PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (729913)

Clipboard (0)
None

Related Articles

1.  A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean 
The ISME journal  2010;5(6):933-944.
A novel high-light (HL)-adapted Prochlorococcus clade was discovered in high nutrient and low chlorophyll (HNLC) waters in the South Pacific Ocean by phylogenetic analyses of 16S ribosomal RNA (rRNA) and 16S–23S internal transcribed spacer (ITS) sequences. This clade, named HNLC fell within the HL-adapted Prochlorococcus clade with sequences above 99% similarity to one another, and was divided into two subclades, HNLC1 and HNLC2. The distribution of the whole HNLC clade in a northwest to southeast transect in the South Pacific (HNLC-to-gyre) and two 8°N to 8°S transects in the Equatorial Pacific was determined by quantitative PCR using specific primers targeting ITS regions. HNLC was the dominant HL Prochlorococcus clade (2–9% of bacterial 16S rRNA genes) at the three westernmost stations in the South Pacific but decreased to less than 0.1% at the other stations being replaced by the eMIT9312 ecotype in the hyperoligotrophic gyre. The highest contributions of HNLC Prochlorococcus in both Equatorial Pacific transects along the latitudinal lines of 170°W and 155°W were observed at the southernmost stations, reaching 16 and 6% of bacterial 16S rRNA genes, respectively, whereas eMIT9312 dominated near the Equator. Spearman Rank Order correlation analysis indicated that although both the HNLC clade and eMIT9312 were correlated with temperature, they showed different correlations with regard to nutrients. HNLC only showed significant correlations to ammonium uptake and regeneration rates, whereas eMIT9312 was negatively correlated with inorganic nutrients.
doi:10.1038/ismej.2010.186
PMCID: PMC3131852  PMID: 21124492
16S rRNA; Equatorial Pacific; HNLC; ITS; Prochlorococcus; qPCR
2.  Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus 
PLoS Genetics  2007;3(12):e231.
Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the “leaves of the tree,” between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.
Author Summary
Prochlorococcus—the most abundant photosynthetic microbe living in the vast, nutrient-poor areas of the ocean—is a major contributor to the global carbon cycle. Prochlorococcus is composed of closely related, physiologically distinct lineages whose differences enable the group as a whole to proliferate over a broad range of environmental conditions. We compare the genomes of 12 strains of Prochlorococcus representing its major lineages in order to identify genetic differences affecting the ecology of different lineages and their evolutionary origin. First, we identify the core genome: the 1,273 genes shared among all strains. This core set of genes encodes the essentials of a functional cell, enabling it to make living matter out of sunlight and carbon dioxide. We then create a genomic tree that maps the gain and loss of non-core genes in individual strains, showing that a striking number of genes are gained or lost even among the most closely related strains. We find that lost and gained genes commonly cluster in highly variable regions called genomic islands. The level of diversity among the non-core genes, and the number of new genes added with each new genome sequenced, suggest far more diversity to be discovered.
doi:10.1371/journal.pgen.0030231
PMCID: PMC2151091  PMID: 18159947
3.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance 
The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory.
PMCID: PMC98958  PMID: 10066832
4.  Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone 
The ISME Journal  2015;9(5):1264-1267.
Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.
doi:10.1038/ismej.2015.21
PMCID: PMC4409168  PMID: 25700337
5.  Signature proteins for the major clades of Cyanobacteria 
Background
The phylogeny and taxonomy of cyanobacteria is currently poorly understood due to paucity of reliable markers for identification and circumscription of its major clades.
Results
A combination of phylogenomic and protein signature based approaches was used to characterize the major clades of cyanobacteria. Phylogenetic trees were constructed for 44 cyanobacteria based on 44 conserved proteins. In parallel, Blastp searches were carried out on each ORF in the genomes of Synechococcus WH8102, Synechocystis PCC6803, Nostoc PCC7120, Synechococcus JA-3-3Ab, Prochlorococcus MIT9215 and Prochlor. marinus subsp. marinus CCMP1375 to identify proteins that are specific for various main clades of cyanobacteria. These studies have identified 39 proteins that are specific for all (or most) cyanobacteria and large numbers of proteins for other cyanobacterial clades. The identified signature proteins include: (i) 14 proteins for a deep branching clade (Clade A) of Gloebacter violaceus and two diazotrophic Synechococcus strains (JA-3-3Ab and JA2-3-B'a); (ii) 5 proteins that are present in all other cyanobacteria except those from Clade A; (iii) 60 proteins that are specific for a clade (Clade C) consisting of various marine unicellular cyanobacteria (viz. Synechococcus and Prochlorococcus); (iv) 14 and 19 signature proteins that are specific for the Clade C Synechococcus and Prochlorococcus strains, respectively; (v) 67 proteins that are specific for the Low B/A ecotype Prochlorococcus strains, containing lower ratio of chl b/a2 and adapted to growth at high light intensities; (vi) 65 and 8 proteins that are specific for the Nostocales and Chroococcales orders, respectively; and (vii) 22 and 9 proteins that are uniquely shared by various Nostocales and Oscillatoriales orders, or by these two orders and the Chroococcales, respectively. We also describe 3 conserved indels in flavoprotein, heme oxygenase and protochlorophyllide oxidoreductase proteins that are specific for either Clade C cyanobacteria or for various subclades of Prochlorococcus. Many other conserved indels for cyanobacterial clades have been described recently.
Conclusions
These signature proteins and indels provide novel means for circumscription of various cyanobacterial clades in clear molecular terms. Their functional studies should lead to discovery of novel properties that are unique to these groups of cyanobacteria.
doi:10.1186/1471-2148-10-24
PMCID: PMC2823733  PMID: 20100331
6.  Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments 
Ecology and Evolution  2013;3(6):1780-1797.
Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.
doi:10.1002/ece3.593
PMCID: PMC3686209  PMID: 23789085
Cyanophage; metagenomics; osmolyte; Pelagibacter; population genomics; Prochlorococcus; SAR11
7.  The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria 
Life  2015;5(1):403-417.
Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b6f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b6f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b6f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b6f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain.
doi:10.3390/life5010403
PMCID: PMC4390859  PMID: 25658887
Prochlorococcus; Synechococcus; Photosystem I: Photosystem II: Cytochrome b6f; RUBISCO
8.  Glucose Uptake and Its Effect on Gene Expression in Prochlorococcus 
PLoS ONE  2008;3(10):e3416.
The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation) was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively) is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon cycle in nature. Besides, the ability of assimilating carbon molecules could provide additional hints to comprehend the ecological success of Prochlorococcus.
doi:10.1371/journal.pone.0003416
PMCID: PMC2565063  PMID: 18941506
9.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences 
Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.
doi:10.1128/AEM.68.3.1180-1191.2002
PMCID: PMC123739  PMID: 11872466
10.  Intertwined Evolutionary Histories of Marine Synechococcus and Prochlorococcus marinus 
Prochlorococcus is a genus of marine cyanobacteria characterized by small cell and genome size, an evolutionary trend toward low GC content, the possession of chlorophyll b, and the absence of phycobilisomes. Whereas many shared derived characters define Prochlorococcus as a clade, many genome-based analyses recover them as paraphyletic, with some low-light adapted Prochlorococcus spp. grouping with marine Synechococcus. Here, we use 18 Prochlorococcus and marine Synechococcus genomes to analyze gene flow within and between these taxa. We introduce embedded quartet scatter plots as a tool to screen for genes whose phylogeny agrees or conflicts with the plurality phylogenetic signal, with accepted taxonomy and naming, with GC content, and with the ecological adaptation to high and low light intensities. We find that most gene families support high-light adapted Prochlorococcus spp. as a monophyletic clade and low-light adapted Prochlorococcus sp. as a paraphyletic group. But we also detect 16 gene families that were transferred between high-light adapted and low-light adapted Prochlorococcus sp. and 495 gene families, including 19 ribosomal proteins, that do not cluster designated Prochlorococcus and Synechococcus strains in the expected manner. To explain the observed data, we propose that frequent gene transfer between marine Synechococcus spp. and low-light adapted Prochlorococcus spp. has created a “highway of gene sharing” (Beiko RG, Harlow TJ, Ragan MA. 2005. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA. 102:14332–14337) that tends to erode genus boundaries without erasing the Prochlorococcus-specific ecological adaptations.
doi:10.1093/gbe/evp032
PMCID: PMC2817427  PMID: 20333202
marine cyanobacteria; horizontal gene transfer; introgression; quartet decomposition; supertree; genome evolution
11.  Analysis of the 3′ ends of tRNA as the cause of insertion sites of foreign DNA in Prochlorococcus *  
The purpose of this study was to investigate the characteristics of transfer RNA (tRNA) responsible for the association between tRNA genes and genes of apparently foreign origin (genomic islands) in five high-light adapted Prochlorococcus strains. Both bidirectional best BLASTP (basic local alignment search tool for proteins) search and the conservation of gene order against each other were utilized to identify genomic islands, and 7 genomic islands were found to be immediately adjacent to tRNAs in Prochlorococcus marinus AS9601, 11 in P. marinus MIT9515, 8 in P. marinus MED4, 6 in P. marinus MIT9301, and 6 in P. marinus MIT9312. Monte Carlo simulation showed that tRNA genes are hotspots for the integration of genomic islands in Prochlorococcus strains. The tRNA genes associated with genomic islands showed the following characteristics: (1) the association was biased towards a specific subset of all iso-accepting tRNA genes; (2) the codon usages of genes within genomic islands appear to be unrelated to the codons recognized by associated tRNAs; and, (3) the majority of the 3′ ends of associated tRNAs lack CCA ends. These findings contradict previous hypotheses concerning the molecular basis for the frequent use of tRNA as the insertion site for foreign genetic materials. The analysis of a genomic island associated with a tRNA-Asn gene in P. marinus MIT9301 suggests that foreign genetic material is inserted into the host genomes by means of site-specific recombination, with the 3′ end of the tRNA as the target, and during the process, a direct repeat of the 3′ end sequence of a boundary tRNA (namely, a scar from the process of insertion) is formed elsewhere in the genomic island. Through the analysis of the sequences of these targets, it can be concluded that a region characterized by both high GC content and a palindromic structure is the preferred insertion site.
doi:10.1631/jzus.B0900417
PMCID: PMC2932881  PMID: 20803775
Genomic islands; Prochlorococcus; Transfer RNA (tRNA); Palindromic structure; Codon usage
12.  The Challenge of Regulation in a Minimal Photoautotroph: Non-Coding RNAs in Prochlorococcus 
PLoS Genetics  2008;4(8):e1000173.
Prochlorococcus, an extremely small cyanobacterium that is very abundant in the world's oceans, has a very streamlined genome. On average, these cells have about 2,000 genes and very few regulatory proteins. The limited capability of regulation is thought to be a result of selection imposed by a relatively stable environment in combination with a very small genome. Furthermore, only ten non-coding RNAs (ncRNAs), which play crucial regulatory roles in all forms of life, have been described in Prochlorococcus. Most strains also lack the RNA chaperone Hfq, raising the question of how important this mode of regulation is for these cells. To explore this question, we examined the transcription of intergenic regions of Prochlorococcus MED4 cells subjected to a number of different stress conditions: changes in light qualities and quantities, phage infection, or phosphorus starvation. Analysis of Affymetrix microarray expression data from intergenic regions revealed 276 novel transcriptional units. Among these were 12 new ncRNAs, 24 antisense RNAs (asRNAs), as well as 113 short mRNAs. Two additional ncRNAs were identified by homology, and all 14 new ncRNAs were independently verified by Northern hybridization and 5′RACE. Unlike its reduced suite of regulatory proteins, the number of ncRNAs relative to genome size in Prochlorococcus is comparable to that found in other bacteria, suggesting that RNA regulators likely play a major role in regulation in this group. Moreover, the ncRNAs are concentrated in previously identified genomic islands, which carry genes of significance to the ecology of this organism, many of which are not of cyanobacterial origin. Expression profiles of some of these ncRNAs suggest involvement in light stress adaptation and/or the response to phage infection consistent with their location in the hypervariable genomic islands.
Author Summary
Prochlorococcus is the most abundant phototroph in the vast, nutrient-poor areas of the ocean. It plays an important role in the ocean carbon cycle, and is a key component of the base of the food web. All cells share a core set of about 1,200 genes, augmented with a variable number of “flexible” genes. Many of the latter are located in genomic islands—hypervariable regions of the genome that encode functions important in differentiating the niches of “ecotypes.” Of major interest is how cells with such a small genome regulate cellular processes, as they lack many of the regulatory proteins commonly found in bacteria. We show here that contrary to the regulatory proteins, ncRNAs are present at levels typical of bacteria, revealing that they might have a disproportional regulatory role in Prochlorococcus—likely an adaptation to the extremely low-nutrient conditions of the open oceans, combined with the constraints of a small genome. Some of the ncRNAs were differentially expressed under stress conditions, and a high number of them were found to be associated with genomic islands, suggesting functional links between these RNAs and the response of Prochlorococcus to particular environmental challenges.
doi:10.1371/journal.pgen.1000173
PMCID: PMC2518516  PMID: 18769676
13.  Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability 
Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (Fv/Fm) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways.
doi:10.1038/msb4100087
PMCID: PMC1682016  PMID: 17016519
cyanobacteria; interstrain; nitrogen; Prochlorococcus; transcription
14.  Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre 
The ISME Journal  2012;7(3):603-614.
Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic, that is, potentially enhance uptake of scarce organic molecules using the available solar radiation to energise appropriate transport systems. Here, we assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions using 33P-ATP, 3H-ATP and 35S-methionine tracers. Light-stimulated uptake of these substrates was assessed in two dominant bacterioplankton groups discriminated by flow cytometric sorting of tracer-labelled cells and identified using catalysed reporter deposition fluorescence in situ hybridisation. One group of cells, encompassing 48% of all bacterioplankton, were identified as members of the SAR11 clade, whereas the other group (24% of all bacterioplankton) was Prochlorococcus. When exposed to light, SAR11 cells took 31% more ATP and 32% more methionine, whereas the Prochlorococcus cells took 33% more ATP and 34% more methionine. Other bacterioplankton did not demonstrate light stimulation. Thus, the SAR11 and Prochlorococcus groups, with distinctly different light-harvesting mechanisms, used light equally to enhance, by approximately one-third, the uptake of different types of organic molecules. Our findings indicate the significance of light-driven uptake of essential organic nutrients by the dominant bacterioplankton groups in the surface waters of one of the less productive, vast regions of the world's oceans—the oligotrophic North Atlantic subtropical gyre.
doi:10.1038/ismej.2012.126
PMCID: PMC3580278  PMID: 23096403
SAR11; Prochlorococcus; light stimulation; flow cytometric sorting; radioisotope tracing; ATP and amino-acid uptake
15.  Genetic Manipulation of Prochlorococcus Strain MIT9313: Green Fluorescent Protein Expression from an RSF1010 Plasmid and Tn5 Transposition▿  
Applied and Environmental Microbiology  2006;72(12):7607-7613.
Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.
doi:10.1128/AEM.02034-06
PMCID: PMC1694220  PMID: 17041154
16.  An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton. 
In the marine cyanobacterium Synechococcus sp. strain WH7803, PstS is a 32-kDa cell wall-associated phosphate-binding protein specifically synthesized under conditions of restricted inorganic phosphate (P1) availability (D. J. Scanlan, N. H. Mann, and N. G. Carr, Mol. Microbiol. 10:181-191, 1993). We have assessed its use as a potential diagnostic marker for the P status of photosynthetic picoplankton. Expression of PstS in Synechococcus sp. strain WH7803 was observed when the P1 concentration fell below 50 nM, demonstrating that the protein is induced at concentrations of P1 typical of oligotrophic conditions. PstS expression could be specifically detected by use of standard Western blotting (immunoblotting) techniques in natural mesocosm samples under conditions in which the N/P ratio was artificially manipulated to force P depletion. In addition, we have developed an immunofluorescence assay that can detect PstS expression in single Synechococcus cells both in laboratory cultures and natural samples. We show that antibodies raised against PstS cross-react with P-depleted Prochlorococcus cells, extending the use of these antibodies to both major groups of prokaryotic photosynthetic picoplankton. Furthermore, DNA sequencing of a Prochlorococcus pstS homolog demonstrated high amino acid sequence identity (77%) with the marine Synechococcus sp. strain WH7803 protein, including those residues in Escherichia coli PstS known to be directly involved in phosphate binding.
PMCID: PMC168535  PMID: 9172363
17.  Ecological Genomics of Marine Picocyanobacteria†  
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
doi:10.1128/MMBR.00035-08
PMCID: PMC2698417  PMID: 19487728
18.  ProPortal: a resource for integrated systems biology of Prochlorococcus and its phage 
Nucleic Acids Research  2011;40(Database issue):D632-D640.
ProPortal (http://proportal.mit.edu/) is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization—from the genome to the ecosystem—embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light–dark cycle reveals the choreography of gene expression in cells in a ‘natural’ state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.
doi:10.1093/nar/gkr1022
PMCID: PMC3245167  PMID: 22102570
19.  Streamlined Regulation and Gene Loss as Adaptive Mechanisms in Prochlorococcus for Optimized Nitrogen Utilization in Oligotrophic Environments 
Prochlorococcus is one of the dominant cyanobacteria and a key primary producer in oligotrophic intertropical oceans. Here we present an overview of the pathways of nitrogen assimilation in Prochlorococcus, which have been significantly modified in these microorganisms for adaptation to the natural limitations of their habitats, leading to the appearance of different ecotypes lacking key enzymes, such as nitrate reductase, nitrite reductase, or urease, and to the simplification of the metabolic regulation systems. The only nitrogen source utilizable by all studied isolates is ammonia, which is incorporated into glutamate by glutamine synthetase. However, this enzyme shows unusual regulatory features, although its structural and kinetic features are unchanged. Similarly, urease activities remain fairly constant under different conditions. The signal transduction protein PII is apparently not phosphorylated in Prochlorococcus, despite its conserved amino acid sequence. The genes amt1 and ntcA (coding for an ammonium transporter and a global nitrogen regulator, respectively) show noncorrelated expression in Prochlorococcus under nitrogen stress; furthermore, high rates of organic nitrogen uptake have been observed. All of these unusual features could provide a physiological basis for the predominance of Prochlorococcus over Synechococcus in oligotrophic oceans.
doi:10.1128/MMBR.68.4.630-638.2004
PMCID: PMC539009  PMID: 15590777
20.  Three Prochlorococcus Cyanophage Genomes: Signature Features and Ecological Interpretations 
PLoS Biology  2005;3(5):e144.
The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish “core” genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of “cyanobacterial” genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent “signature” cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.
An analysis of the genome sequences of three phages capable of infecting marine unicellular cyanobacteria Prochlorococcus reveals they are genetically complex with intriguing adaptations related to their oceanic environment
doi:10.1371/journal.pbio.0030144
PMCID: PMC1079782  PMID: 15828858
21.  Functional Characterization of the FNT Family Nitrite Transporter of Marine Picocyanobacteria 
Life  2015;5(1):432-446.
Many of the cyanobacterial species found in marine and saline environments have a gene encoding a putative nitrite transporter of the formate/nitrite transporter (FNT) family. The presumed function of the gene (designated nitM) was confirmed by functional expression of the gene from the coastal marine species Synechococcus sp. strain PCC7002 in the nitrite-transport-less mutant (NA4) of the freshwater cyanobacterium Synechococcus elongatus strain PCC7942. The NitM-mediated nitrite uptake showed an apparent Km (NO2−) of about 8 μM and was not inhibited by nitrate, cyanate or formate. Of the nitM orthologs from the three oceanic cyanobacterial species, which are classified as α-cyanobacteria on the basis of the occurrence of Type 1a RuBisCO, the one from Synechococcus sp. strain CC9605 conferred nitrite uptake activity on NA4, but those from Synechococcus sp. strain CC9311 and Prochlorococcus marinus strain MIT9313 did not. A strongly conserved hydrophilic amino acid sequence was found at the C-termini of the deduced NitM sequences from α-cyanobacteria, with a notable exception of the Synechococcus sp. strain CC9605 NitM protein, which entirely lacked the C-terminal amino acids. The C-terminal sequence was not conserved in the NitM proteins from β-cyanobacteria carrying the Type 1b RuBisCO, including the one from Synechococcus sp. strain PCC7002. Expression of the truncated nitM genes from Synechococcus sp. strain CC9311 and Prochlorococcus marinus strain MIT9313, encoding the proteins lacking the conserved C-terminal region, conferred nitrite uptake activity on the NA4 mutant, indicating that the C-terminal region of α-cyanobacterial NitM proteins inhibits the activity of the transporter.
doi:10.3390/life5010432
PMCID: PMC4390861  PMID: 25809962
marine cyanobacteria; nitrite; transporter
22.  A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria 
BMC Genomics  2007;8:375.
Background
Non-coding RNAs (ncRNA) are regulators of gene expression in all domains of life. They control growth and differentiation, virulence, motility and various stress responses. The identification of ncRNAs can be a tedious process due to the heterogeneous nature of this molecule class and the missing sequence similarity of orthologs, even among closely related species. The small ncRNA Yfr1 has previously been found in the Prochlorococcus/Synechococcus group of marine cyanobacteria.
Results
Here we show that screening available genome sequences based on an RNA motif and followed by experimental analysis works successfully in detecting this RNA in all lineages of cyanobacteria. Yfr1 is an abundant ncRNA between 54 and 69 nt in size that is ubiquitous for cyanobacteria except for two low light-adapted strains of Prochlorococcus, MIT 9211 and SS120, in which it must have been lost secondarily. Yfr1 consists of two predicted stem-loop elements separated by an unpaired sequence of 16–20 nucleotides containing the ultraconserved undecanucleotide 5'-ACUCCUCACAC-3'.
Conclusion
Starting with an ncRNA previously found in a narrow group of cyanobacteria only, we show here the highly specific and sensitive identification of its homologs within all lineages of cyanobacteria, whereas it was not detected within the genome sequences of E. coli and of 7 other eubacteria belonging to the alpha-proteobacteria, chlorobiaceae and spirochaete. The integration of RNA motif prediction into computational pipelines for the detection of ncRNAs in bacteria appears as a promising step to improve the quality of such predictions.
doi:10.1186/1471-2164-8-375
PMCID: PMC2190773  PMID: 17941988
23.  Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability 
The ISME Journal  2011;5(10):1580-1594.
Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron limitation of Prochlorococcus cell division rates in these regions has been shown. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency-induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.
doi:10.1038/ismej.2011.49
PMCID: PMC3176520  PMID: 21562599
cyanobacteria; iron; transcriptome
24.  Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511 
BMC Microbiology  2010;10:204.
Background
The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation.
Results
The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure.
Conclusions
Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes.
doi:10.1186/1471-2180-10-204
PMCID: PMC2921402  PMID: 20670397
25.  Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus  
Scientific Data  2014;1:140034.
The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography.
doi:10.1038/sdata.2014.34
PMCID: PMC4421930  PMID: 25977791

Results 1-25 (729913)