Search tips
Search criteria

Results 1-25 (600414)

Clipboard (0)

Related Articles

1.  The Protective Effects of Ischemic Postconditioning against Stroke: From Rapid to Delayed and Remote Postconditioning 
The author reviews the protective effects of ischemic postconditioning, a recently emerging strategy with broad implications in the search for new treatments in stroke and myocardial ischemic injury. Ischemic postconditioning, which refers to a series of brief ischemia and reperfusion cycles applied immediately at the site of the ischemic organ after reperfusion, results in reduced infarction in both cerebral and myocardial ischemia. Conventional postconditioning induced within a few minutes after reperfusion is arbitrarily defined as rapid postconditioning. In contrast, postconditioning performed hours to days after stroke is defined as delayed postconditioning. In addition, postconditioning can be mimicked using anesthetics or other pharmacological agents as stimuli to protect against ischemia/reperfusion injury or performed in a distant organ, which is known as remote postconditioning. In this article, the author discusses the conceptual origin of classical rapid ischemic postconditioning and its evolution into a term that represents a broad range of stimuli or triggers, including delayed postconditioning, pharmacological postconditioning, and remote postconditioning. Thereafter, various in vivo and in vitro models of postconditioning and its potential protective mechanisms are discussed. Since the concept of postconditioning is so closely associated with that of preconditioning and both share some common protective mechanisms, whether a combination of preconditioning and postconditioning offers greater protection than preconditioning or postconditioning alone is also discussed.
PMCID: PMC3204606  PMID: 22053169
Postconditioning; preconditioning; stroke; cerebral ischemia; focal ischemia; neuroprotection
2.  Ischemic postconditioning as a novel avenue to protect against brain injury after stroke 
Ischemic postconditioning initially referred to a stuttering reperfusion performed immediately after reperfusion, for preventing ischemia/reperfusion injury in both myocardial and cerebral infarction. It has evolved into a concept that can be induced by a broad range of stimuli or triggers, and may even be performed as late as 6 h after focal ischemia and 2 days after transient global ischemia. The concept is thought to be derived from ischemic preconditioning or partial/gradual reperfusion, but in fact the first experiment for postconditioning was carried out much earlier than that of preconditioning or partial/gradual reperfusion, in the research on myocardial ischemia. This review first examines the protective effects and parameters of postconditioning in various cerebral ischemic models. Thereafter, it provides insights into the protective mechanisms of postconditioning associated with reperfusion injury and the Akt, mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and ATP-sensitive K+ (KATP) channel cell signaling pathways. Finally, some open issues and future challenges regarding clinical translation of postconditioning are discussed.
PMCID: PMC2736291  PMID: 19240739
cerebral ischemia; focal ischemia; neuroprotection; preconditioning; postconditioning; stroke
3.  The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways 
Journal of neurochemistry  2008;105(3):943-955.
We previously reported that ischemic postconditioning with a series of mechanical interruptions of reperfusion reduced infarct volume 2 days after focal ischemia in rats. Here, we extend this data by examining long-term protection and exploring underlying mechanisms involving the Akt, mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways. Post-conditioning reduced infarct and improved behavioral function assessed 30 days after stroke. Additionally, postconditioning increased levels of phosphorylated Akt (Ser473) as measured by western blot and Akt activity as measured by an in vitro kinase assay. Inhibiting Akt activity by a phosphoinositide 3-kinase inhibitor, LY294002, enlarged infarct in postconditioned rats. Postconditioning did not affect protein levels of phosphorylated-phosphatase and tensin homologue deleted on chromosome 10 or -phosphoinositide-dependent protein kinase-1 (molecules upstream of Akt) but did inhibit an increase in phosphorylated-glycogen synthase kinase 3β, an Akt effector. In addition, postconditioning blocked β-catenin phosphorylation subsequent to glycogen synthase kinase, but had no effect on total or non-phosphorylated active β-catenin protein levels. Furthermore, postconditioning inhibited increases in the amount of phosphorylated-c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in the MAPK pathway. Finally, postconditioning blocked death-promoting δPKC cleavage and attenuated reduction in phosphorylation of survival-promoting εPKC. In conclusion, our data suggest that postconditioning provides long-term protection against stroke in rats. Additionally, we found that Akt activity contributes to postconditioning’s protection; furthermore, increases in εPKC activity, a survival-promoting pathway, and reductions in MAPK and δPKC activity; two putative death-promoting pathways correlate with postconditioning’s protection.
PMCID: PMC2746404  PMID: 18182053
Akt; cerebral ischemia; mitogen-activated protein kinase; postconditioning; protein kinase C; β-catenin
4.  Remote Limb Ischemic Postconditioning Protects Against Neonatal Hypoxic–Ischemic Brain Injury in Rat Pups by the Opioid Receptor/Akt Pathway 
Background and Purpose
Remote ischemic postconditoning, a phenomenon in which brief ischemic stimuli of 1 organ protect another organ against an ischemic insult, has been demonstrated to protect the myocardium and adult brain in animal models. However, mediators of the protection and underlying mechanisms remain to be elucidated. In the present study, we tested the hypothesis that remote limb ischemic postconditioning applied immediately after hypoxia provides neuroprotection in a rat model of neonatal hypoxia–ischemia (HI) by mechanisms involving activation of the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway.
HI was induced in postnatal Day 10 rat pups by unilateral carotid ligation and 2 hours of hypoxia. Limb ischemic postconditioning was induced by 4 conditioning cycles of 10 minutes of ischemia and reperfusion on both hind limbs immediately after HI. The opioid antagonist naloxone, phosphatidylinositol-3-kinase inhibitor wortmannin, or opioid agonist morphine was administered to determine underlying mechanisms. Infarct volume, brain atrophy, and neurological outcomes after HI were evaluated. Expression of phosphorylated Akt, Bax, and phosphorylated ERK1/2 was determined by Western blotting.
Limb ischemic postconditioning significantly reduced infarct volume at 48 hours and improved functional outcomes at 4 weeks after HI. Naloxone and wortmannin abrogated the postconditioning-mediated infarct-limiting effect. Morphine given immediately after hypoxia also decreased infarct volume. Furthermore, limb ischemic postconditioning recovered Akt activity and decreased Bax expression, whereas no differences in phosphorylated ERK1/2expression were observed.
Limb ischemic postconditioning protects against neonatal HI brain injury in rats by activating the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway.
PMCID: PMC3703505  PMID: 21183744
Akt; limb ischemic postconditioning; neonatal hypoxia–ischemia; opioid receptor
5.  Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats 
PLoS ONE  2008;3(12):e3851.
We and others have reported that rapid ischemic postconditioning, interrupting early reperfusion after stroke, reduces infarction in rats. However, its extremely short therapeutic time windows, from a few seconds to minutes after reperfusion, may hinder its clinical translation. Thus, in this study we explored if delayed postconditioning, which is conducted a few hours after reperfusion, offers protection against stroke.
Methods and Results
Focal ischemia was generated by 30 min occlusion of bilateral common carotid artery (CCA) combined with permanent occlusion of middle cerebral artery (MCA); delayed postconditioning was performed by repetitive, brief occlusion and release of the bilateral CCAs, or of the ipsilateral CCA alone. As a result, delayed postconditioning performed at 3h and 6h after stroke robustly reduced infarct size, with the strongest protection achieved by delayed postconditioning with 6 cycles of 15 min occlusion/15 min release of the ipsilateral CCA executed from 6h. We found that this delayed postconditioning provided long-term protection for up to two months by reducing infarction and improving outcomes of the behavioral tests; it also attenuated reduction in 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)-uptake therefore improving metabolism, and reduced edema and blood brain barrier leakage. Reperfusion in ischemic stroke patients is usually achieved by tissue plasminogen activator (tPA) application, however, t-PA's side effect may worsen ischemic injury. Thus, we tested whether delayed postconditioning counteracts the exacerbating effect of t-PA. The results showed that delayed postconditioning mitigated the worsening effect of t-PA on infarction.
Delayed postconditioning reduced ischemic injury after focal ischemia, which opens a new research avenue for stroke therapy and its underlying protective mechanisms.
PMCID: PMC2588536  PMID: 19066627
Brain research  2010;1358:184-190.
The volatile anesthetic isoflurane is capable of inducing preconditioning and postconditioning effects in the brain. However, the mechanisms for these neuroprotective effects are not fully understood. Here, we showed that rat hippocampal neuronal cultures exposed to 2% isoflurane for 30 min at 24 h before a 1-h oxygen-glucose deprivation (OGD) and a 24-h simulated reperfusion had a reduced lactate dehydrogenase release. Similarly, this OGD and simulated reperfusion-induced lactate dehydrogenase release was attenuated by exposing the neuronal cultures to 2% isoflurane for 1 h at various times after the onset of the simulated reperfusion (isoflurane postconditioning). The combination of isoflurane preconditioning and postconditioning induced a better neuroprotection than either alone. Inhibition of the calcium/calmodulin-dependent protein kinase II (CaMKII), inhibition of N-methyl D-aspartate (NMDA) receptors, or activation of adenosine A2A receptors resulted in reduction of the OGD and simulated reperfusion-induced cell injury. The combination of CaMKII inhibition and isoflurane preconditioning or postconditioning did not provide better protection than CaMKII inhibition, isoflurane preconditioning, or isoflurane postconditioning alone. The combination of NMDA receptor inhibition and isoflurane postconditioning was not better than NMDA receptor inhibition or isoflurane postconditioning alone for neuroprotection. However, the combination of adenosine A2A receptor activation with either isoflurane preconditioning or isoflurane postconditioning induced a better neuroprotective effect than adenosine A2A receptor activation, isoflurane preconditioning, or isoflurane postconditioning alone. The combination of NMDA receptor inhibition and isoflurane preconditioning caused a better neuroprotective effect than NMDA receptor inhibition or isoflurane preconditioning alone. These results suggest that isoflurane preconditioning- and postconditioning-induced neuroprotection can be additive. Isoflurane preconditioning and isoflurane postconditioning may involve CaMKII inhibition, but may not involve adenosine A2A receptor activation. Inhibition of NMDA receptors may mediate the effects of isoflurane postconditioning, but not isoflurane preconditioning.
PMCID: PMC2949531  PMID: 20709037
calcium/calmodulin-dependent protein kinase II; isoflurane; neuron; preconditioning; postconditioning
7.  ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning 
Acid-sensing ion channels, ASICs, are proton-gated cation channels widely expressed in peripheral sensory neurons and in neurons of the central nervous system that play an important role in a variety of physiological and pathological processes. To further confirm the role played by ASIC1a in cerebral ischemia, here we examined the involvement of this channel in two endogenous recently characterized neuroprotective strategies: brain ischemic preconditioning and postconditioning. The main aim of this study was to elucidate whether ASIC1a might take part as effector in the neuroprotection evoked by brain ischemic preconditioning and postconditioning. For this purpose we investigated the effect of ischemic preconditioning and postconditioning on (1) ASIC1a mRNA and protein expression in the temporoparietal cortex of rats at different time intervals; and (2) the effect of p-AKT inhibition on ASIC1a expression during ischemic preconditioning and postconditioning. Ischemic preconditioning and postconditioning were experimentally induced in adult male rats by subjecting them to different protocols of middle cerebral artery occlusion and reperfusion. ASIC1a expression was dramatically reduced in both the neuroprotective processes. These changes in ASIC expression were p-AKT mediated, since LY-294002, a specific p-AKT inhibitor, was able to prevent variations in ASIC1a expression. The results of the present study support the idea that the downregulation of ASIC1a expression and activity might be a reasonable strategy to reduce the infarct extension after stroke.
PMCID: PMC3068848  PMID: 21479097
ASIC1a; preconditioning; postconditioning; stroke; neuroprotection
8.  Protection of ischemic post conditioning against transient focal ischemia-induced brain damage is associated with inhibition of neuroinflammation via modulation of TLR2 and TLR4 pathways 
Background and purpose
Ischemic postconditioning has been demonstrated to be a protective procedure to brain damage caused by transient focal ischemia/reperfusion. However, it is elusive whether the protection of postconditioning against brain damage and neuroinflammation is via regulating TLR2 and TLR4 pathways. In the present study, we examined the protection of ischemic postconditioning performed immediately prior to the recovery of cerebral blood supply on brain damage caused by various duration of ischemia and tested the hypothesis that its protection is via inhibition of neuroinflammation by modulating TLR2/TLR4 pathways.
Brain damage in rats was induced by using the middle cerebral artery occlusion (MCAO) model. Ischemic postconditioning consisting of fivecycles of ten seconds of ischemia and reperfusion was performed immediately following theischemic episode Theduration of administration of ischemic postconditioning was examined by comparing its effects on infarction volume, cerebral edema and neurological function in 2, 3, 4, 4.5and 6 hour ischemia groups. The protective mechanism of ischemic postconditioning was investigated by comparing its effects on apoptosis, production of the neurotoxic cytokine IL-1β and the transcription and expression of TLR2, TLR4 and IRAK4 in the 2 and 4.5 hour ischemia groups.
Ischemic postconditioning significantly attenuated cerebral infarction, cerebral edema and neurological dysfunction in ischemia groups of up to 4 hours duration, but not in 4.5and 6 hour ischemia groups. It also inhibited apoptosis, production of IL-1β, abnormal transcription and expression of TLR2, TLR4 and IRAK4 in the 2 hour ischemia group, but not in the 4.5 hour ischemia group.
Ischemic postconditioning protected brain damage caused by 2, 3 and 4 hours of ischemia, but not by 4.5 and 6 hours of ischemia. The protection of ischemic postconditioning is associated with its inhibition of neuroinflammation via inhibition of TLR2 and TLR4 pathways.
PMCID: PMC3908918  PMID: 24460643
Ischemic postconditioning; Cerebral ischemia/reperfusion; TLR2; TLR4; Neuroinflammation
9.  Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions <45 min 
Brief episodes of ischemia and reperfusion after a lethal ischemic insult confer cardioprotection, a phenomenon termed “ischemic postconditioning.” However, all studies reported to date have been conducted in open-chest animal models. We sought to determine whether postconditioning occurs in conscious animals and whether it protects against severe myocardial injury.
Chronically instrumented rats were assigned to a 30- (Subset 1), 45- (Subset 2), or 60-min (Subset 3) coronary occlusion followed by 24 h of reperfusion. In each subset, rats received no further intervention (control), were preconditioned with 12 cycles of 2-min occlusion/2-min reperfusion immediately (early preconditioning; EPC) or 24 h (late preconditioning; LPC) before myocardial infarction, or were postconditioned with 20 cycles of 10-s occlusion/10-s reperfusion immediately after myocardial infarction (20-10 PostC).
With a 30-min occlusion, infarct size (54.4 ± 2.3% of risk region in control-30) was significantly reduced in EPC-30, LPC-30, and 20-10 PostC-30 groups (by 72, 70, and 47%, respectively; all P < 0.05 vs. control-30). With a 45-min occlusion, infarct size (62.2 ± 2.4% in control-45) was reduced in EPC-45 and LPC-45 groups (by 47 and 41%, respectively; all P < 0.05 vs. control-45) but not in the 20-10 PostC-45 group [55.4 ± 2.3%, P = not significant (NS) vs. control-45]. With a 60-min occlusion, infarct size (72.7 ± 2.2% in control-60) was reduced in the EPC-60 (by 20%, P < 0.05) but not in the LPC-60 (63.6 ± 2.5%, P = NS) or in the 20-20 PostC group (71.5 ± 3.4%, P = NS).
Both early and late ischemic preconditioning as well as ischemic postconditioning confer protection in conscious rats; however, unlike early preconditioning, postconditioning protects only against coronary occlusions <45 min. In the conscious rat, the cardioprotection afforded by postconditioning is limited to mild to moderate myocardial injury.
PMCID: PMC3741072  PMID: 16815986
myocardium; ischemia; infarct size; preconditioning
10.  Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion 
Basic Research in Cardiology  2010;106(1):135-145.
Short non-lethal ischemic episodes administered to hearts prior to (ischemic preconditioning, IPC) or directly after (ischemic postconditioning, IPost) ischemic events facilitate myocardial protection. Transferring coronary effluent collected during IPC treatment to un-preconditioned recipient hearts protects from lethal ischemic insults. We propose that coronary IPC effluent contains hydrophobic cytoprotective mediators acting via PI3K/Akt-dependent pro-survival signaling at ischemic reperfusion. Ex vivo rat hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion. IPC effluent administered for 10 min prior to index ischemia attenuated infarct size by ≥55% versus control hearts (P < 0.05). Effluent administration for 10 min at immediate reperfusion (reperfusion therapy) or as a mimetic of pharmacological postconditioning (remote postconditioning, RIPost) significantly reduced infarct size compared to control (P < 0.05). The IPC effluent significantly increased Akt phosphorylation in un-preconditioned hearts when administered before ischemia or at reperfusion, while pharmacological inhibition of PI3K/Akt-signaling at reperfusion completely abrogated the cardioprotection offered by effluent administration. Fractionation of coronary IPC effluent revealed that cytoprotective humoral mediator(s) released during the conditioning phase were of hydrophobic nature as all hydrophobic fractions with molecules under 30 kDa significantly reduced infarct size versus the control and hydrophilic fraction-treated hearts (P < 0.05). The total hydrophobic effluent fraction significantly reduced infarct size independently of temporal administration (before ischemia, at reperfusion or as remote postconditioning). In conclusion, the IPC effluent retains strong cardioprotective properties, containing hydrophobic mediator(s) < 30 kDa offering cytoprotection via PI3K/Akt-dependent signaling at ischemic reperfusion.
PMCID: PMC3012213  PMID: 21103992
Postconditioning; Preconditioning; Cardioprotection; Ischemia; Reperfusion; Akt
11.  A feasible strategy for focal cerebral ischemia-reperfusion injury: remote ischemic postconditioning 
Neural Regeneration Research  2014;9(15):1460-1463.
It is difficult to control the degree of ischemic postconditioning in the brain and other ischemia-sensitive organs. Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on terminal organs. In this study, a focal cerebral ischemia-reperfusion injury model was established using three cycles of remote ischemic postconditioning, each cycle consisted of 10-minute occlusion of the femoral artery and 10-minute opening. The results showed that, remote ischemic postconditioning significantly decreased the percentage of the infarct area and attenuated brain edema. In addition, inflammatory nuclear factor-κB expression was significantly lower, while anti-apoptotic Bcl-2 expression was significantly elevated in the cerebral cortex on the ischemic side. Our findings indicate that remote ischemic postconditioning attenuates focal cerebral ischemia/reperfusion injury, and that the neuroprotective mechanism is mediated by an anti-apoptotic effect and reduction of the inflammatory response.
PMCID: PMC4192948  PMID: 25317158
nerve regeneration; remote ischemic postconditioning; focal cerebral ischemia; neuroprotection; apoptosis; inflammation; brain injury; nuclear factor-κB; Bcl-2; neural regeneration
12.  Neuroprotective Effects of Ischemic Preconditioning and Postconditioning on Global Brain Ischemia in Rats through the Same Effect on Inhibition of Apoptosis 
Transient forebrain or global ischemia induces neuronal death in vulnerable CA1 pyramidal cells with many features. A brief period of ischemia, i.e., ischemic preconditioning, or a modified reperfusion such as ischemic postconditioning, can afford robust protection of CA1 neurons against ischemic challenge. Therefore, we investigated the effect of ischemic preconditioning and postconditioning on neural cell apoptosis in rats. The result showed that both ischemic preconditioning and postconditioning may attenuate the neural cell death and DNA fragment in the hippocampal CA1 region. Further western blot study suggested that ischemic preconditioning and postconditioning down-regulates the protein of cleaved caspase-3, caspase-6, caspase-9 and Bax, but up-regulates the protein Bcl-2. These findings suggest that ischemic preconditioning and postconditioning have a neuroprotective role on global brain ischemia in rats through the same effect on inhibition of apoptosis.
PMCID: PMC3382765  PMID: 22754351
brain ischemic injury; ischemic preconditioning; ischemic postconditioning; apoptosis; neuroprotection
13.  Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species 
World Journal of Cardiology  2011;3(6):186-200.
Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction (AMI). However reperfusion is responsible for additional myocardial damage, which likely involves opening of the mitochondrial permeability transition pore (mPTP). In reperfusion injury, mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability. Major mechanisms of mitochondrial dysfunction include the long lasting opening of mPTPs and the oxidative stress resulting from formation of reactive oxygen species (ROS). Several signaling cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning, obtained with brief intermittent ischemia or with pharmacological agents. These pathways converge on a common target, the mitochondria, to preserve their function after ischemia/reperfusion. The present review discusses the role of mitochondria in cardioprotection, especially the involvement of adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP. Ischemic postconditioning has emerged as a new way to target the mitochondria, and to drastically reduce lethal reperfusion injury. Several clinical studies using ischemic postconditioning during angioplasty now support its protective effects, and an interesting alternative is pharmacological postconditioning. In fact ischemic postconditioning and the mPTP desensitizer, cyclosporine A, have been shown to induce comparable protection in AMI patients.
PMCID: PMC3139040  PMID: 21772945
Adenosine triphosphate-dependent potassium channels; Cardioprotection; Ischemia-reperfusion injury; Mitochondrial permeability transition pore; Reactive oxygen species
14.  Effect of remote ischemic conditioning on atrial fibrillation and outcome after coronary artery bypass grafting (RICO-trial) 
BMC Anesthesiology  2011;11:11.
Pre- and postconditioning describe mechanisms whereby short ischemic periods protect an organ against a longer period of ischemia. Interestingly, short ischemic periods of a limb, in itself harmless, may increase the ischemia tolerance of remote organs, e.g. the heart (remote conditioning, RC). Although several studies have shown reduced biomarker release by RC, a reduction of complications and improvement of patient outcome still has to be demonstrated. Atrial fibrillation (AF) is one of the most common complications after coronary artery bypass graft surgery (CABG), affecting 27-46% of patients. It is associated with increased mortality, adverse cardiovascular events, and prolonged in-hospital stay. We hypothesize that remote ischemic pre- and/or post-conditioning reduce the incidence of AF following CABG, and improve patient outcome.
This study is a randomized, controlled, patient and investigator blinded multicenter trial. Elective CABG patients are randomized to one of the following four groups: 1) control, 2) remote ischemic preconditioning, 3) remote ischemic postconditioning, or 4) remote ischemic pre- and postconditioning. Remote conditioning is applied at the arm by 3 cycles of 5 minutes of ischemia and reperfusion. Primary endpoint is the incidence AF in the first 72 hours after surgery, detected using a Holter-monitor. Secondary endpoints include length-of-stay on the intensive care unit and in-hospital, and the occurrence of major adverse cardiovascular events at 30 days, 3 months and 1 year.
Based on an expected incidence in the control group of 27%, 195 patients per group are needed to detect with 80% power a reduction by 45% following either pre- or postconditioning, while allowing for a 10% dropout and at an alpha of 0.05. With the combined intervention expected to be stronger, we need 75 patients in this group to detect a reduction in incidence of AF of 60%.
The RICO-trial (the effect of Remote Ischemic Conditioning on atrial fibrillation and Outcome) is a randomized controlled multicenter trial, designed to investigate whether remote ischemic pre- and/or post-conditioning of the arm reduce the incidence of AF following CABG surgery.
Trial registration under NCT01107184.
PMCID: PMC3119027  PMID: 21605453
15.  Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats 
Korean Journal of Anesthesiology  2010;58(2):176-183.
Experimental studies have shown that ischemic postconditioning can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms are not yet clearly elucidated. This study was conducted to determine whether ischemic postconditioning can alter expression of heat shock protein 70 and reduce acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion.
Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 60 min in twenty male Sprague-Dawley rats (250-300 g). Rats were randomized into control group and an ischemic postconditioning group (10 rats per group). The animals of control group had no intervention either before or after MCA occlusion. Ischemic postconditioning was elicited by 3 cycles of 30 s reperfusion interspersed by 10 s ischemia immediately after onset of reperfusion. The infarct ratios, brain edema ratios and motor behavior deficits were analyzed 24 hrs after ischemic insult. Caspase-3 reactive cells and cells showing heat shock protein 70 activity were counted in the caudoputamen and frontoparietal cortex.
Ischemic postconditiong did not reduce infarct size and brain edema ratios compared to control group. Neurologic scores were not significantly different between groups. The number of caspase-3 reactive cells in the ischemic postconditioning group was not significantly different than the value of the control group in the caudoputamen and frontoparietal cortex. The number of cells showing heat shock protein 70 activity was not significantly different than the control group, as well.
These results suggest that ischemic postconditioning may not influence the early brain damage induced by focal cerebral ischemia in rats.
PMCID: PMC2872862  PMID: 20498797
Focal cerebral ischemia; Neuroproctection; Postconditioning; Rat
16.  Isoflurane postconditioning reduces ischemia-induced nuclear factor-κB activation and interleukin 1β production to provide neuroprotection in rats and mice 
Neurobiology of disease  2013;54:216-224.
Application of isoflurane, a volatile anesthetic, after brain ischemia can reduce ischemic brain injury in rodents (isoflurane postconditioning). This study is designed to determine whether isoflurane postconditioning improves long-term neurological outcome after focal brain ischemia and whether this protection is mediated by attenuating neuroinflammation. Adult male Sprague–Dawley rats were subjected to a 90-min middle cerebral arterial occlusion (MCAO). Isoflurane postconditioning was performed by exposing rats to 2% isoflurane for 60 min immediately after the MCAO. Isoflurane postconditioning reduced brain infarct volumes, apoptotic cells in the ischemic penumbral brain tissues and neurological deficits of rats at 4 weeks after the MCAO. Isoflurane postconditioning reduced brain ischemia/reperfusion-induced nuclear transcription factor (NF)-κB (NF-κB) activation as well as interleukin 1β (IL-1β) and interleukin-6 production in the ischemic penumbral brain tissues at 24 h after the MCAO. IL-1β deficient mice had smaller brain infarct volumes and better neurological functions than wild-type mice at 24 h after a 90-min focal brain ischemia. Isoflurane posttreatment failed to induce neuroprotection in the IL-1β deficient mice. Our results suggest that isoflurane postconditioning improved long-term neurological outcome after transient focal brain ischemia. This protection may be mediated by inhibiting NF-κB activation and the production of the proinflammatory cytokine IL-1β.
PMCID: PMC3628970  PMID: 23313315
interleukin 1β; isoflurane; neuroprotection; nuclear factor-κB; postconditioning
17.  Post-Conditioning and Reperfusion Injury in the Treatment of Stroke 
Dose-Response  2014;12(4):590-599.
Endogenous mechanisms of protection against ischemia can be demonstrated in brain and other organs. The induction of such protection is via a response to sub lethal stress which induces “preconditioning”. The preconditioned organ is then “tolerant” to injury from subsequent severe stress of the same or different etiology. Protection is substantial (70% reduction) but delayed in onset and is transient. Gene expression is unique between brains preconditioned, injured (stroke) or made tolerant. Thus, preconditioning reprograms the response to lethal ischemic stress (stroke), reprogrammed from an injury induction response to a neuroprotective processes. Postconditioning refers to attenuation of injurious processes occurring during reperfusion of ischemic brain. Transient mechanical interruption of reperfusion induces post-conditioning which can attenuate reperfusion injury. Post-conditioning protects ischemic brain by decreasing reperfusion induced oxygen free radical formation. The free radicals produce injury via mitochondrial damage which can be repaired experimentally. Post-conditioning produces neuroprotection as potent as experimental preconditioning. The recognition of broad based gene silencing (suppression of thousands of genes) as the phenotype of the preconditioned, ischemic tolerant brain, may explain failure of all single target drugs for stroke. As risks of reperfusion injury accompany treatment for acute stroke, endogenous neuroprotective and repair mechanisms offer translational stroke therapy.
PMCID: PMC4267451  PMID: 25552959
Preconditioning; post-conditioning; ischemia; stroke
18.  Protection of Ischemic Postconditioning against Neuronal Apoptosis Induced by Transient Focal Ischemia Is Associated with Attenuation of NF-κB/p65 Activation 
PLoS ONE  2014;9(5):e96734.
Background and Purpose
Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear.
Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa.
Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6%±5.8% to 23.5%±4.3%, and apoptosis rate reduce significantly from 46.5%±6.2 to 29.6%±5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons.
We demonstrated in this study that the protection of ischemic postconditioning on neuronal apoptosis caused by transient focal ischemia is associated with attenuation of the activation of NF-κB/p65 in neurons.
PMCID: PMC4011781  PMID: 24800741
19.  The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning 
It has been recently shown that a short sublethal brain ischemia subsequent to a prolonged harmful ischemic episode may confer ischemic neuroprotection, a phenomenon termed ischemic postconditioning. Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are plasma membrane ionic transporters widely distributed in the brain and involved in the control of Na+ and Ca2+ homeostasis and in the progression of stroke damage. The objective of this study was to evaluate the role of these three proteins in the postconditioning-induced neuroprotection. The NCX protein and mRNA expression was evaluated at different time points in the ischemic temporoparietal cortex of rats subjected to tMCAO alone or to tMCAO plus ischemic postconditioning. The results of this study showed that NCX3 protein and ncx3 mRNA were upregulated in those brain regions protected by postconditioning treatment. These changes in NCX3 expression were mediated by the phosphorylated form of the ubiquitously expressed serine/threonine protein kinase p-AKT, as the p-AKT inhibition prevented NCX3 upregulation. The relevant role of NCX3 during postconditioning was further confirmed by results showing that NCX3 silencing, induced by intracerebroventricular infusion of small interfering RNA (siRNA), partially reverted the postconditioning-induced neuroprotection. The results of this study support the idea that the enhancement of NCX3 expression and activity might represent a reasonable strategy to reduce the infarct extension after stroke.
PMCID: PMC3049459  PMID: 20628398
AKT; NCX; neuroprotection; postconditioning; sodium/calcium exchanger
20.  Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial KATP channels in a rat model of focal cerebral ischemic reperfusion injury 
Delayed remote ischemic postconditioning (DRIPost) has been shown to protect the rat brain from ischemic injury. However, extremely short therapeutic time windows hinder its translational use and the mechanism of action remains elusive. Because opening of the mitochondria KATP channel is crucial for cell apoptosis, we hypothesized that the neuroprotective effect of DRIPost may be associated with KATP channels. In the present study, the neuroprotective effects of DRIPost were investigated using adult male Sprague-Dawley rats. Rats were exposed to 90 minutes of middle cerebral artery occlusion followed by 72 hours of reperfusion. Delayed remote ischemic postconditioning was performed with three cycles of bilateral femoral artery occlusion/reperfusion for 5 minutes at 3 or 6 hours after reperfusion. Neurologic deficit scores and infarct volumes were assessed, and cellular apoptosis was monitored by terminal deoxynucleotidyl transferase nick-end labeling. Our results showed that DRIPost applied at 6 hours after reperfusion exerted neuroprotective effects. The KATP opener, diazoxide, protected rat brains from ischemic injury, while the KATP blocker, 5-hydroxydecanote, reversed the neuroprotective effects of DRIPost. These findings indicate that DRIPost reduces focal cerebral ischemic injury and that the neuroprotective effects of DRIPost may be achieved through opening of KATP channels.
PMCID: PMC3345910  PMID: 22274742
brain ischemia; KATP; remote ischemic postconditioning; reperfusion injury
21.  Expression of inducible nitric oxide synthase in muscle flaps treated with ischemic postconditioning 
Hand (New York, N.Y.)  2012;7(3):297-302.
Preconditioning has been considered promising for the treatment of ischemic flaps. In this study, the therapeutic effect of postconditioning was compared with that of preconditioning during ischemia/reperfusion (I/R) injury, and a role of inducible nitric oxide synthase (iNOS) in postconditioning treatment was also explored.
Sixty rats were randomly divided into four groups with 15 rats in each group. Ischemic injury was induced in a rat’s gracilis muscle flap model. Preconditioning and postconditioning were performed respectively on the flaps in the pre-con group and the post-con group. No treatment was given to the flaps in the control group, and flaps without I/R injury were used as a sham control. Muscle viability ratio, histology, and gene expression of iNOS were examined at different time intervals (3, 12, and 18 h).
A significantly higher survival ratio was observed in both the pre-con group (78.98 ± 3.39, 62.74 ± 3.7, and 54.42 ± 4.45 %) and the post-con group (77.42 ± 4.14, 59.74 ± 6.67, and 49.52 ± 4.13 %) than the control group (45.22 ± 3.69, 42.44 ± 3.76, and 33.2 ± 3.29 %) at 3, 12, and 18 h postoperatively (P < 0.05). There was no statistical difference between the pre-con group and the post-con group (P > 0.05). Histological examination showed delayed and attenuated tissue damage in both the pre-con group and the post-con group when compared to that of the control group. A higher expression of iNOS was observed in both the pre-con group and the post-con group than the control group and the sham group (P < 0.05).
Significant improvement of flap survival could be achieved by both preconditioning and postconditioning treatments; however, better protection could be provided by preconditioning. The higher expression of iNOS may play an important role in the therapeutic effect of postconditioning during I/R injury.
PMCID: PMC3418363  PMID: 23997736
Ischemic postconditioning; Ischemic preconditioning; Ischemia/reperfusion (I/R) injury; Inducible nitric oxide synthase
22.  Clinical Application of Preconditioning and Postconditioning to Achieve Neuroprotection 
Translational stroke research  2013;4(1):19-24.
Ischemic conditioning is a form of endogenous protection induced by transient, subcritical ischemia in a tissue. Organs with high sensitivity to ischemia, such as the heart, the brain, and spinal cord represent the most critical and potentially promising targets for potential therapeutic applications of ischemic conditioning. Numerous preclinical investigations have systematically studied the molecular pathways and potential benefits of both pre- and post-conditioning with promising results. The purpose of this review is to summarize the present knowledge on cerebral pre-and post-conditioning, with an emphasis in the clinical application of these forms of neuroprotection.
A systematic Medline search for the terms preconditioning and postconditioning was performed. Publications related to the nervous system and to human applications were selected and analyzed.
Pre-and post-conditioning appear to provide similar levels of neuroprotection. The preconditioning window of benefit can be subdivided into early and late effects, depending on whether the effect appears immediately after the sublethal stress or with a delay of days. In general early effects have been associated post-translational modification of critical proteins (membrane receptors, mitochondrial respiratory chain) while late effects are the result of gene up-or down-regulation. Transient ischemic attacks appear to represent a form of clinically relevant preconditioning by inducing ischemic tolerance in the brain and reducing the severity of subsequent strokes. Remote forms of ischemic pre- and post-conditioning have been more commonly used in clinical studies, as the remote application reduces the risk of injuring the target tissue for which protection is pursued. Limb transient ischemia is the preferred method of induction of remote conditioning with evidence supporting its safety. Clinical studies in a variety of populations at risk of central nervous damage including carotid disease, cervical myelopathy and subarachnoid hemorrhage have shown improvement in surrogate markers of injury.
Promising preclinical and early clinical studies noting improvement in surrogate markers of central nervous injury after the use of remote pre- and post-conditioning treatments demand follow-up systematic investigations to address effectiveness. Challenges in the application of these techniques to pressing clinical cerebrovascular disease ought to be overcome through careful, well-designed, translational investigations.
PMCID: PMC4224593  PMID: 24323188
Preconditioning; Postconditioning; Ischemia; Reperfusion Injury; Neuroprotection; Brain injury
23.  The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats 
The present study sought to determine whether the combination of late preconditioning (PC) with postconditioning enhances the reduction in infarct size. Chronically instrumented rats were assigned to a 45-min (subset 1) or 60-min (subset 2) coronary occlusion followed by 24 h of reperfusion. In each subset, rats received no further intervention (control) or were preconditioned 24 h before occlusion (PC), post-conditioned at the onset of reperfusion following occlusion, or pre-conditioned and postconditioned without (PC + postconditioning) or with the COX-2 inhibitor celecoxib (3 mg/kg ip; PC + postconditioning + celecoxib) 10 min before postconditioning. Myocardial cyclooxygenase-2 (COX-2) protein expression and COX-2 activity (assessed as myocardial levels of PGE2) were measured 6 min after reperfusion in an additional five groups (control, PC, postconditioning, PC + postconditioning, and PC + postconditioning + celecoxib) subjected to a 45-min occlusion. PC alone reduced infarct size after a 45-min occlusion but not after a 60-min occlusion. Postconditioning alone did not reduce infarct size in either setting. However, the combination of late PC and postconditioning resulted in a robust infarct-sparing effect in both settings, suggesting additive cardioprotection. Celecoxib completely abrogated the infarct-sparing effect of the combined interventions in both settings. Late PC increased COX-2 protein expression and PGE2 content. PGE2 content (but not COX-2 protein) was further increased by the combination of both interventions, suggesting that postconditioning increases the activity of COX-2 induced by late PC. In conclusion, the combination of late PC and postconditioning produces additive protection, likely due to a postconditioning-induced enhancement of COX-2 activity.
PMCID: PMC3713472  PMID: 17704286
myocardium; ischemia; infarct size; cyclooxygenase-2
24.  Effect of morphine-induced postconditioning in corrections of tetralogy of fallot 
Results of previous reports on ischemic postconditioning in animals and humans were very encouraging. Although ischemic postconditioning possessed a wide prospect of clinical application, debates on the precise ischemic postconditioning algorithm to use in clinical settings were ongoing. In this regard, pharmacological strategies were possible alternative methods. Accumulating data demonstrated that pharmacological postconditioning with morphine conferred cardioprotection in animals. This trial aimed to evaluate the effect of morphine-induced postconditioning on protection against myocardial ischemia/reperfusion injury in patients undergoing corrections of Tetralogy of Fallot (TOF).
Eight-nine consecutive children scheduled for corrections of TOF were enrolled and randomly assigned to either a postconditioning group (patients received a dose of morphine (0.1 mg/kg) injected via a cardioplegia needle into the aortic root for direct and focused delivery to the heart within 1 minute starting at 3 min before aorta cross-clamp removal, n=44) or a control group (the same protocol was performed as in the postconditioning group except that patients received the same volume of saline instead, n=45). The peri-operative relevant data were investigated and analyzed, and the cardiac troponin I (cTnI) was assayed preoperatively, and then 4 h, 8 h, 12 h, 24 h and 48 h after reperfusion.
Morphine-induced postconditioning reduced postoperative peak cTnI release as compared to the control group (0.57 ± 0.15 versus 0.75 ± 0.20 ng/mL, p<0.0001). Morphine-induced postconditioned patients had lower peak inotropic score (5.7 ± 2.4 versus 8.4 ± 3.6, p<0.0001) and shorter duration of mechanical ventilation as well as ICU stay (20.6 ± 6.8 versus 28.5 ± 8.3 hours, p<0.0001 and 40.4 ± 10.3 versus 57.8 ± 15.2 hours, p<0.0001, respectively), while higher left ventricular ejection fraction as well as cardiac output (0.57±0.15 versus 0.51±0.13, p=0.0467 and 1.39 ± 0.25 versus 1.24 ± 0.21 L/min, p=0.0029, respectively) as compared to the control group during the first postoperative 24 hours.
Morphine-induced postconditioning may provide enhanced cardioprotection against ischemia/reperfusion injury in children undergoing corrections of TOF.
PMCID: PMC3666925  PMID: 23577699
Pharmacological postconditioning; Morphine; Ischemia reperfusion injury; Pediatric cardiac surgery; Trials
25.  Hurdles to clear before clinical translation of ischemic postconditioning against stroke 
Translational stroke research  2013;4(1):63-70.
Ischemic postconditioning has been established for its protective effects against stroke in animal models. It is performed after post-stroke reperfusion and refers to a series of induced ischemia or a single brief one. This review article addresses major hurdles in clinical translation of ischemic postconditioning to stroke patients, including potential hazards, the lack of well-defined protective paradigms, and the paucity of deeply-understood protective mechanisms. A hormetic model, often used in toxicology to describe a dose-dependent response to a toxic agent, is suggested to study both beneficial and detrimental effects of ischemic postconditioning. Experimental strategies are discussed, including how to define the hazards of ischemic (homologous) postconditioning and the possibility of employing non-ischemic (heterologous) postconditioning to facilitate clinical translation. This review concludes that a more detailed assessment of ischemic postconditioning and studies of a broad range of heterologous postconditioning models are warranted for future clinical translation.
PMCID: PMC3601799  PMID: 23524538
ischemic postconditioning; preconditioning; stroke; hormesis; clinical translation

Results 1-25 (600414)