PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (2012126)

Clipboard (0)
None

Related Articles

1.  Screening and Replication using the Same Data Set: Testing Strategies for Family-Based Studies in which All Probands Are Affected 
PLoS Genetics  2008;4(9):e1000197.
For genome-wide association studies in family-based designs, we propose a powerful two-stage testing strategy that can be applied in situations in which parent-offspring trio data are available and all offspring are affected with the trait or disease under study. In the first step of the testing strategy, we construct estimators of genetic effect size in the completely ascertained sample of affected offspring and their parents that are statistically independent of the family-based association/transmission disequilibrium tests (FBATs/TDTs) that are calculated in the second step of the testing strategy. For each marker, the genetic effect is estimated (without requiring an estimate of the SNP allele frequency) and the conditional power of the corresponding FBAT/TDT is computed. Based on the power estimates, a weighted Bonferroni procedure assigns an individually adjusted significance level to each SNP. In the second stage, the SNPs are tested with the FBAT/TDT statistic at the individually adjusted significance levels. Using simulation studies for scenarios with up to 1,000,000 SNPs, varying allele frequencies and genetic effect sizes, the power of the strategy is compared with standard methodology (e.g., FBATs/TDTs with Bonferroni correction). In all considered situations, the proposed testing strategy demonstrates substantial power increases over the standard approach, even when the true genetic model is unknown and must be selected based on the conditional power estimates. The practical relevance of our methodology is illustrated by an application to a genome-wide association study for childhood asthma, in which we detect two markers meeting genome-wide significance that would not have been detected using standard methodology.
Author Summary
The current state of genotyping technology has enabled researchers to conduct genome-wide association studies of up to 1,000,000 SNPs, allowing for systematic scanning of the genome for variants that might influence the development and progression of complex diseases. One of the largest obstacles to the successful detection of such variants is the multiple comparisons/testing problem in the genetic association analysis. For family-based designs in which all offspring are affected with the disease/trait under study, we developed a methodology that addresses this problem by partitioning the family-based data into two statistically independent components. The first component is used to screen the data and determine the most promising SNPs. The second component is used to test the SNPs for association, where information from the screening is used to weight the SNPs during testing. This methodology is more powerful than standard procedures for multiple comparisons adjustment (i.e., Bonferroni correction). Additionally, as only one data set is required for screening and testing, our testing strategy is less susceptible to study heterogeneity. Finally, as many family-based studies collect data only from affected offspring, this method addresses a major limitation of previous methodologies for multiple comparisons in family-based designs, which require variation in the disease/trait among offspring.
doi:10.1371/journal.pgen.1000197
PMCID: PMC2529406  PMID: 18802462
2.  BAYESIAN SEMIPARAMETRIC ANALYSIS FOR TWO-PHASE STUDIES OF GENE-ENVIRONMENT INTERACTION 
The annals of applied statistics  2013;7(1):543-569.
The two-phase sampling design is a cost-efficient way of collecting expensive covariate information on a judiciously selected sub-sample. It is natural to apply such a strategy for collecting genetic data in a sub-sample enriched for exposure to environmental factors for gene-environment interaction (G × E) analysis. In this paper, we consider two-phase studies of G × E interaction where phase I data are available on exposure, covariates and disease status. Stratified sampling is done to prioritize individuals for genotyping at phase II conditional on disease and exposure. We consider a Bayesian analysis based on the joint retrospective likelihood of phase I and phase II data. We address several important statistical issues: (i) we consider a model with multiple genes, environmental factors and their pairwise interactions. We employ a Bayesian variable selection algorithm to reduce the dimensionality of this potentially high-dimensional model; (ii) we use the assumption of gene-gene and gene-environment independence to trade-off between bias and efficiency for estimating the interaction parameters through use of hierarchical priors reflecting this assumption; (iii) we posit a flexible model for the joint distribution of the phase I categorical variables using the non-parametric Bayes construction of Dunson and Xing (2009). We carry out a small-scale simulation study to compare the proposed Bayesian method with weighted likelihood and pseudo likelihood methods that are standard choices for analyzing two-phase data. The motivating example originates from an ongoing case-control study of colorectal cancer, where the goal is to explore the interaction between the use of statins (a drug used for lowering lipid levels) and 294 genetic markers in the lipid metabolism/cholesterol synthesis pathway. The sub-sample of cases and controls on which these genetic markers were measured is enriched in terms of statin users. The example and simulation results illustrate that the proposed Bayesian approach has a number of advantages for characterizing joint effects of genotype and exposure over existing alternatives and makes efficient use of all available data in both phases.
doi:10.1214/12-AOAS599
PMCID: PMC3935248  PMID: 24587840
Biased sampling; Colorectal cancer; Dirichlet prior; Exposure enriched; sampling; Gene-environment independence; Joint effects; Multivariate categorical distribution; Spike and slab prior
3.  Using Incomplete Trios to Boost Confidence in Family Based Association Studies 
Most currently available family based association tests are designed to account only for nuclear families with complete genotypes for parents as well as offspring. Due to the availability of increasingly less expensive generation of whole genome sequencing information, genetic studies are able to collect data for more families and from large family cohorts with the goal of improving statistical power. However, due to missing genotypes, many families are not included in the family based association tests, negating the benefits of large scale sequencing data. Here, we present the CIFBAT method to use incomplete families in Family Based Association Test (FBAT) to evaluate robustness against missing data. CIFBAT uses quantile intervals of the FBAT statistic by randomly choosing valid completions of incomplete family genotypes based on Mendelian inheritance rules. By considering all valid completions equally likely and computing quantile intervals over many randomized iterations, CIFBAT avoids assumption of a homogeneous population structure or any particular missingness pattern in the data. Using simulated data, we show that the quantile intervals computed by CIFBAT are useful in validating robustness of the FBAT statistic against missing data and in identifying genomic markers with higher precision. We also propose a novel set of candidate genomic markers for uterine related abnormalities from analysis of familial whole genome sequences, and provide validation for a previously established set of candidate markers for Type 1 diabetes. We have provided a software package that incorporates TDT, robustTDT, FBAT, and CIFBAT. The data format proposed for the software uses half the memory space that the standard FBAT format (PED) files use, making it efficient for large scale genome wide association studies.
doi:10.3389/fgene.2016.00034
PMCID: PMC4796035  PMID: 27047537
family based association tests; missing genotypes; randomized imputation; quantile intervals; population stratification; whole genome analysis; memory efficient data format
4.  Full Likelihood Analysis of Genetic Risk with Variable Age at Onset Disease—Combining Population-Based Registry Data and Demographic Information 
PLoS ONE  2009;4(8):e6836.
Background
In genetic studies of rare complex diseases it is common to ascertain familial data from population based registries through all incident cases diagnosed during a pre-defined enrollment period. Such an ascertainment procedure is typically taken into account in the statistical analysis of the familial data by constructing either a retrospective or prospective likelihood expression, which conditions on the ascertainment event. Both of these approaches lead to a substantial loss of valuable data.
Methodology and Findings
Here we consider instead the possibilities provided by a Bayesian approach to risk analysis, which also incorporates the ascertainment procedure and reference information concerning the genetic composition of the target population to the considered statistical model. Furthermore, the proposed Bayesian hierarchical survival model does not require the considered genotype or haplotype effects be expressed as functions of corresponding allelic effects. Our modeling strategy is illustrated by a risk analysis of type 1 diabetes mellitus (T1D) in the Finnish population-based on the HLA-A, HLA-B and DRB1 human leucocyte antigen (HLA) information available for both ascertained sibships and a large number of unrelated individuals from the Finnish bone marrow donor registry. The heterozygous genotype DR3/DR4 at the DRB1 locus was associated with the lowest predictive probability of T1D free survival to the age of 15, the estimate being 0.936 (0.926; 0.945 95% credible interval) compared to the average population T1D free survival probability of 0.995.
Significance
The proposed statistical method can be modified to other population-based family data ascertained from a disease registry provided that the ascertainment process is well documented, and that external information concerning the sizes of birth cohorts and a suitable reference sample are available. We confirm the earlier findings from the same data concerning the HLA-DR3/4 related risks for T1D, and also provide here estimated predictive probabilities of disease free survival as a function of age.
doi:10.1371/journal.pone.0006836
PMCID: PMC2730012  PMID: 19718441
5.  A computationally efficient algorithm for genomic prediction using a Bayesian model 
Background
Genomic prediction of breeding values from dense single nucleotide polymorphisms (SNP) genotypes is used for livestock and crop breeding, and can also be used to predict disease risk in humans. For some traits, the most accurate genomic predictions are achieved with non-linear estimates of SNP effects from Bayesian methods that treat SNP effects as random effects from a heavy tailed prior distribution. These Bayesian methods are usually implemented via Markov chain Monte Carlo (MCMC) schemes to sample from the posterior distribution of SNP effects, which is computationally expensive. Our aim was to develop an efficient expectation–maximisation algorithm (emBayesR) that gives similar estimates of SNP effects and accuracies of genomic prediction than the MCMC implementation of BayesR (a Bayesian method for genomic prediction), but with greatly reduced computation time.
Methods
emBayesR is an approximate EM algorithm that retains the BayesR model assumption with SNP effects sampled from a mixture of normal distributions with increasing variance. emBayesR differs from other proposed non-MCMC implementations of Bayesian methods for genomic prediction in that it estimates the effect of each SNP while allowing for the error associated with estimation of all other SNP effects. emBayesR was compared to BayesR using simulated data, and real dairy cattle data with 632 003 SNPs genotyped, to determine if the MCMC and the expectation-maximisation approaches give similar accuracies of genomic prediction.
Results
We were able to demonstrate that allowing for the error associated with estimation of other SNP effects when estimating the effect of each SNP in emBayesR improved the accuracy of genomic prediction over emBayesR without including this error correction, with both simulated and real data. When averaged over nine dairy traits, the accuracy of genomic prediction with emBayesR was only 0.5% lower than that from BayesR. However, emBayesR reduced computing time up to 8-fold compared to BayesR.
Conclusions
The emBayesR algorithm described here achieved similar accuracies of genomic prediction to BayesR for a range of simulated and real 630 K dairy SNP data. emBayesR needs less computing time than BayesR, which will allow it to be applied to larger datasets.
Electronic supplementary material
The online version of this article (doi:10.1186/s12711-014-0082-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12711-014-0082-4
PMCID: PMC4415253  PMID: 25926276
6.  Impact of prior specifications in ashrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction 
Background
In quantitative trait mapping and genomic prediction, Bayesian variable selection methods have gained popularity in conjunction with the increase in marker data and computational resources. Whereas shrinkage-inducing methods are common tools in genomic prediction, rigorous decision making in mapping studies using such models is not well established and the robustness of posterior results is subject to misspecified assumptions because of weak biological prior evidence.
Methods
Here, we evaluate the impact of prior specifications in a shrinkage-based Bayesian variable selection method which is based on a mixture of uniform priors applied to genetic marker effects that we presented in a previous study. Unlike most other shrinkage approaches, the use of a mixture of uniform priors provides a coherent framework for inference based on Bayes factors. To evaluate the robustness of genetic association under varying prior specifications, Bayes factors are compared as signals of positive marker association, whereas genomic estimated breeding values are considered for genomic selection. The impact of specific prior specifications is reduced by calculation of combined estimates from multiple specifications. A Gibbs sampler is used to perform Markov chain Monte Carlo estimation (MCMC) and a generalized expectation-maximization algorithm as a faster alternative for maximum a posteriori point estimation. The performance of the method is evaluated by using two publicly available data examples: the simulated QTLMAS XII data set and a real data set from a population of pigs.
Results
Combined estimates of Bayes factors were very successful in identifying quantitative trait loci, and the ranking of Bayes factors was fairly stable among markers with positive signals of association under varying prior assumptions, but their magnitudes varied considerably. Genomic estimated breeding values using the mixture of uniform priors compared well to other approaches for both data sets and loss of accuracy with the generalized expectation-maximization algorithm was small as compared to that with MCMC.
Conclusions
Since no error-free method to specify priors is available for complex biological phenomena, exploring a wide variety of prior specifications and combining results provides some solution to this problem. For this purpose, the mixture of uniform priors approach is especially suitable, because it comprises a wide and flexible family of distributions and computationally intensive estimation can be carried out in a reasonable amount of time.
doi:10.1186/1297-9686-45-24
PMCID: PMC3750442  PMID: 23834140
7.  Genomic breeding value prediction using three Bayesian methods and application to reduced density marker panels 
BMC Proceedings  2010;4(Suppl 1):S6.
Background
Bayesian approaches for predicting genomic breeding values (GEBV) have been proposed that allow for different variances for individual markers resulting in a shrinkage procedure that uses prior information to coerce negligible effects towards zero. These approaches have generally assumed application to high-density genotype data on all individuals, which may not be the case in practice. In this study, three approaches were compared for their predictive power in computing GEBV when training at high SNP marker density and predicting at high or low densities: the well- known Bayes-A, a generalization of Bayes-A where scale and degrees of freedom are estimated from the data (Student-t) and a Bayesian implementation of the Lasso method. Twelve scenarios were evaluated for predicting GEBV using low-density marker subsets, including selection of SNP based on genome spacing or size of additive effect and the inclusion of unknown genotype information in the form of genotype probabilities from pedigree and genotyped ancestors.
Results
The GEBV accuracy (calculated as correlation between GEBV and traditional breeding values) was highest for Lasso, followed by Student-t and then Bayes-A. When comparing GEBV to true breeding values, Student-t was most accurate, though differences were small. In general the shrinkage applied by the Lasso approach was less conservative than Bayes-A or Student-t, indicating that Lasso may be more sensitive to QTL with small effects. In the reduced-density marker subsets the ranking of the methods was generally consistent. Overall, low-density, evenly-spaced SNPs did a poor job of predicting GEBV, but SNPs selected based on additive effect size yielded accuracies similar to those at high density, even when coverage was low. The inclusion of genotype probabilities to the evenly-spaced subsets showed promising increases in accuracy and may be more useful in cases where many QTL of small effect are expected.
Conclusions
In this dataset the Student-t approach slightly outperformed the other methods when predicting GEBV at both high and low density, but the Lasso method may have particular advantages in situations where many small QTL are expected. When markers were selected at low density based on genome spacing, the inclusion of genotype probabilities increased GEBV accuracy which would allow a single low- density marker panel to be used across traits.
doi:10.1186/1753-6561-4-S1-S6
PMCID: PMC2857848  PMID: 20380760
8.  Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model 
BMC Genetics  2015;16:120.
Background
In recent years, with the development of high-throughput sequencing technology and the commercial availability of genotyping bead chips, more attention is being directed towards the utilization of abundant genetic markers in animal and plant breeding programs, human disease risk prediction and personal medicine. Several useful approaches to accomplish genomic prediction have been developed and used widely, but still have room for improvement to gain more accuracy. In this study, an improved Bayesian approach, termed BayesBπ, which differs from the original BayesB in priors assigning, is proposed. An effective method for calculating the locus-specific π by converting p-values from association between SNPs and traits’ phenotypes is given and systemically validated using a German Holstein dairy cattle population. Furthermore, the new method is applied to a loblolly pine (Pinus taeda) dataset.
Results
Compared with the original BayesB, BayesBπ can improve the accuracy of genomic prediction up to 7.62 % for milk fat percentage, a trait which shows a large effect of quantitative trait loci (QTL). For milk yield, which is controlled by small to moderate effect genes, the accuracy of genomic prediction can be improved up to 4.94 %. For somatic cell score, of which no large effect QTL has been reported, GBLUP performs better than Bayesian methods. BayesBπ outperforms BayesCπ in 10 out of 12 scenarios in the dairy cattle population, especially in small to moderate population sizes where accuracy of BayesCπ are dramatically low. Results of the loblolly pine dataset show that BayesBπ outperforms BayesB in 14 out of 17 traits and BayesCπ in 8 out of 17 traits, respectively.
Conclusions
For traits controlled by large effect genes, BayesBπ can improve the accuracy of genomic prediction and unbiasedness of BayesB in moderate size populations. Knowledge of traits’ genetic architectures can be integrated into practices of genomic prediction by assigning locus-specific priors to markers, which will help Bayesian approaches perform better in variable selection and marker effects shrinkage.
Electronic supplementary material
The online version of this article (doi:10.1186/s12863-015-0278-9) contains supplementary material, which is available to authorized users.
doi:10.1186/s12863-015-0278-9
PMCID: PMC4606514  PMID: 26466667
Genomic selection; Bayesian approaches; Priors; Genetic Architecture
9.  A Bayesian latent class analysis for whole-genome association analyses: an illustration using the GAW15 simulated rheumatoid arthritis dense scan data 
BMC Proceedings  2007;1(Suppl 1):S112.
Although rheumatoid arthritis, a chronic and inflammatory disease affecting numerous adults, has a complex genetic component involving the human leukocyte antigen region, additional genomic regions most likely affects susceptibility. Whole-genome scans may assist in identifying these additional candidate regions, but a large number of false-positives are likely to occur using traditional statistical methods. Therefore, novel statistical approaches are needed. Here, we used a single replicate from the Genetic Analysis Workshop 15 simulated data to assess for marker-disease associations in 1500 rheumatoid arthritis cases and 2000 controls on chromosome 6. The statistical methods included a maximum-likelihood estimation approach and a novel Bayesian latent class analysis. The Bayesian analysis "borrows strength" from multiple loci to estimate association parameters and can incorporate differences across loci in the prior probability of association. Because of this, we hypothesized that the Bayesian analysis might be better able to detect true associations while minimizing false positives. The Bayesian posterior means for the log alleleic odds ratios were less variable than the maximum likelihood estimates, but the posterior probabilities were not as good as the simple p-values in distinguishing a signal from a non-signal. Overall, Bayesian latent class analyses provided no obvious improvement over maximum-likelihood estimation. However, our results may not be able to be generalized due to the large effect simulated in the human leukocyte antigen-DR locus.
PMCID: PMC2367528  PMID: 18466453
10.  A SCREENING-TESTING APPROACH FOR DETECTING GENE-ENVIRONMENT INTERACTIONS USING SEQUENTIAL PENALIZED AND UNPENALIZED MULTIPLE LOGISTIC REGRESSION 
Gene-environment (G×E) interactions are biologically important for a wide range of environmental exposures and clinical outcomes. Because of the large number of potential interactions in genomewide association data, the standard approach fits one model per G×E interaction with multiple hypothesis correction (MHC) used to control the type I error rate. Although sometimes effective, using one model per candidate G×E interaction test has two important limitations: low power due to MHC and omitted variable bias. To avoid the coefficient estimation bias associated with independent models, researchers have used penalized regression methods to jointly test all main effects and interactions in a single regression model. Although penalized regression supports joint analysis of all interactions, can be used with hierarchical constraints, and offers excellent predictive performance, it cannot assess the statistical significance of G×E interactions or compute meaningful estimates of effect size. To address the challenge of low power, researchers have separately explored screening-testing, or two-stage, methods in which the set of potential G×E interactions is first filtered and then tested for interactions with MHC only applied to the tests actually performed in the second stage. Although two-stage methods are statistically valid and effective at improving power, they still test multiple separate models and so are impacted by MHC and biased coefficient estimation. To remedy the challenges of both poor power and omitted variable bias encountered with traditional G×E interaction detection methods, we propose a novel approach that combines elements of screening-testing and hierarchical penalized regression. Specifically, our proposed method uses, in the first stage, an elastic net-penalized multiple logistic regression model to jointly estimate either the marginal association filter statistic or the gene-environment correlation filter statistic for all candidate genetic markers. In the second stage, a single multiple logistic regression model is used to jointly assess marginal terms and G×E interactions for all genetic markers that pass the first stage filter. A single likelihood-ratio test is used to determine whether any of the interactions are statistically significant. We demonstrate the efficacy of our method relative to alternative G×E detection methods on a bladder cancer data set.
PMCID: PMC4299918  PMID: 25592580
11.  A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis 
Bioinformatics  2015;31(9):1452-1459.
Motivation: A major focus of current sequencing studies for human genetics is to identify rare variants associated with complex diseases. Aside from reduced power of detecting associated rare variants, controlling for population stratification is particularly challenging for rare variants. Transmission/disequilibrium tests (TDT) based on family designs are robust to population stratification and admixture, and therefore provide an effective approach to rare variant association studies to eliminate spurious associations. To increase power of rare variant association analysis, gene-based collapsing methods become standard approaches for analyzing rare variants. Existing methods that extend this strategy to rare variants in families usually combine TDT statistics at individual variants and therefore lack the flexibility of incorporating other genetic models.
Results: In this study, we describe a haplotype-based framework for group-wise TDT (gTDT) that is flexible to encompass a variety of genetic models such as additive, dominant and compound heterozygous (CH) (i.e. recessive) models as well as other complex interactions. Unlike existing methods, gTDT constructs haplotypes by transmission when possible and inherently takes into account the linkage disequilibrium among variants. Through extensive simulations we showed that type I error was correctly controlled for rare variants under all models investigated, and this remained true in the presence of population stratification. Under a variety of genetic models, gTDT showed increased power compared with the single marker TDT. Application of gTDT to an autism exome sequencing data of 118 trios identified potentially interesting candidate genes with CH rare variants.
Availability and implementation: We implemented gTDT in C++ and the source code and the detailed usage are available on the authors’ website (https://medschool.vanderbilt.edu/cgg).
Contact: bingshan.li@vanderbilt.edu or wei.chen@chp.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btu860
PMCID: PMC4410665  PMID: 25568282
12.  Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers 
BMC Bioinformatics  2010;11:529.
Background
The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved.
Results
This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described.
Conclusions
emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time.
doi:10.1186/1471-2105-11-529
PMCID: PMC3098088  PMID: 20969788
13.  A Bayesian model for gene family evolution 
BMC Bioinformatics  2011;12:426.
Background
A birth and death process is frequently used for modeling the size of a gene family that may vary along the branches of a phylogenetic tree. Under the birth and death model, maximum likelihood methods have been developed to estimate the birth and death rate and the sizes of ancient gene families (numbers of gene copies at the internodes of the phylogenetic tree). This paper aims to provide a Bayesian approach for estimating parameters in the birth and death model.
Results
We develop a Bayesian approach for estimating the birth and death rate and other parameters in the birth and death model. In addition, a Bayesian hypothesis test is developed to identify the gene families that are unlikely under the birth and death process. Simulation results suggest that the Bayesian estimate is more accurate than the maximum likelihood estimate of the birth and death rate. The Bayesian approach was applied to a real dataset of 3517 gene families across genomes of five yeast species. The results indicate that the Bayesian model assuming a constant birth and death rate among branches of the phylogenetic tree cannot adequately explain the observed pattern of the sizes of gene families across species. The yeast dataset was thus analyzed with a Bayesian heterogeneous rate model that allows the birth and death rate to vary among the branches of the tree. The unlikely gene families identified by the Bayesian heterogeneous rate model are different from those given by the maximum likelihood method.
Conclusions
Compared to the maximum likelihood method, the Bayesian approach can produce more accurate estimates of the parameters in the birth and death model. In addition, the Bayesian hypothesis test is able to identify unlikely gene families based on Bayesian posterior p-values. As a powerful statistical technique, the Bayesian approach can effectively extract information from gene family data and thereby provide useful information regarding the evolutionary process of gene families across genomes.
doi:10.1186/1471-2105-12-426
PMCID: PMC3774087  PMID: 22044581
14.  Twin Studies and Their Implications for Molecular Genetic Studies: Endophenotypes Integrate Quantitative and Molecular Genetics in ADHD Research 
Objective
To describe the utility of twin studies for attention-deficit/hyperactivity disorder (ADHD) research and demonstrate their potential for the identification of alternative phenotypes suitable for genomewide association, developmental risk assessment, treatment response, and intervention targets.
Method
Brief descriptions of the classic twin study and genetic association study methods are provided, with illustrative findings from ADHD research. Biometrical genetics refers to the statistical modeling of data gathered from one or more group of known biological relation; it was apparently coined by Francis Galton in the 1860s and led to the “Biometrical School” at the University of London. Twin studies use genetic correlations between pairs of relatives, derived using this theoretical framework, to parse the individual differences in a trait into latent (unmeasured) genetic and environmental influences. This method enables the estimation of heritability, i.e., the percentage of variance due to genetic influences. It is usually implemented with a method called structural equation modeling, which is a statistical technique for fitting models to data, typically using maximum likelihood estimation. Genetic association studies aim to identify those genetic variants that account for the heritability estimated in twin studies. Measurements other than those used for the clinical diagnosis of the disorder are popular phenotype choices in current ADHD research. It is argued that twin studies have great potential to refine phenotypes relevant to ADHD.
Results
Prior studies have consistently found that the majority of the variance in ADHD symptoms is due to genetic factors. To date, genomewide association studies of ADHD have not identified replicable associations that account for the heritable variation. Possibly, the application of genomewide association studies to these alternative phenotypic measurements will assist in identifying the pathways from genetic variants to ADHD.
Conclusion
Power to detect associations should be improved by the study of highly heritable endophenotypes for ADHD and by reducing the number of phenotypes to be considered. Therefore, twin studies are an important research tool in the development of endophenotypes, defined as alternative, more highly heritable traits that act at earlier stages of the pathway from genes to behavior. Although genetic variation in liability to ADHD is likely polygenic, the proposed approach should help to identify improved alternative measurements for genetic association studies.
doi:10.1016/j.jaac.2010.06.006
PMCID: PMC3148177  PMID: 20732624
twin studies; ADHD; genomewide association; endophenotype; translational research
15.  Semiparametric Bayesian modeling of random genetic effects in family-based association studies 
Statistics in medicine  2009;28(1):113-139.
SUMMARY
We consider the inference problem of estimating covariate and genetic effects in a family-based case-control study where families are ascertained on the basis of the number of cases within the family. However, our interest lies not only in estimating the fixed covariate effects but also in estimating the random effects parameters that account for varying correlations among family members. These random effects parameters, though weakly identifiable in a strict theoretical sense, are often hard to estimate due to the small number of observations per family. A hierarchical Bayesian paradigm is a very natural route in this context with multiple advantages compared with a classical mixed effects estimation strategy based on the integrated likelihood. We propose a fully flexible Bayesian approach allowing nonparametric modeling of the random effects distribution using a Dirichlet process prior and provide estimation of both fixed effect and random effects parameters using a Markov chain Monte Carlo numerical integration scheme. The nonparametric Bayesian approach not only provides inference that is less sensitive to parametric specification of the random effects distribution but also allows possible uncertainty around a specific genetic correlation structure. The Bayesian approach has certain computational advantages over its mixed-model counterparts. Data from the Prostate Cancer Genetics Project, a family-based study at the University of Michigan Comprehensive Cancer Center including families having one or more members with prostate cancer, are used to illustrate the proposed methods. A small-scale simulation study is carried out to compare the proposed nonparametric Bayes methodology with a parametric Bayesian alternative.
doi:10.1002/sim.3413
PMCID: PMC2684653  PMID: 18792083
conditional logistic regression; Dirichlet process prior; integrated likelihood; matched case-control studies; random effects model
16.  Posterior Association Networks and Functional Modules Inferred from Rich Phenotypes of Gene Perturbations 
PLoS Computational Biology  2012;8(6):e1002566.
Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the ‘search space’ for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs) to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package implementing PAN is freely available online at http://bioconductor.org/packages/release/bioc/html/PANR.html.
Author Summary
Synthetic genetic interactions estimated from combinatorial gene perturbation screens provide systematic insights into synergistic interactions of genes in a biological process. However, this approach lacks scalability for large-scale genetic interaction profiling in metazoan organisms such as humans. We contribute to this field by proposing a more scalable and affordable approach, which takes the advantage of multiple single gene perturbation data to predict coherent functional modules followed by genetic interaction investigation using combinatorial perturbations. We developed a versatile computational framework (PAN) to robustly predict functional interactions and search for significant functional modules from rich phenotyping screens of single gene perturbations under different conditions or from multiple cell lines. PAN features a Bayesian mixture model to assess statistical significance of functional associations, the capability to incorporate prior knowledge as well as a generalized approach to search for significant functional modules by multiscale bootstrap resampling. In applications to Ewing's sarcoma and human adult stem cells, we demonstrate the general applicability and prediction power of PAN to both public and custom generated screening data.
doi:10.1371/journal.pcbi.1002566
PMCID: PMC3386165  PMID: 22761558
17.  25th Annual Computational Neuroscience Meeting: CNS-2016 
Sharpee, Tatyana O. | Destexhe, Alain | Kawato, Mitsuo | Sekulić, Vladislav | Skinner, Frances K. | Wójcik, Daniel K. | Chintaluri, Chaitanya | Cserpán, Dorottya | Somogyvári, Zoltán | Kim, Jae Kyoung | Kilpatrick, Zachary P. | Bennett, Matthew R. | Josić, Kresimir | Elices, Irene | Arroyo, David | Levi, Rafael | Rodriguez, Francisco B. | Varona, Pablo | Hwang, Eunjin | Kim, Bowon | Han, Hio-Been | Kim, Tae | McKenna, James T. | Brown, Ritchie E. | McCarley, Robert W. | Choi, Jee Hyun | Rankin, James | Popp, Pamela Osborn | Rinzel, John | Tabas, Alejandro | Rupp, André | Balaguer-Ballester, Emili | Maturana, Matias I. | Grayden, David B. | Cloherty, Shaun L. | Kameneva, Tatiana | Ibbotson, Michael R. | Meffin, Hamish | Koren, Veronika | Lochmann, Timm | Dragoi, Valentin | Obermayer, Klaus | Psarrou, Maria | Schilstra, Maria | Davey, Neil | Torben-Nielsen, Benjamin | Steuber, Volker | Ju, Huiwen | Yu, Jiao | Hines, Michael L. | Chen, Liang | Yu, Yuguo | Kim, Jimin | Leahy, Will | Shlizerman, Eli | Birgiolas, Justas | Gerkin, Richard C. | Crook, Sharon M. | Viriyopase, Atthaphon | Memmesheimer, Raoul-Martin | Gielen, Stan | Dabaghian, Yuri | DeVito, Justin | Perotti, Luca | Kim, Anmo J. | Fenk, Lisa M. | Cheng, Cheng | Maimon, Gaby | Zhao, Chang | Widmer, Yves | Sprecher, Simon | Senn, Walter | Halnes, Geir | Mäki-Marttunen, Tuomo | Keller, Daniel | Pettersen, Klas H. | Andreassen, Ole A. | Einevoll, Gaute T. | Yamada, Yasunori | Steyn-Ross, Moira L. | Alistair Steyn-Ross, D. | Mejias, Jorge F. | Murray, John D. | Kennedy, Henry | Wang, Xiao-Jing | Kruscha, Alexandra | Grewe, Jan | Benda, Jan | Lindner, Benjamin | Badel, Laurent | Ohta, Kazumi | Tsuchimoto, Yoshiko | Kazama, Hokto | Kahng, B. | Tam, Nicoladie D. | Pollonini, Luca | Zouridakis, George | Soh, Jaehyun | Kim, DaeEun | Yoo, Minsu | Palmer, S. E. | Culmone, Viviana | Bojak, Ingo | Ferrario, Andrea | Merrison-Hort, Robert | Borisyuk, Roman | Kim, Chang Sub | Tezuka, Taro | Joo, Pangyu | Rho, Young-Ah | Burton, Shawn D. | Bard Ermentrout, G. | Jeong, Jaeseung | Urban, Nathaniel N. | Marsalek, Petr | Kim, Hoon-Hee | Moon, Seok-hyun | Lee, Do-won | Lee, Sung-beom | Lee, Ji-yong | Molkov, Yaroslav I. | Hamade, Khaldoun | Teka, Wondimu | Barnett, William H. | Kim, Taegyo | Markin, Sergey | Rybak, Ilya A. | Forro, Csaba | Dermutz, Harald | Demkó, László | Vörös, János | Babichev, Andrey | Huang, Haiping | Verduzco-Flores, Sergio | Dos Santos, Filipa | Andras, Peter | Metzner, Christoph | Schweikard, Achim | Zurowski, Bartosz | Roach, James P. | Sander, Leonard M. | Zochowski, Michal R. | Skilling, Quinton M. | Ognjanovski, Nicolette | Aton, Sara J. | Zochowski, Michal | Wang, Sheng-Jun | Ouyang, Guang | Guang, Jing | Zhang, Mingsha | Michael Wong, K. Y. | Zhou, Changsong | Robinson, Peter A. | Sanz-Leon, Paula | Drysdale, Peter M. | Fung, Felix | Abeysuriya, Romesh G. | Rennie, Chris J. | Zhao, Xuelong | Choe, Yoonsuck | Yang, Huei-Fang | Mi, Yuanyuan | Lin, Xiaohan | Wu, Si | Liedtke, Joscha | Schottdorf, Manuel | Wolf, Fred | Yamamura, Yoriko | Wickens, Jeffery R. | Rumbell, Timothy | Ramsey, Julia | Reyes, Amy | Draguljić, Danel | Hof, Patrick R. | Luebke, Jennifer | Weaver, Christina M. | He, Hu | Yang, Xu | Ma, Hailin | Xu, Zhiheng | Wang, Yuzhe | Baek, Kwangyeol | Morris, Laurel S. | Kundu, Prantik | Voon, Valerie | Agnes, Everton J. | Vogels, Tim P. | Podlaski, William F. | Giese, Martin | Kuravi, Pradeep | Vogels, Rufin | Seeholzer, Alexander | Podlaski, William | Ranjan, Rajnish | Vogels, Tim | Torres, Joaquin J. | Baroni, Fabiano | Latorre, Roberto | Gips, Bart | Lowet, Eric | Roberts, Mark J. | de Weerd, Peter | Jensen, Ole | van der Eerden, Jan | Goodarzinick, Abdorreza | Niry, Mohammad D. | Valizadeh, Alireza | Pariz, Aref | Parsi, Shervin S. | Warburton, Julia M. | Marucci, Lucia | Tamagnini, Francesco | Brown, Jon | Tsaneva-Atanasova, Krasimira | Kleberg, Florence I. | Triesch, Jochen | Moezzi, Bahar | Iannella, Nicolangelo | Schaworonkow, Natalie | Plogmacher, Lukas | Goldsworthy, Mitchell R. | Hordacre, Brenton | McDonnell, Mark D. | Ridding, Michael C. | Zapotocky, Martin | Smit, Daniel | Fouquet, Coralie | Trembleau, Alain | Dasgupta, Sakyasingha | Nishikawa, Isao | Aihara, Kazuyuki | Toyoizumi, Taro | Robb, Daniel T. | Mellen, Nick | Toporikova, Natalia | Tang, Rongxiang | Tang, Yi-Yuan | Liang, Guangsheng | Kiser, Seth A. | Howard, James H. | Goncharenko, Julia | Voronenko, Sergej O. | Ahamed, Tosif | Stephens, Greg | Yger, Pierre | Lefebvre, Baptiste | Spampinato, Giulia Lia Beatrice | Esposito, Elric | et Olivier Marre, Marcel Stimberg | Choi, Hansol | Song, Min-Ho | Chung, SueYeon | Lee, Dan D. | Sompolinsky, Haim | Phillips, Ryan S. | Smith, Jeffrey | Chatzikalymniou, Alexandra Pierri | Ferguson, Katie | Alex Cayco Gajic, N. | Clopath, Claudia | Angus Silver, R. | Gleeson, Padraig | Marin, Boris | Sadeh, Sadra | Quintana, Adrian | Cantarelli, Matteo | Dura-Bernal, Salvador | Lytton, William W. | Davison, Andrew | Li, Luozheng | Zhang, Wenhao | Wang, Dahui | Song, Youngjo | Park, Sol | Choi, Ilhwan | Shin, Hee-sup | Choi, Hannah | Pasupathy, Anitha | Shea-Brown, Eric | Huh, Dongsung | Sejnowski, Terrence J. | Vogt, Simon M. | Kumar, Arvind | Schmidt, Robert | Van Wert, Stephen | Schiff, Steven J. | Veale, Richard | Scheutz, Matthias | Lee, Sang Wan | Gallinaro, Júlia | Rotter, Stefan | Rubchinsky, Leonid L. | Cheung, Chung Ching | Ratnadurai-Giridharan, Shivakeshavan | Shomali, Safura Rashid | Ahmadabadi, Majid Nili | Shimazaki, Hideaki | Nader Rasuli, S. | Zhao, Xiaochen | Rasch, Malte J. | Wilting, Jens | Priesemann, Viola | Levina, Anna | Rudelt, Lucas | Lizier, Joseph T. | Spinney, Richard E. | Rubinov, Mikail | Wibral, Michael | Bak, Ji Hyun | Pillow, Jonathan | Zaho, Yuan | Park, Il Memming | Kang, Jiyoung | Park, Hae-Jeong | Jang, Jaeson | Paik, Se-Bum | Choi, Woochul | Lee, Changju | Song, Min | Lee, Hyeonsu | Park, Youngjin | Yilmaz, Ergin | Baysal, Veli | Ozer, Mahmut | Saska, Daniel | Nowotny, Thomas | Chan, Ho Ka | Diamond, Alan | Herrmann, Christoph S. | Murray, Micah M. | Ionta, Silvio | Hutt, Axel | Lefebvre, Jérémie | Weidel, Philipp | Duarte, Renato | Morrison, Abigail | Lee, Jung H. | Iyer, Ramakrishnan | Mihalas, Stefan | Koch, Christof | Petrovici, Mihai A. | Leng, Luziwei | Breitwieser, Oliver | Stöckel, David | Bytschok, Ilja | Martel, Roman | Bill, Johannes | Schemmel, Johannes | Meier, Karlheinz | Esler, Timothy B. | Burkitt, Anthony N. | Kerr, Robert R. | Tahayori, Bahman | Nolte, Max | Reimann, Michael W. | Muller, Eilif | Markram, Henry | Parziale, Antonio | Senatore, Rosa | Marcelli, Angelo | Skiker, K. | Maouene, M. | Neymotin, Samuel A. | Seidenstein, Alexandra | Lakatos, Peter | Sanger, Terence D. | Menzies, Rosemary J. | McLauchlan, Campbell | van Albada, Sacha J. | Kedziora, David J. | Neymotin, Samuel | Kerr, Cliff C. | Suter, Benjamin A. | Shepherd, Gordon M. G. | Ryu, Juhyoung | Lee, Sang-Hun | Lee, Joonwon | Lee, Hyang Jung | Lim, Daeseob | Wang, Jisung | Lee, Heonsoo | Jung, Nam | Anh Quang, Le | Maeng, Seung Eun | Lee, Tae Ho | Lee, Jae Woo | Park, Chang-hyun | Ahn, Sora | Moon, Jangsup | Choi, Yun Seo | Kim, Juhee | Jun, Sang Beom | Lee, Seungjun | Lee, Hyang Woon | Jo, Sumin | Jun, Eunji | Yu, Suin | Goetze, Felix | Lai, Pik-Yin | Kim, Seonghyun | Kwag, Jeehyun | Jang, Hyun Jae | Filipović, Marko | Reig, Ramon | Aertsen, Ad | Silberberg, Gilad | Bachmann, Claudia | Buttler, Simone | Jacobs, Heidi | Dillen, Kim | Fink, Gereon R. | Kukolja, Juraj | Kepple, Daniel | Giaffar, Hamza | Rinberg, Dima | Shea, Steven | Koulakov, Alex | Bahuguna, Jyotika | Tetzlaff, Tom | Kotaleski, Jeanette Hellgren | Kunze, Tim | Peterson, Andre | Knösche, Thomas | Kim, Minjung | Kim, Hojeong | Park, Ji Sung | Yeon, Ji Won | Kim, Sung-Phil | Kang, Jae-Hwan | Lee, Chungho | Spiegler, Andreas | Petkoski, Spase | Palva, Matias J. | Jirsa, Viktor K. | Saggio, Maria L. | Siep, Silvan F. | Stacey, William C. | Bernar, Christophe | Choung, Oh-hyeon | Jeong, Yong | Lee, Yong-il | Kim, Su Hyun | Jeong, Mir | Lee, Jeungmin | Kwon, Jaehyung | Kralik, Jerald D. | Jahng, Jaehwan | Hwang, Dong-Uk | Kwon, Jae-Hyung | Park, Sang-Min | Kim, Seongkyun | Kim, Hyoungkyu | Kim, Pyeong Soo | Yoon, Sangsup | Lim, Sewoong | Park, Choongseok | Miller, Thomas | Clements, Katie | Ahn, Sungwoo | Ji, Eoon Hye | Issa, Fadi A. | Baek, JeongHun | Oba, Shigeyuki | Yoshimoto, Junichiro | Doya, Kenji | Ishii, Shin | Mosqueiro, Thiago S. | Strube-Bloss, Martin F. | Smith, Brian | Huerta, Ramon | Hadrava, Michal | Hlinka, Jaroslav | Bos, Hannah | Helias, Moritz | Welzig, Charles M. | Harper, Zachary J. | Kim, Won Sup | Shin, In-Seob | Baek, Hyeon-Man | Han, Seung Kee | Richter, René | Vitay, Julien | Beuth, Frederick | Hamker, Fred H. | Toppin, Kelly | Guo, Yixin | Graham, Bruce P. | Kale, Penelope J. | Gollo, Leonardo L. | Stern, Merav | Abbott, L. F. | Fedorov, Leonid A. | Giese, Martin A. | Ardestani, Mohammad Hovaidi | Faraji, Mohammad Javad | Preuschoff, Kerstin | Gerstner, Wulfram | van Gendt, Margriet J. | Briaire, Jeroen J. | Kalkman, Randy K. | Frijns, Johan H. M. | Lee, Won Hee | Frangou, Sophia | Fulcher, Ben D. | Tran, Patricia H. P. | Fornito, Alex | Gliske, Stephen V. | Lim, Eugene | Holman, Katherine A. | Fink, Christian G. | Kim, Jinseop S. | Mu, Shang | Briggman, Kevin L. | Sebastian Seung, H. | Wegener, Detlef | Bohnenkamp, Lisa | Ernst, Udo A. | Devor, Anna | Dale, Anders M. | Lines, Glenn T. | Edwards, Andy | Tveito, Aslak | Hagen, Espen | Senk, Johanna | Diesmann, Markus | Schmidt, Maximilian | Bakker, Rembrandt | Shen, Kelly | Bezgin, Gleb | Hilgetag, Claus-Christian | van Albada, Sacha Jennifer | Sun, Haoqi | Sourina, Olga | Huang, Guang-Bin | Klanner, Felix | Denk, Cornelia | Glomb, Katharina | Ponce-Alvarez, Adrián | Gilson, Matthieu | Ritter, Petra | Deco, Gustavo | Witek, Maria A. G. | Clarke, Eric F. | Hansen, Mads | Wallentin, Mikkel | Kringelbach, Morten L. | Vuust, Peter | Klingbeil, Guido | De Schutter, Erik | Chen, Weiliang | Zang, Yunliang | Hong, Sungho | Takashima, Akira | Zamora, Criseida | Gallimore, Andrew R. | Goldschmidt, Dennis | Manoonpong, Poramate | Karoly, Philippa J. | Freestone, Dean R. | Soundry, Daniel | Kuhlmann, Levin | Paninski, Liam | Cook, Mark | Lee, Jaejin | Fishman, Yonatan I. | Cohen, Yale E. | Roberts, James A. | Cocchi, Luca | Sweeney, Yann | Lee, Soohyun | Jung, Woo-Sung | Kim, Youngsoo | Jung, Younginha | Song, Yoon-Kyu | Chavane, Frédéric | Soman, Karthik | Muralidharan, Vignesh | Srinivasa Chakravarthy, V. | Shivkumar, Sabyasachi | Mandali, Alekhya | Pragathi Priyadharsini, B. | Mehta, Hima | Davey, Catherine E. | Brinkman, Braden A. W. | Kekona, Tyler | Rieke, Fred | Buice, Michael | De Pittà, Maurizio | Berry, Hugues | Brunel, Nicolas | Breakspear, Michael | Marsat, Gary | Drew, Jordan | Chapman, Phillip D. | Daly, Kevin C. | Bradle, Samual P. | Seo, Sat Byul | Su, Jianzhong | Kavalali, Ege T. | Blackwell, Justin | Shiau, LieJune | Buhry, Laure | Basnayake, Kanishka | Lee, Sue-Hyun | Levy, Brandon A. | Baker, Chris I. | Leleu, Timothée | Philips, Ryan T. | Chhabria, Karishma
BMC Neuroscience  2016;17(Suppl 1):54.
Table of contents
A1 Functional advantages of cell-type heterogeneity in neural circuits
Tatyana O. Sharpee
A2 Mesoscopic modeling of propagating waves in visual cortex
Alain Destexhe
A3 Dynamics and biomarkers of mental disorders
Mitsuo Kawato
F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons
Vladislav Sekulić, Frances K. Skinner
F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains
Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári
F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.
Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić
O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators
Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona
O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain
Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi
O3 Modeling auditory stream segregation, build-up and bistability
James Rankin, Pamela Osborn Popp, John Rinzel
O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields
Alejandro Tabas, André Rupp, Emili Balaguer-Ballester
O5 A simple model of retinal response to multi-electrode stimulation
Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin
O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task
Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer
O7 Input-location dependent gain modulation in cerebellar nucleus neurons
Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker Steuber
O8 Analytic solution of cable energy function for cortical axons and dendrites
Huiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo Yu
O9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal network
Jimin Kim, Will Leahy, Eli Shlizerman
O10 Is the model any good? Objective criteria for computational neuroscience model selection
Justas Birgiolas, Richard C. Gerkin, Sharon M. Crook
O11 Cooperation and competition of gamma oscillation mechanisms
Atthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan Gielen
O12 A discrete structure of the brain waves
Yuri Dabaghian, Justin DeVito, Luca Perotti
O13 Direction-specific silencing of the Drosophila gaze stabilization system
Anmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby Maimon
O14 What does the fruit fly think about values? A model of olfactory associative learning
Chang Zhao, Yves Widmer, Simon Sprecher,Walter Senn
O15 Effects of ionic diffusion on power spectra of local field potentials (LFP)
Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen, Gaute T. Einevoll
O16 Large-scale cortical models towards understanding relationship between brain structure abnormalities and cognitive deficits
Yasunori Yamada
O17 Spatial coarse-graining the brain: origin of minicolumns
Moira L. Steyn-Ross, D. Alistair Steyn-Ross
O18 Modeling large-scale cortical networks with laminar structure
Jorge F. Mejias, John D. Murray, Henry Kennedy, Xiao-Jing Wang
O19 Information filtering by partial synchronous spikes in a neural population
Alexandra Kruscha, Jan Grewe, Jan Benda, Benjamin Lindner
O20 Decoding context-dependent olfactory valence in Drosophila
Laurent Badel, Kazumi Ohta, Yoshiko Tsuchimoto, Hokto Kazama
P1 Neural network as a scale-free network: the role of a hub
B. Kahng
P2 Hemodynamic responses to emotions and decisions using near-infrared spectroscopy optical imaging
Nicoladie D. Tam
P3 Phase space analysis of hemodynamic responses to intentional movement directions using functional near-infrared spectroscopy (fNIRS) optical imaging technique
Nicoladie D.Tam, Luca Pollonini, George Zouridakis
P4 Modeling jamming avoidance of weakly electric fish
Jaehyun Soh, DaeEun Kim
P5 Synergy and redundancy of retinal ganglion cells in prediction
Minsu Yoo, S. E. Palmer
P6 A neural field model with a third dimension representing cortical depth
Viviana Culmone, Ingo Bojak
P7 Network analysis of a probabilistic connectivity model of the Xenopus tadpole spinal cord
Andrea Ferrario, Robert Merrison-Hort, Roman Borisyuk
P8 The recognition dynamics in the brain
Chang Sub Kim
P9 Multivariate spike train analysis using a positive definite kernel
Taro Tezuka
P10 Synchronization of burst periods may govern slow brain dynamics during general anesthesia
Pangyu Joo
P11 The ionic basis of heterogeneity affects stochastic synchrony
Young-Ah Rho, Shawn D. Burton, G. Bard Ermentrout, Jaeseung Jeong, Nathaniel N. Urban
P12 Circular statistics of noise in spike trains with a periodic component
Petr Marsalek
P14 Representations of directions in EEG-BCI using Gaussian readouts
Hoon-Hee Kim, Seok-hyun Moon, Do-won Lee, Sung-beom Lee, Ji-yong Lee, Jaeseung Jeong
P15 Action selection and reinforcement learning in basal ganglia during reaching movements
Yaroslav I. Molkov, Khaldoun Hamade, Wondimu Teka, William H. Barnett, Taegyo Kim, Sergey Markin, Ilya A. Rybak
P17 Axon guidance: modeling axonal growth in T-Junction assay
Csaba Forro, Harald Dermutz, László Demkó, János Vörös
P19 Transient cell assembly networks encode persistent spatial memories
Yuri Dabaghian, Andrey Babichev
P20 Theory of population coupling and applications to describe high order correlations in large populations of interacting neurons
Haiping Huang
P21 Design of biologically-realistic simulations for motor control
Sergio Verduzco-Flores
P22 Towards understanding the functional impact of the behavioural variability of neurons
Filipa Dos Santos, Peter Andras
P23 Different oscillatory dynamics underlying gamma entrainment deficits in schizophrenia
Christoph Metzner, Achim Schweikard, Bartosz Zurowski
P24 Memory recall and spike frequency adaptation
James P. Roach, Leonard M. Sander, Michal R. Zochowski
P25 Stability of neural networks and memory consolidation preferentially occur near criticality
Quinton M. Skilling, Nicolette Ognjanovski, Sara J. Aton, Michal Zochowski
P26 Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems
Sheng-Jun Wang, Guang Ouyang, Jing Guang, Mingsha Zhang, K. Y. Michael Wong, Changsong Zhou
P27 Neurofield: a C++ library for fast simulation of 2D neural field models
Peter A. Robinson, Paula Sanz-Leon, Peter M. Drysdale, Felix Fung, Romesh G. Abeysuriya, Chris J. Rennie, Xuelong Zhao
P28 Action-based grounding: Beyond encoding/decoding in neural code
Yoonsuck Choe, Huei-Fang Yang
P29 Neural computation in a dynamical system with multiple time scales
Yuanyuan Mi, Xiaohan Lin, Si Wu
P30 Maximum entropy models for 3D layouts of orientation selectivity
Joscha Liedtke, Manuel Schottdorf, Fred Wolf
P31 A behavioral assay for probing computations underlying curiosity in rodents
Yoriko Yamamura, Jeffery R. Wickens
P32 Using statistical sampling to balance error function contributions to optimization of conductance-based models
Timothy Rumbell, Julia Ramsey, Amy Reyes, Danel Draguljić, Patrick R. Hof, Jennifer Luebke, Christina M. Weaver
P33 Exploration and implementation of a self-growing and self-organizing neuron network building algorithm
Hu He, Xu Yang, Hailin Ma, Zhiheng Xu, Yuzhe Wang
P34 Disrupted resting state brain network in obese subjects: a data-driven graph theory analysis
Kwangyeol Baek, Laurel S. Morris, Prantik Kundu, Valerie Voon
P35 Dynamics of cooperative excitatory and inhibitory plasticity
Everton J. Agnes, Tim P. Vogels
P36 Frequency-dependent oscillatory signal gating in feed-forward networks of integrate-and-fire neurons
William F. Podlaski, Tim P. Vogels
P37 Phenomenological neural model for adaptation of neurons in area IT
Martin Giese, Pradeep Kuravi, Rufin Vogels
P38 ICGenealogy: towards a common topology of neuronal ion channel function and genealogy in model and experiment
Alexander Seeholzer, William Podlaski, Rajnish Ranjan, Tim Vogels
P39 Temporal input discrimination from the interaction between dynamic synapses and neural subthreshold oscillations
Joaquin J. Torres, Fabiano Baroni, Roberto Latorre, Pablo Varona
P40 Different roles for transient and sustained activity during active visual processing
Bart Gips, Eric Lowet, Mark J. Roberts, Peter de Weerd, Ole Jensen, Jan van der Eerden
P41 Scale-free functional networks of 2D Ising model are highly robust against structural defects: neuroscience implications
Abdorreza Goodarzinick, Mohammad D. Niry, Alireza Valizadeh
P42 High frequency neuron can facilitate propagation of signal in neural networks
Aref Pariz, Shervin S. Parsi, Alireza Valizadeh
P43 Investigating the effect of Alzheimer’s disease related amyloidopathy on gamma oscillations in the CA1 region of the hippocampus
Julia M. Warburton, Lucia Marucci, Francesco Tamagnini, Jon Brown, Krasimira Tsaneva-Atanasova
P44 Long-tailed distributions of inhibitory and excitatory weights in a balanced network with eSTDP and iSTDP
Florence I. Kleberg, Jochen Triesch
P45 Simulation of EMG recording from hand muscle due to TMS of motor cortex
Bahar Moezzi, Nicolangelo Iannella, Natalie Schaworonkow, Lukas Plogmacher, Mitchell R. Goldsworthy, Brenton Hordacre, Mark D. McDonnell, Michael C. Ridding, Jochen Triesch
P46 Structure and dynamics of axon network formed in primary cell culture
Martin Zapotocky, Daniel Smit, Coralie Fouquet, Alain Trembleau
P47 Efficient signal processing and sampling in random networks that generate variability
Sakyasingha Dasgupta, Isao Nishikawa, Kazuyuki Aihara, Taro Toyoizumi
P48 Modeling the effect of riluzole on bursting in respiratory neural networks
Daniel T. Robb, Nick Mellen, Natalia Toporikova
P49 Mapping relaxation training using effective connectivity analysis
Rongxiang Tang, Yi-Yuan Tang
P50 Modeling neuron oscillation of implicit sequence learning
Guangsheng Liang, Seth A. Kiser, James H. Howard, Jr., Yi-Yuan Tang
P51 The role of cerebellar short-term synaptic plasticity in the pathology and medication of downbeat nystagmus
Julia Goncharenko, Neil Davey, Maria Schilstra, Volker Steuber
P52 Nonlinear response of noisy neurons
Sergej O. Voronenko, Benjamin Lindner
P53 Behavioral embedding suggests multiple chaotic dimensions underlie C. elegans locomotion
Tosif Ahamed, Greg Stephens
P54 Fast and scalable spike sorting for large and dense multi-electrodes recordings
Pierre Yger, Baptiste Lefebvre, Giulia Lia Beatrice Spampinato, Elric Esposito, Marcel Stimberg et Olivier Marre
P55 Sufficient sampling rates for fast hand motion tracking
Hansol Choi, Min-Ho Song
P56 Linear readout of object manifolds
SueYeon Chung, Dan D. Lee, Haim Sompolinsky
P57 Differentiating models of intrinsic bursting and rhythm generation of the respiratory pre-Bötzinger complex using phase response curves
Ryan S. Phillips, Jeffrey Smith
P58 The effect of inhibitory cell network interactions during theta rhythms on extracellular field potentials in CA1 hippocampus
Alexandra Pierri Chatzikalymniou, Katie Ferguson, Frances K. Skinner
P59 Expansion recoding through sparse sampling in the cerebellar input layer speeds learning
N. Alex Cayco Gajic, Claudia Clopath, R. Angus Silver
P60 A set of curated cortical models at multiple scales on Open Source Brain
Padraig Gleeson, Boris Marin, Sadra Sadeh, Adrian Quintana, Matteo Cantarelli, Salvador Dura-Bernal, William W. Lytton, Andrew Davison, R. Angus Silver
P61 A synaptic story of dynamical information encoding in neural adaptation
Luozheng Li, Wenhao Zhang, Yuanyuan Mi, Dahui Wang, Si Wu
P62 Physical modeling of rule-observant rodent behavior
Youngjo Song, Sol Park, Ilhwan Choi, Jaeseung Jeong, Hee-sup Shin
P64 Predictive coding in area V4 and prefrontal cortex explains dynamic discrimination of partially occluded shapes
Hannah Choi, Anitha Pasupathy, Eric Shea-Brown
P65 Stability of FORCE learning on spiking and rate-based networks
Dongsung Huh, Terrence J. Sejnowski
P66 Stabilising STDP in striatal neurons for reliable fast state recognition in noisy environments
Simon M. Vogt, Arvind Kumar, Robert Schmidt
P67 Electrodiffusion in one- and two-compartment neuron models for characterizing cellular effects of electrical stimulation
Stephen Van Wert, Steven J. Schiff
P68 STDP improves speech recognition capabilities in spiking recurrent circuits parameterized via differential evolution Markov Chain Monte Carlo
Richard Veale, Matthias Scheutz
P69 Bidirectional transformation between dominant cortical neural activities and phase difference distributions
Sang Wan Lee
P70 Maturation of sensory networks through homeostatic structural plasticity
Júlia Gallinaro, Stefan Rotter
P71 Corticothalamic dynamics: structure, number of solutions and stability of steady-state solutions in the space of synaptic couplings
Paula Sanz-Leon, Peter A. Robinson
P72 Optogenetic versus electrical stimulation of the parkinsonian basal ganglia. Computational study
Leonid L. Rubchinsky, Chung Ching Cheung, Shivakeshavan Ratnadurai-Giridharan
P73 Exact spike-timing distribution reveals higher-order interactions of neurons
Safura Rashid Shomali, Majid Nili Ahmadabadi, Hideaki Shimazaki, S. Nader Rasuli
P74 Neural mechanism of visual perceptual learning using a multi-layered neural network
Xiaochen Zhao, Malte J. Rasch
P75 Inferring collective spiking dynamics from mostly unobserved systems
Jens Wilting, Viola Priesemann
P76 How to infer distributions in the brain from subsampled observations
Anna Levina, Viola Priesemann
P77 Influences of embedding and estimation strategies on the inferred memory of single spiking neurons
Lucas Rudelt, Joseph T. Lizier, Viola Priesemann
P78 A nearest-neighbours based estimator for transfer entropy between spike trains
Joseph T. Lizier, Richard E. Spinney, Mikail Rubinov, Michael Wibral, Viola Priesemann
P79 Active learning of psychometric functions with multinomial logistic models
Ji Hyun Bak, Jonathan Pillow
P81 Inferring low-dimensional network dynamics with variational latent Gaussian process
Yuan Zaho, Il Memming Park
P82 Computational investigation of energy landscapes in the resting state subcortical brain network
Jiyoung Kang, Hae-Jeong Park
P83 Local repulsive interaction between retinal ganglion cells can generate a consistent spatial periodicity of orientation map
Jaeson Jang, Se-Bum Paik
P84 Phase duration of bistable perception reveals intrinsic time scale of perceptual decision under noisy condition
Woochul Choi, Se-Bum Paik
P85 Feedforward convergence between retina and primary visual cortex can determine the structure of orientation map
Changju Lee, Jaeson Jang, Se-Bum Paik
P86 Computational method classifying neural network activity patterns for imaging data
Min Song, Hyeonsu Lee, Se-Bum Paik
P87 Symmetry of spike-timing-dependent-plasticity kernels regulates volatility of memory
Youngjin Park, Woochul Choi, Se-Bum Paik
P88 Effects of time-periodic coupling strength on the first-spike latency dynamics of a scale-free network of stochastic Hodgkin-Huxley neurons
Ergin Yilmaz, Veli Baysal, Mahmut Ozer
P89 Spectral properties of spiking responses in V1 and V4 change within the trial and are highly relevant for behavioral performance
Veronika Koren, Klaus Obermayer
P90 Methods for building accurate models of individual neurons
Daniel Saska, Thomas Nowotny
P91 A full size mathematical model of the early olfactory system of honeybees
Ho Ka Chan, Alan Diamond, Thomas Nowotny
P92 Stimulation-induced tuning of ongoing oscillations in spiking neural networks
Christoph S. Herrmann, Micah M. Murray, Silvio Ionta, Axel Hutt, Jérémie Lefebvre
P93 Decision-specific sequences of neural activity in balanced random networks driven by structured sensory input
Philipp Weidel, Renato Duarte, Abigail Morrison
P94 Modulation of tuning induced by abrupt reduction of SST cell activity
Jung H. Lee, Ramakrishnan Iyer, Stefan Mihalas
P95 The functional role of VIP cell activation during locomotion
Jung H. Lee, Ramakrishnan Iyer, Christof Koch, Stefan Mihalas
P96 Stochastic inference with spiking neural networks
Mihai A. Petrovici, Luziwei Leng, Oliver Breitwieser, David Stöckel, Ilja Bytschok, Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier
P97 Modeling orientation-selective electrical stimulation with retinal prostheses
Timothy B. Esler, Anthony N. Burkitt, David B. Grayden, Robert R. Kerr, Bahman Tahayori, Hamish Meffin
P98 Ion channel noise can explain firing correlation in auditory nerves
Bahar Moezzi, Nicolangelo Iannella, Mark D. McDonnell
P99 Limits of temporal encoding of thalamocortical inputs in a neocortical microcircuit
Max Nolte, Michael W. Reimann, Eilif Muller, Henry Markram
P100 On the representation of arm reaching movements: a computational model
Antonio Parziale, Rosa Senatore, Angelo Marcelli
P101 A computational model for investigating the role of cerebellum in acquisition and retention of motor behavior
Rosa Senatore, Antonio Parziale, Angelo Marcelli
P102 The emergence of semantic categories from a large-scale brain network of semantic knowledge
K. Skiker, M. Maouene
P103 Multiscale modeling of M1 multitarget pharmacotherapy for dystonia
Samuel A. Neymotin, Salvador Dura-Bernal, Alexandra Seidenstein, Peter Lakatos, Terence D. Sanger, William W. Lytton
P104 Effect of network size on computational capacity
Salvador Dura-Bernal, Rosemary J. Menzies, Campbell McLauchlan, Sacha J. van Albada, David J. Kedziora, Samuel Neymotin, William W. Lytton, Cliff C. Kerr
P105 NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks
Salvador Dura-Bernal, Benjamin A. Suter, Samuel A. Neymotin, Cliff C. Kerr, Adrian Quintana, Padraig Gleeson, Gordon M. G. Shepherd, William W. Lytton
P107 Inter-areal and inter-regional inhomogeneity in co-axial anisotropy of Cortical Point Spread in human visual areas
Juhyoung Ryu, Sang-Hun Lee
P108 Two bayesian quanta of uncertainty explain the temporal dynamics of cortical activity in the non-sensory areas during bistable perception
Joonwon Lee, Sang-Hun Lee
P109 Optimal and suboptimal integration of sensory and value information in perceptual decision making
Hyang Jung Lee, Sang-Hun Lee
P110 A Bayesian algorithm for phoneme Perception and its neural implementation
Daeseob Lim, Sang-Hun Lee
P111 Complexity of EEG signals is reduced during unconsciousness induced by ketamine and propofol
Jisung Wang, Heonsoo Lee
P112 Self-organized criticality of neural avalanche in a neural model on complex networks
Nam Jung, Le Anh Quang, Seung Eun Maeng, Tae Ho Lee, Jae Woo Lee
P113 Dynamic alterations in connection topology of the hippocampal network during ictal-like epileptiform activity in an in vitro rat model
Chang-hyun Park, Sora Ahn, Jangsup Moon, Yun Seo Choi, Juhee Kim, Sang Beom Jun, Seungjun Lee, Hyang Woon Lee
P114 Computational model to replicate seizure suppression effect by electrical stimulation
Sora Ahn, Sumin Jo, Eunji Jun, Suin Yu, Hyang Woon Lee, Sang Beom Jun, Seungjun Lee
P115 Identifying excitatory and inhibitory synapses in neuronal networks from spike trains using sorted local transfer entropy
Felix Goetze, Pik-Yin Lai
P116 Neural network model for obstacle avoidance based on neuromorphic computational model of boundary vector cell and head direction cell
Seonghyun Kim, Jeehyun Kwag
P117 Dynamic gating of spike pattern propagation by Hebbian and anti-Hebbian spike timing-dependent plasticity in excitatory feedforward network model
Hyun Jae Jang, Jeehyun Kwag
P118 Inferring characteristics of input correlations of cells exhibiting up-down state transitions in the rat striatum
Marko Filipović, Ramon Reig, Ad Aertsen, Gilad Silberberg, Arvind Kumar
P119 Graph properties of the functional connected brain under the influence of Alzheimer’s disease
Claudia Bachmann, Simone Buttler, Heidi Jacobs, Kim Dillen, Gereon R. Fink, Juraj Kukolja, Abigail Morrison
P120 Learning sparse representations in the olfactory bulb
Daniel Kepple, Hamza Giaffar, Dima Rinberg, Steven Shea, Alex Koulakov
P121 Functional classification of homologous basal-ganglia networks
Jyotika Bahuguna,Tom Tetzlaff, Abigail Morrison, Arvind Kumar, Jeanette Hellgren Kotaleski
P122 Short term memory based on multistability
Tim Kunze, Andre Peterson, Thomas Knösche
P123 A physiologically plausible, computationally efficient model and simulation software for mammalian motor units
Minjung Kim, Hojeong Kim
P125 Decoding laser-induced somatosensory information from EEG
Ji Sung Park, Ji Won Yeon, Sung-Phil Kim
P126 Phase synchronization of alpha activity for EEG-based personal authentication
Jae-Hwan Kang, Chungho Lee, Sung-Phil Kim
P129 Investigating phase-lags in sEEG data using spatially distributed time delays in a large-scale brain network model
Andreas Spiegler, Spase Petkoski, Matias J. Palva, Viktor K. Jirsa
P130 Epileptic seizures in the unfolding of a codimension-3 singularity
Maria L. Saggio, Silvan F. Siep, Andreas Spiegler, William C. Stacey, Christophe Bernard, Viktor K. Jirsa
P131 Incremental dimensional exploratory reasoning under multi-dimensional environment
Oh-hyeon Choung, Yong Jeong
P132 A low-cost model of eye movements and memory in personal visual cognition
Yong-il Lee, Jaeseung Jeong
P133 Complex network analysis of structural connectome of autism spectrum disorder patients
Su Hyun Kim, Mir Jeong, Jaeseung Jeong
P134 Cognitive motives and the neural correlates underlying human social information transmission, gossip
Jeungmin Lee, Jaehyung Kwon, Jerald D. Kralik, Jaeseung Jeong
P135 EEG hyperscanning detects neural oscillation for the social interaction during the economic decision-making
Jaehwan Jahng, Dong-Uk Hwang, Jaeseung Jeong
P136 Detecting purchase decision based on hyperfrontality of the EEG
Jae-Hyung Kwon, Sang-Min Park, Jaeseung Jeong
P137 Vulnerability-based critical neurons, synapses, and pathways in the Caenorhabditis elegans connectome
Seongkyun Kim, Hyoungkyu Kim, Jerald D. Kralik, Jaeseung Jeong
P138 Motif analysis reveals functionally asymmetrical neurons in C. elegans
Pyeong Soo Kim, Seongkyun Kim, Hyoungkyu Kim, Jaeseung Jeong
P139 Computational approach to preference-based serial decision dynamics: do temporal discounting and working memory affect it?
Sangsup Yoon, Jaehyung Kwon, Sewoong Lim, Jaeseung Jeong
P141 Social stress induced neural network reconfiguration affects decision making and learning in zebrafish
Choongseok Park, Thomas Miller, Katie Clements, Sungwoo Ahn, Eoon Hye Ji, Fadi A. Issa
P142 Descriptive, generative, and hybrid approaches for neural connectivity inference from neural activity data
JeongHun Baek, Shigeyuki Oba, Junichiro Yoshimoto, Kenji Doya, Shin Ishii
P145 Divergent-convergent synaptic connectivities accelerate coding in multilayered sensory systems
Thiago S. Mosqueiro, Martin F. Strube-Bloss, Brian Smith, Ramon Huerta
P146 Swinging networks
Michal Hadrava, Jaroslav Hlinka
P147 Inferring dynamically relevant motifs from oscillatory stimuli: challenges, pitfalls, and solutions
Hannah Bos, Moritz Helias
P148 Spatiotemporal mapping of brain network dynamics during cognitive tasks using magnetoencephalography and deep learning
Charles M. Welzig, Zachary J. Harper
P149 Multiscale complexity analysis for the segmentation of MRI images
Won Sup Kim, In-Seob Shin, Hyeon-Man Baek, Seung Kee Han
P150 A neuro-computational model of emotional attention
René Richter, Julien Vitay, Frederick Beuth, Fred H. Hamker
P151 Multi-site delayed feedback stimulation in parkinsonian networks
Kelly Toppin, Yixin Guo
P152 Bistability in Hodgkin–Huxley-type equations
Tatiana Kameneva, Hamish Meffin, Anthony N. Burkitt, David B. Grayden
P153 Phase changes in postsynaptic spiking due to synaptic connectivity and short term plasticity: mathematical analysis of frequency dependency
Mark D. McDonnell, Bruce P. Graham
P154 Quantifying resilience patterns in brain networks: the importance of directionality
Penelope J. Kale, Leonardo L. Gollo
P155 Dynamics of rate-model networks with separate excitatory and inhibitory populations
Merav Stern, L. F. Abbott
P156 A model for multi-stable dynamics in action recognition modulated by integration of silhouette and shading cues
Leonid A. Fedorov, Martin A. Giese
P157 Spiking model for the interaction between action recognition and action execution
Mohammad Hovaidi Ardestani, Martin Giese
P158 Surprise-modulated belief update: how to learn within changing environments?
Mohammad Javad Faraji, Kerstin Preuschoff, Wulfram Gerstner
P159 A fast, stochastic and adaptive model of auditory nerve responses to cochlear implant stimulation
Margriet J. van Gendt, Jeroen J. Briaire, Randy K. Kalkman, Johan H. M. Frijns
P160 Quantitative comparison of graph theoretical measures of simulated and empirical functional brain networks
Won Hee Lee, Sophia Frangou
P161 Determining discriminative properties of fMRI signals in schizophrenia using highly comparative time-series analysis
Ben D. Fulcher, Patricia H. P. Tran, Alex Fornito
P162 Emergence of narrowband LFP oscillations from completely asynchronous activity during seizures and high-frequency oscillations
Stephen V. Gliske, William C. Stacey, Eugene Lim, Katherine A. Holman, Christian G. Fink
P163 Neuronal diversity in structure and function: cross-validation of anatomical and physiological classification of retinal ganglion cells in the mouse
Jinseop S. Kim, Shang Mu, Kevin L. Briggman, H. Sebastian Seung, the EyeWirers
P164 Analysis and modelling of transient firing rate changes in area MT in response to rapid stimulus feature changes
Detlef Wegener, Lisa Bohnenkamp, Udo A. Ernst
P165 Step-wise model fitting accounting for high-resolution spatial measurements: construction of a layer V pyramidal cell model with reduced morphology
Tuomo Mäki-Marttunen, Geir Halnes, Anna Devor, Christoph Metzner, Anders M. Dale, Ole A. Andreassen, Gaute T. Einevoll
P166 Contributions of schizophrenia-associated genes to neuron firing and cardiac pacemaking: a polygenic modeling approach
Tuomo Mäki-Marttunen, Glenn T. Lines, Andy Edwards, Aslak Tveito, Anders M. Dale, Gaute T. Einevoll, Ole A. Andreassen
P167 Local field potentials in a 4 × 4 mm2 multi-layered network model
Espen Hagen, Johanna Senk, Sacha J. van Albada, Markus Diesmann
P168 A spiking network model explains multi-scale properties of cortical dynamics
Maximilian Schmidt, Rembrandt Bakker, Kelly Shen, Gleb Bezgin, Claus-Christian Hilgetag, Markus Diesmann, Sacha Jennifer van Albada
P169 Using joint weight-delay spike-timing dependent plasticity to find polychronous neuronal groups
Haoqi Sun, Olga Sourina, Guang-Bin Huang, Felix Klanner, Cornelia Denk
P170 Tensor decomposition reveals RSNs in simulated resting state fMRI
Katharina Glomb, Adrián Ponce-Alvarez, Matthieu Gilson, Petra Ritter, Gustavo Deco
P171 Getting in the groove: testing a new model-based method for comparing task-evoked vs resting-state activity in fMRI data on music listening
Matthieu Gilson, Maria AG Witek, Eric F. Clarke, Mads Hansen, Mikkel Wallentin, Gustavo Deco, Morten L. Kringelbach, Peter Vuust
P172 STochastic engine for pathway simulation (STEPS) on massively parallel processors
Guido Klingbeil, Erik De Schutter
P173 Toolkit support for complex parallel spatial stochastic reaction–diffusion simulation in STEPS
Weiliang Chen, Erik De Schutter
P174 Modeling the generation and propagation of Purkinje cell dendritic spikes caused by parallel fiber synaptic input
Yunliang Zang, Erik De Schutter
P175 Dendritic morphology determines how dendrites are organized into functional subunits
Sungho Hong, Akira Takashima, Erik De Schutter
P176 A model of Ca2+/calmodulin-dependent protein kinase II activity in long term depression at Purkinje cells
Criseida Zamora, Andrew R. Gallimore, Erik De Schutter
P177 Reward-modulated learning of population-encoded vectors for insect-like navigation in embodied agents
Dennis Goldschmidt, Poramate Manoonpong, Sakyasingha Dasgupta
P178 Data-driven neural models part II: connectivity patterns of human seizures
Philippa J. Karoly, Dean R. Freestone, Daniel Soundry, Levin Kuhlmann, Liam Paninski, Mark Cook
P179 Data-driven neural models part I: state and parameter estimation
Dean R. Freestone, Philippa J. Karoly, Daniel Soundry, Levin Kuhlmann, Mark Cook
P180 Spectral and spatial information processing in human auditory streaming
Jaejin Lee, Yonatan I. Fishman, Yale E. Cohen
P181 A tuning curve for the global effects of local perturbations in neural activity: Mapping the systems-level susceptibility of the brain
Leonardo L. Gollo, James A. Roberts, Luca Cocchi
P182 Diverse homeostatic responses to visual deprivation mediated by neural ensembles
Yann Sweeney, Claudia Clopath
P183 Opto-EEG: a novel method for investigating functional connectome in mouse brain based on optogenetics and high density electroencephalography
Soohyun Lee, Woo-Sung Jung, Jee Hyun Choi
P184 Biphasic responses of frontal gamma network to repetitive sleep deprivation during REM sleep
Bowon Kim, Youngsoo Kim, Eunjin Hwang, Jee Hyun Choi
P185 Brain-state correlate and cortical connectivity for frontal gamma oscillations in top-down fashion assessed by auditory steady-state response
Younginha Jung, Eunjin Hwang, Yoon-Kyu Song, Jee Hyun Choi
P186 Neural field model of localized orientation selective activation in V1
James Rankin, Frédéric Chavane
P187 An oscillatory network model of Head direction and Grid cells using locomotor inputs
Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P188 A computational model of hippocampus inspired by the functional architecture of basal ganglia
Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P189 A computational architecture to model the microanatomy of the striatum and its functional properties
Sabyasachi Shivkumar, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P190 A scalable cortico-basal ganglia model to understand the neural dynamics of targeted reaching
Vignesh Muralidharan, Alekhya Mandali, B. Pragathi Priyadharsini, Hima Mehta, V. Srinivasa Chakravarthy
P191 Emergence of radial orientation selectivity from synaptic plasticity
Catherine E. Davey, David B. Grayden, Anthony N. Burkitt
P192 How do hidden units shape effective connections between neurons?
Braden A. W. Brinkman, Tyler Kekona, Fred Rieke, Eric Shea-Brown, Michael Buice
P193 Characterization of neural firing in the presence of astrocyte-synapse signaling
Maurizio De Pittà, Hugues Berry, Nicolas Brunel
P194 Metastability of spatiotemporal patterns in a large-scale network model of brain dynamics
James A. Roberts, Leonardo L. Gollo, Michael Breakspear
P195 Comparison of three methods to quantify detection and discrimination capacity estimated from neural population recordings
Gary Marsat, Jordan Drew, Phillip D. Chapman, Kevin C. Daly, Samual P. Bradley
P196 Quantifying the constraints for independent evoked and spontaneous NMDA receptor mediated synaptic transmission at individual synapses
Sat Byul Seo, Jianzhong Su, Ege T. Kavalali, Justin Blackwell
P199 Gamma oscillation via adaptive exponential integrate-and-fire neurons
LieJune Shiau, Laure Buhry, Kanishka Basnayake
P200 Visual face representations during memory retrieval compared to perception
Sue-Hyun Lee, Brandon A. Levy, Chris I. Baker
P201 Top-down modulation of sequential activity within packets modeled using avalanche dynamics
Timothée Leleu, Kazuyuki Aihara
Q28 An auto-encoder network realizes sparse features under the influence of desynchronized vascular dynamics
Ryan T. Philips, Karishma Chhabria, V. Srinivasa Chakravarthy
doi:10.1186/s12868-016-0283-6
PMCID: PMC5001212  PMID: 27534393
18.  A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications 
Biological psychiatry  2011;70(6):513-518.
Background
Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50–60% heritability), with high correlation of genetic influences, we have conducted a quantitative trait genomewide association study for phenotypes related to alcohol use and dependence.
Methods
Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genomewide SNP genotyping was performed with 8754 individuals [2062 alcohol dependent cases] selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genomewide SNP data.
Results
No findings reached genomewide significance (p=8.4×10−8 for this study), with lowest p-value for primary phenotypes of 1.2×10−7. Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk.
Conclusions
We conclude that (i) meta-analyses of consumption data may contribute usefully to gene-discovery; (ii) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging; (iii) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g. prospective high-risk or resilience studies).
doi:10.1016/j.biopsych.2011.02.028
PMCID: PMC3210694  PMID: 21529783
Alcoholism; genome-wide association; quantitative-trait; non-replication
19.  A copula method for modeling directional dependence of genes 
BMC Bioinformatics  2008;9:225.
Background
Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation.
Results
We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex) by adopting a measure of directional dependence based on a copula function. We have compared our results with those from other methods in the literature. Although microarray results show a transcriptional co-regulation pattern and do not imply that the gene products are physically interactive, this tight genetic connection may suggest that each gene product has either direct or indirect connections between the other gene products. Indeed, recent comprehensive analysis of a protein interaction map revealed that those histone genes are physically connected with each other, supporting the results obtained by our method.
Conclusion
The results illustrate that our method can be an alternative to Bayesian networks in modeling gene interactions. One advantage of our approach is that dependence between genes is not assumed to be linear. Another advantage is that our approach can detect directional dependence. We expect that our study may help to design artificial drug candidates, which can block or activate biologically meaningful pathways. Moreover, our copula approach can be extended to investigate the effects of local environments on protein-protein interactions. The copula mutual information approach will help to propose the new variant of ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks): an algorithm for the reconstruction of gene regulatory networks.
doi:10.1186/1471-2105-9-225
PMCID: PMC2386493  PMID: 18447957
20.  A Bayesian hierarchical model for analysis of SNP diversity in multilocus, multipopulation samples 
The distribution of genetic variation among populations is conveniently measured by Wright’s FST, which is a scaled variance taking on values in [0,1]. For certain types of genetic markers, and for single-nucleotide polymorphisms (SNPs) in particular, it is reasonable to presume that allelic differences at most loci are selectively neutral. For such loci, the distribution of genetic variation among populations is determined by the size of local populations, the pattern and rate of migration among those populations, and the rate of mutation. Because the demographic parameters (population sizes and migration rates) are common across all autosomal loci, locus-specific estimates of FST will depart from a common distribution only for loci with unusually high or low rates of mutation or for loci that are closely associated with genomic regions having a relationship with fitness. Thus, loci that are statistical outliers showing significantly more among-population differentiation than others may mark genomic regions subject to diversifying selection among the sample populations. Similarly, statistical outliers showing significantly less differentiation among populations than others may mark genomic regions subject to stabilizing selection across the sample populations. We propose several Bayesian hierarchical models to estimate locus-specific effects on FST, and we apply these models to single nucleotide polymorphism data from the HapMap project. Because loci that are physically associated with one another are likely to show similar patterns of variation, we introduce conditional autoregressive models to incorporate the local correlation among loci for high-resolution genomic data. We estimate the posterior distributions of model parameters using Markov chain Monte Carlo (MCMC) simulations. Model comparison using several criteria, including DIC and LPML, reveals that a model with locus- and population-specific effects is superior to other models for the data used in the analysis. To detect statistical outliers we propose an approach that measures divergence between the posterior distributions of locus-specific effects and the common FST with the Kullback-Leibler divergence measure. We calibrate this measure by comparing values with those produced from the divergence between a biased and a fair coin. We conduct a simulation study to illustrate the performance of our approach for detecting loci subject to stabilizing/divergent selection, and we apply the proposed models to low- and high-resolution SNP data from the HapMap project. Model comparison using DIC and LPML reveals that CAR models are superior to alternative models for the high resolution data. For both low and high resolution data, we identify statistical outliers that are associated with known genes.
doi:10.1198/jasa.2009.0010
PMCID: PMC2713112  PMID: 19623271
Bayesian approach; Hierarchical model; SNP; Wright’s Fst; MCMC
21.  Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers 
BMC Genetics  2011;12:74.
Background
Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied.
Methods
We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa.
Results
If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to that of the complex model including epistatic effects.
Conclusions
This simulation study showed that the fBayesB approach is convenient for genetic value prediction. Jointly estimating additive and non-additive effects (especially dominance) has reasonable impact on the accuracy of prediction and the proportion of genetic variation assigned to the additive genetic source.
doi:10.1186/1471-2156-12-74
PMCID: PMC3748015  PMID: 21867519
22.  Bayesian Mixture Models for the Incorporation of Prior Knowledge to Inform Genetic Association Studies 
Genetic epidemiology  2010;34(5):418-426.
In the last decade, numerous genome-wide linkage and association studies of complex diseases have been completed. The critical question remains of how to best use this potentially valuable information to improve study design and statistical analysis in current and future genetic association studies. With genetic effect size for complex diseases being relatively small, the use of all available information is essential to untangling the genetic architecture of complex diseases. One promising approach to incorporating prior knowledge from linkage scans, or other information, is to up- or down-weight p-values resulting from genetic association study in either a frequentist or Bayesian manner. As an alternative to these methods, we propose a fully Bayesian mixture model to incorporate previous knowledge into on-going association analysis. In this approach, both the data and previous information collectively inform the association analysis, in contrast to modifying the association results (p-values) to conform to the prior knowledge. By using a Bayesian framework, one has flexibility in modeling, and is able to comprehensively assess the impact of model specification on posterior inferences. We illustrate use of this method through a genome-wide linkage study of colorectal cancer, and a genome-wide association study of colorectal polyps.
doi:10.1002/gepi.20494
PMCID: PMC2910528  PMID: 20583285
Bayesian; genetic association; linkage; mixture model; prior information
23.  Ridge, Lasso and Bayesian additive-dominance genomic models 
BMC Genetics  2015;16:105.
Background
A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes).
Results
G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close.
Conclusions
Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (−2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.
doi:10.1186/s12863-015-0264-2
PMCID: PMC4549024  PMID: 26303864
Dominance genomic models; Bayesian methods; Lasso methods; Selection accuracy
24.  Transmission disequilibrium testing of the chromosome 15q11-q13 region in autism 
Evidence implicates the serotonin transporter gene (SLC6A4) and the 15q11-q13 genes as candidates for autism as well as restricted repetitive behavior (RRB).
We conducted dense transmission disequilibrium mapping of the 15q11-q13 region with 93 single nucleotide polymorphisms (SNPs) in 86 strictly defined autism trios and tested association between SNPs and autism using the transmission disequilibrium test (TDT). As exploratory analyses, parent-of-origin effects were examined using likelihood-ratio tests (LRT) and genotype-phenotype associations for specific RRB using the Family-Based Association Test (FBAT). Additionally, gene-gene interactions between nominally associated 15q11-q13 variants and 5-HTTLPR, the common length polymorphism of SLC6A4, were examined using conditional logistic regression (CLR).
TDT revealed nominally significant transmission disequilibrium between autism and five SNPs, three of which are located within close proximity of the GABAA receptor subunit gene clusters. Three SNPs in the SNRPN/UBE3A region had marginal imprinting effects. FBAT for genotype-phenotype relations revealed nominally significant association between two SNPs and one ADI-R sub-domain item. However, both TDT and FBAT were not statistically significant after correcting for multiple comparisons. Gene-gene interaction analyses by CLR revealed additive genetic effect models, without interaction terms, fit the data best.
Lack of robust association between the 15q11-q13 SNPs and RRB phenotypes may be due to a small sample size and absence of more specific RRB measurement. Further investigation of the 15q11-q13 region with denser genotyping in a larger sample set may be necessary to determine whether this region confers risk to autism, indicated by association, or to specific autism phenotypes.
doi:10.1002/ajmg.b.30733
PMCID: PMC4095800  PMID: 18361419
Autism; 15q11-q13; restricted repetitive behavior; 5-HTTLPR; association
25.  Genotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans 
Nucleic Acids Research  2006;34(4):e28.
The identification of quantitative trait loci (QTLs) of small effect size that underlie complex traits poses a particular challenge for geneticists due to the large sample sizes and large numbers of genetic markers required for genomewide association scans. An efficient solution for screening purposes is to combine single nucleotide polymorphism (SNP) microarrays and DNA pooling (SNP-MaP), an approach that has been shown to be valid, reliable and accurate in deriving relative allele frequency estimates from pooled DNA for groups such as cases and controls for 10K SNP microarrays. However, in order to conduct a genomewide association study many more SNP markers are needed. To this end, we assessed the validity and reliability of the SNP-MaP method using Affymetrix GeneChip® Mapping 100K Array set. Interpretable results emerged for 95% of the SNPs (nearly 110 000 SNPs). We found that SNP-MaP allele frequency estimates correlated 0.939 with allele frequencies for 97 605 SNPs that were genotyped individually in an independent population; the correlation was 0.971 for 26 SNPs that were genotyped individually for the 1028 individuals used to construct the DNA pools. We conclude that extending the SNP-MaP method to the Affymetrix GeneChip® Mapping 100K Array set provides a useful screen of >100 000 SNP markers for QTL association scans.
doi:10.1093/nar/gnj027
PMCID: PMC1368655  PMID: 16478714

Results 1-25 (2012126)