow, and of drug characteristics such as the clearance rate and binding affinity. We predict that increasing microvascular permeability in the tumor above 10-5 cm/s elicits the undesired effect of increasing tumor interstitial VEGF concentration beyond even the baseline level. We also examine the impact of the tumor microenvironment, including receptor expression and internalization, as well as VEGF secretion. We find that following anti-VEGF treatment, the concentration of free VEGF in the tumor can vary between 7 and 233 pM, with a dependence on both the density of VEGF receptors and co-receptors and the rate of neuropilin internalization on tumor cells. Finally, we predict that free VEGF in the tumor is reduced following anti-VEGF treatment when VEGF121 comprises at least 25% of the VEGF secreted by tumor cells.
Conclusions
This study explores the optimal drug characteristics required for an anti-VEGF agent to have a therapeutic effect and the tumor-specific properties that influence the response to therapy. Our model provides a framework for investigating the use of VEGF-neutralizing drugs for personalized medicine treatment strategies.
doi:10.1186/1752-0509-5-193
PMCID: PMC3229549  PMID: 22104283
18.  Compartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice 
Frontiers in Oncology  2013;3:196.
Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this complex biological process and can aid in the development of novel and effective therapeutics that target the VEGF family of proteins and receptors. We have developed a computational model of VEGF transport and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tissue, blood, and tumor. The model simulates human tumor xenografts and includes human (VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorporates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance. We have fit the model to available in vivo experimental data on the plasma concentration of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to estimate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are significantly lower (0.007–0.023 molecules/cell/s, depending on the tumor microenvironment) than most reported in vitro measurements (0.03–2.65 molecules/cell/s). The optimized model is used to investigate the interstitial and plasma VEGF concentrations and the effect of the VEGF-neutralizing agent, VEGF Trap (aflibercept). This work complements experimental studies performed in mice and provides a framework with which to examine the effects of anti-VEGF agents, aiding in the optimization of such anti-angiogenic therapeutics as well as analysis of clinical data. The model predictions also have implications for biomarker discovery with anti-angiogenic therapies.
doi:10.3389/fonc.2013.00196
PMCID: PMC3727077  PMID: 23908970
systems biology; mathematical model; computational model; angiogenesis; tumor xenograft model; anti-angiogenic therapy; cancer
19.  TRAF6 Establishes Innate Immune Responses by Activating NF-κB and IRF7 upon Sensing Cytosolic Viral RNA and DNA 
PLoS ONE  2009;4(5):e5674.
Background
In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed.
Principal Findings
Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7.
Conclusions/Significance
Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.
doi:10.1371/journal.pone.0005674
PMCID: PMC2682567  PMID: 19479062
20.  Recombinant Human VEGF165b Inhibits Experimental Choroidal Neovascularization 
The alternative splice form of VEGF, VEGF-A165b, inhibits choroidal neovascularization at very low doses in mice, indicating that it may be an effective therapy for age-related macular degeneration, comparable with or better than existing anti-VEGF therapy.
Purpose.
Vascular endothelial growth factor (VEGF-A) is the principal stimulator of angiogenesis in wet age-related macular degeneration (AMD). However, VEGF-A is generated by alternate splicing into two families, the proangiogenic VEGF-Axxx family and the antiangiogenic VEGF-Axxxb family. It is the proangiogenic family that is responsible for the blood vessel growth seen in AMD.
Methods.
To determine the role of antiangiogenic isoforms of VEGF-A as inhibitors of choroidal neovascularization, the authors used a model of laser-induced choroidal neovascularization in the mouse eye and investigated VEGF-A165b effects on endothelial cells and VEGFRs in vitro.
Results.
VEGF-A165b inhibited VEGF-A165–mediated endothelial cell migration with a dose effect similar to that of ranibizumab and bevacizumab and 200-fold more potent than that of pegaptanib. VEGF-A165b bound both VEGFR1 and VEGFR2 with affinity similar to that of VEGF-A165. After laser injury, mice were injected either intraocularly or subcutaneously with recombinant human VEGF-A165b. Intraocular injection of rhVEGF-A165b gave a pronounced dose-dependent inhibition of fluorescein leakage, with an IC50 of 16 pg/eye, neovascularization (IC50, 0.8 pg/eye), and lesion as assessed by histologic staining (IC50, 8 pg/eye). Subcutaneous administration of 100 μg twice a week also inhibited fluorescein leakage and neovascularization and reduced lesion size.
Conclusions.
These results show that VEGF-A165b is a potent antiangiogenic agent in a mouse model of age-related macular degeneration and suggest that increasing the ratio of antiangiogenic-to-proangiogenic isoforms may be therapeutically effective in this condition.
doi:10.1167/iovs.09-4360
PMCID: PMC2910649  PMID: 20237252
21.  Transforming Growth Factor-β1 Downregulates Vascular Endothelial Growth Factor-D Expression in Human Lung Fibroblasts via the Jun NH2-Terminal Kinase Signaling Pathway 
Molecular Medicine  2014;20(1):120-134.
Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF.
doi:10.2119/molmed.2013.00123
PMCID: PMC3960396  PMID: 24515257
22.  Thogoto Virus Infection Induces Sustained Type I Interferon Responses That Depend on RIG-I-Like Helicase Signaling of Conventional Dendritic Cells▿  
Journal of Virology  2010;84(23):12344-12350.
Type I interferon (IFN-α/β) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.
doi:10.1128/JVI.00931-10
PMCID: PMC2976394  PMID: 20861272
23.  Intrauterine Pulmonary Hypertension Impairs Angiogenesis In Vitro 
Rationale: Mechanisms that impair angiogenesis in neonatal persistent pulmonary hypertension (PPHN) are poorly understood.
Objectives: To determine if PPHN alters fetal pulmonary artery endothelial cell (PAEC) phenotype and impairs growth and angiogenesis in vitro, and if altered vascular endothelial growth factor–nitric oxide (VEGF–NO) signaling contributes to this abnormal phenotype.
Methods: Proximal PAECs were harvested from fetal sheep that had undergone partial ligation of the ductus arteriosus in utero (PPHN) and age-matched control animals. Growth and tube formation ± VEGF and NO stimulation and inhibition were studied in normal and PPHN PAECs. Western blot analysis was performed for VEGF, VEGF receptor-2 (VEGF-R2), and endothelial NO synthase (eNOS) protein content. NO production with VEGF administration was measured in normal and PPHN PAECs.
Measurements and Main Results: PPHN PAECs demonstrate decreased growth and tube formation in vitro. VEGF and eNOS protein expression were decreased in PPHN PAECs, whereas VEGF-R2 protein expression was not different. VEGF and NO increased PPHN PAEC growth and tube formation to values achieved in normal PAECs. VEGF inhibition decreased growth and tube formation in normal and PPHN PAECs. NOS inhibition decreased growth in normal and PPHN PAECs, but tube formation was only reduced in normal PAECs. NO reversed the inhibitory effects of VEGF-R2 inhibition on tube formation in normal and PPHN PAECs. VEGF increased NO production in normal and PPHN PAECs.
Conclusions: PPHN in utero causes sustained impairment of PAEC phenotype in vitro, with reduced PAEC growth and tube formation and down-regulation of VEGF and eNOS protein. VEGF and NO enhanced growth and tube formation of PPHN PAECs.
doi:10.1164/rccm.200705-750OC
PMCID: PMC2176095  PMID: 17823355
persistent pulmonary hypertension of the newborn; angiogenesis; vascular endothelial growth factor; nitric oxide; endothelial cells
24.  Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity 
Vascular endothelial growth factor (VEGF)-A has essential roles in vasculogenesis and angiogenesis, but the downstream steps and mechanisms by which human VEGF-A acts are incompletely understood. We report here that human VEGF-A exerts much of its angiogenic activity by up-regulating the expression of TR3 (mouse homologue Nur77), an immediate-early response gene and orphan nuclear receptor transcription factor previously implicated in tumor cell, lymphocyte, and neuronal growth and apoptosis. Overexpression of TR3 in human umbilical vein endothelial cells (HUVECs) resulted in VEGF-A–independent proliferation, survival, and induction of several cell cycle genes, whereas expression of antisense TR3 abrogated the response to VEGF-A in these assays and also inhibited tube formation. Nur77 was highly expressed in several types of VEGF-A–dependent pathological angiogenesis in vivo. Also, using a novel endothelial cell-selective retroviral targeting system, overexpression of Nur77 DNA potently induced angiogenesis in the absence of exogenous VEGF-A, whereas Nur77 antisense strongly inhibited VEGF-A–induced angiogenesis. B16F1 melanoma growth and angiogenesis were greatly inhibited in Nur77−/− mice. Mechanistic studies with TR3/Nur77 mutants revealed that TR3/Nur77 exerted most of its effects on cultured HUVECs and its pro-angiogenic effects in vivo, through its transactivation and DNA binding domains (i.e., through transcriptional activity).
doi:10.1084/jem.20051523
PMCID: PMC2118245  PMID: 16520388
25.  Specific VEGF sequestering to biomaterials: Influence of serum stability 
Acta biomaterialia  2013;9(11):8823-8831.
Vascular endothelial growth factor (VEGF) was originally discovered as a tumor-derived factor that is able to induce endothelial cell behavior associated with angiogenesis. It has been implicated during wound healing for the induction of endothelial cell proliferation, tube formation and blood vessel remodeling. However, previous investigations into the biological effect of VEGF concluded that a particular range of growth factor concentrations are required for healthy vasculature to form, motivating recent studies to regulate VEGF activity via molecular sequestering to biomaterials. Numerous VEGF sequestering strategies have been developed, and they have typically relied on extracellular matrix mimicking moieties that are not specific for VEGF and can affect many growth factors simultaneously. We describe here a strategy for efficient, specific VEGF sequestering with poly(ethylene glycol) (PEG) microspheres, using peptides designed to mimic VEGF receptor type 2 (VEGFR2). By immobilizing two distinct peptides with different serum stabilities, we examined the effect of serum on the specific interaction between peptide-containing PEG microspheres and VEGF. We addressed the hypothesis that VEGF sequestering in serum-containing solutions would be influenced by the serum stability of the VEGF-binding peptide. We further hypothesized that soluble VEGF could be sequestered in serum-containing cell culture media, resulting in decreased VEGF-dependent proliferation of human umbilical vein endothelial cells. We show that soluble VEGF concentration can be effectively regulated in serum-containing environments via specific molecular sequestering, which suggests potential clinical applications.
doi:10.1016/j.actbio.2013.06.033
PMCID: PMC4149317  PMID: 23816648
Angiogenesis; VEGF; Sequestration; Poly(ethylene glycol); Extracellular matrix

Results 1-25 (975854)