Search tips
Search criteria

Results 1-25 (970686)

Clipboard (0)

Related Articles

1.  Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface 
We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed.
PMCID: PMC3488353  PMID: 23133341
Phase Dependent Polarizability; Molecular Dynamics; Charge Equilibration; Polarizable Force Field; Liquid-Vapor Interface; TIP4P-QDP
2.  Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe 
Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast.
Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100).
Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy.
PMCID: PMC3304327  PMID: 22428093
force spectroscopy; image contrast; noncontact AFM; qPlus; Si(001); Si(100); tip (apex) structure
3.  Identifying tips for intramolecular NC-AFM imaging via in situ fingerprinting 
Scientific Reports  2014;4:6678.
A practical experimental strategy is proposed that could potentially enable greater control of the tip apex in non-contact atomic force microscopy experiments. It is based on a preparation of a structure of interest alongside a reference surface reconstruction on the same sample. Our proposed strategy is as follows. Spectroscopy measurements are first performed on the reference surface to identify the tip apex structure using a previously collected database of responses of different tips to this surface. Next, immediately following the tip identification protocol, the surface of interest is studied (imaging, manipulation and/or spectroscopy). The prototype system we choose is the mixed Si(111)-7×7 and surface which can be prepared on the same sample with a controlled ratio of reactive and passivated regions. Using an “in silico” approach based on ab initio density functional calculations and a set of tips with varying chemical reactivities, we show how one can perform tip fingerprinting using the Si(111)-7×7 reference surface. Then it is found by examining the imaging of a naphthalene tetracarboxylic diimide (NTCDI) molecule adsorbed on surface that negatively charged tips produce the best intramolecular contrast attributed to the enhancement of repulsive interactions.
PMCID: PMC4202218  PMID: 25327642
4.  Structural development and energy dissipation in simulated silicon apices 
In this paper we examine the stability of silicon tip apices by using density functional theory (DFT) calculations. We find that some tip structures - modelled as small, simple clusters - show variations in stability during manipulation dependent on their orientation with respect to the sample surface. Moreover, we observe that unstable structures can be revealed by a characteristic hysteretic behaviour present in the F(z) curves that were calculated with DFT, which corresponds to a tip-induced dissipation of hundreds of millielectronvolts resulting from reversible structural deformations. Additionally, in order to model the structural evolution of the tip apex within a low temperature NC-AFM experiment, we simulated a repeated tip–surface indentation until the tip structure converged to a stable termination and the characteristic hysteretic behaviour was no longer observed. Our calculations suggest that varying just a single rotational degree of freedom can have as measurable an impact on the tip–surface interaction as a completely different tip structure.
PMCID: PMC3896295  PMID: 24455452
apex structure; atomic force microscopy; DFT; dissipation; hysteresis; NC-AFM; silicon; spectroscopy; tip structure
5.  Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy 
Nanoscale Research Letters  2011;6(1):335.
Using an atomic force microscope (AFM) at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs) disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated), individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as Rtip-CNT, RCNT-substrate and Rtip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism.
PMCID: PMC3211423  PMID: 21711904
6.  Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips 
Bioconjugate Chemistry  2011;22(6):1239-1248.
The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH2 groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH2 groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker (“acetal-PEG-NHS”) which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1–10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker (“aldehyde-PEG-NHS”) to adjacent NH2 groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer.
PMCID: PMC3115690  PMID: 21542606
7.  The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope 
Scanning probe microscopy (SPM) plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface.
PMCID: PMC3943512  PMID: 24605287
atomic force microscopy (AFM); force-field model; 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA); qPlus; single-molecule manipulation
8.  The Bacterial Fimbrial Tip Acts as a Mechanical Force Sensor 
PLoS Biology  2011;9(5):e1000617.
The subunits that constitute the bacterial adhesive complex located at the tip of the fimbria form a hook-chain that acts as a rapid force-sensitive anchor at high flow.
There is increasing evidence that the catch bond mechanism, where binding becomes stronger under tensile force, is a common property among non-covalent interactions between biological molecules that are exposed to mechanical force in vivo. Here, by using the multi-protein tip complex of the mannose-binding type 1 fimbriae of Escherichia coli, we show how the entire quaternary structure of the adhesive organella is adapted to facilitate binding under mechanically dynamic conditions induced by flow. The fimbrial tip mediates shear-dependent adhesion of bacteria to uroepithelial cells and demonstrates force-enhanced interaction with mannose in single molecule force spectroscopy experiments. The mannose-binding, lectin domain of the apex-positioned adhesive protein FimH is docked to the anchoring pilin domain in a distinct hooked manner. The hooked conformation is highly stable in molecular dynamics simulations under no force conditions but permits an easy separation of the domains upon application of an external tensile force, allowing the lectin domain to switch from a low- to a high-affinity state. The conformation between the FimH pilin domain and the following FimG subunit of the tip is open and stable even when tensile force is applied, providing an extended lever arm for the hook unhinging under shear. Finally, the conformation between FimG and FimF subunits is highly flexible even in the absence of tensile force, conferring to the FimH adhesin an exploratory function and high binding rates. The fimbrial tip of type 1 Escherichia coli is optimized to have a dual functionality: flexible exploration and force sensing. Comparison to other structures suggests that this property is common in unrelated bacterial and eukaryotic adhesive complexes that must function in dynamic conditions.
Author Summary
Noncovalent biological interactions are commonly subjected to mechanical force, particularly when they are involved in adhesion or cytoskeletal movements. While one might expect mechanical force to break these interactions, some of them form so-called catch bonds that lock on harder under force, like a nanoscale finger-trap. In this study, we show that the catch-bond forming adhesive protein FimH, which is located at the tip of E. coli fimbriae, allows bacteria to bind to urinary epithelial cells in a shear-dependent manner; that is, they bind at high but not at low flow. We show that isolated fimbrial tips, consisting of elongated protein complexes with FimH at the apex, reproduce this behavior in vitro. Our molecular dynamics simulations of the fimbrial tip structure show that FimH is shaped like a hook that is normally rigid but opens under force, causing structural changes that lead to firm anchoring of the bacteria on the surface. In contrast, the more distal adaptor proteins of the fimbrial tip create a flexible connection of FimH to the rigid fimbria, enhancing the ability of the adhesin to move into position and form bonds with mannose on the surface. We suggest that the entire tip complex forms a hook-chain, ideal for rapid and stable anchoring in flow.
PMCID: PMC3091844  PMID: 21572990
9.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations 
The Journal of Physical Chemistry. B  2008;112(30):9020-9041.
Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Åqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4PEW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.
PMCID: PMC2652252  PMID: 18593145
10.  Ultrastable Atomic Force Microscopy: Atomic-Scale Stability and Registration in Ambient Conditions 
Nano letters  2009;9(4):1451-1456.
Instrumental drift in atomic force microscopy (AFM) remains a critical, largely unaddressed issue that limits tip–sample stability, registration, and the signal-to-noise ratio during imaging. By scattering a laser off the apex of a commercial AFM tip, we locally measured and thereby actively controlled its three-dimensional position above a sample surface to <40 pm (Δf = 0.01–10 Hz) in air at room temperature. With this enhanced stability, we overcame the traditional need to scan rapidly while imaging and achieved a 5-fold increase in the image signal-to-noise ratio. Finally, we demonstrated atomic-scale (~100 pm) tip–sample stability and registration over tens of minutes with a series of AFM images on transparent substrates. The stabilization technique requires low laser power (<1 mW), imparts a minimal perturbation upon the cantilever, and is independent of the tip–sample interaction. This work extends atomic-scale tip–sample control, previously restricted to cryogenic temperatures and ultrahigh vacuum, to a wide range of perturbative operating environments.
PMCID: PMC2953871  PMID: 19351191
11.  Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent 
Metal ions play significant roles in biological systems. Accurate molecular dynamics (MD) simulations on these systems require a validated set of parameters. Although there are more detailed ways to model metal ions, the nonbonded model, which employs a 12-6 Lennard-Jones (LJ) term plus an electrostatic potential is still widely used in MD simulations today due to its simple form. However, LJ parameters have limited transferability due to different combining rules, various water models and diverse simulation methods. Recently, simulations employing a Particle Mesh Ewald (PME) treatment for long-range electrostatics have become more and more popular owing to their speed and accuracy. In the present work we have systematically designed LJ parameters for 24 +2 metal (M(II)) cations to reproduce different experimental properties appropriate for the Lorentz-Berthelot combining rules and PME simulations. We began by testing the transferability of currently available M(II) ion LJ parameters. The results showed that there are differences between simulations employing Ewald summation with other simulation methods and that it was necessary to design new parameters specific for PME based simulations. Employing the thermodynamic integration (TI) method and performing periodic boundary MD simulations employing PME, allowed for the systematic investigation of the LJ parameter space. Hydration free energies (HFEs), the ion-oxygen distance in the first solvation shell (IOD) and coordination numbers (CNs) were obtained for various combinations of the parameters of the LJ potential for four widely used water models (TIP3P, SPC/E, TIP4P and TIP4PEW). Results showed that the three simulated properties were highly correlated. Meanwhile, M(II) ions with the same parameters in different water models produce remarkably different HFEs but similar structural properties. It is difficult to reproduce various experimental values simultaneously because the nonbonded model underestimates the interaction between the metal ions and water molecules at short range. Moreover, the extent of underestimation increases successively for the TIP3P, SPC/E, TIP4PEW and TIP4P water models. Nonetheless, we fitted a curve to describe the relationship between ε (the well depth) and radius (Rmin/2) from experimental data on noble gases to facilitate the generation of the best possible compromise models. Hence, by targeting different experimental values, we developed three sets of parameters for M(II) cations for three different water models (TIP3P, SPC/E and TIP4PEW). These parameters we feel represent the best possible compromise that can be achieved using the nonbonded model for the ions in combination with simple water models. From a computational uncertainty analysis we estimate that the uncertainty in our computed HFEs is on the order of ±1kcal/mol. Further improvements will require more advanced non-bonded models likely with inclusion of polarization.
PMCID: PMC3728907  PMID: 23914143
Lennard-Jones parameters; M(II) metal ion; Ewald summation
12.  Investigation on Blind Tip Reconstruction Errors Caused by Sample Features 
Sensors (Basel, Switzerland)  2014;14(12):23159-23175.
Precision measurements of a nanoscale sample surface using an atomic force microscope (AFM) require a precise quantitative knowledge of the 3D tip shape. Blind tip reconstruction (BTR), established by Villarrubia, gives an outer bound with larger errors if the tip characterizer is not appropriate. In order to explore the errors of BTR, a series of simulation experiments based on a conical model were carried out. The results show that, to reconstruct the tip precisely, the cone angle of the tip characterizer must be smaller than that of the tip. Furthermore, the errors decrease as a function of the tip cone angle and increase linearly with the sample radius of curvature, irrespective of the tip radius of curvature. In particular, for sharp (20 nm radius) and blunt (80 nm radius) tips, the radius of curvature of the tip characterizer must be smaller than 5 nm. Based on these simulation results, a local error model of BTR was established. The maximum deviation between the errors derived from the model and the simulated experiments is 1.22 nm. Compared with the lateral resolution used in the above simulated experiments (4 nm/pixel), it is valid to ignore the deviations and consider the local error model of BTR is indeed in quantitative agreement with the simulation results. Finally, two simulated ideal structures are proposed here, together with their corresponding real samples. The simulation results show they are suitable for BTR.
PMCID: PMC4299057  PMID: 25490584
blind tip reconstruction; 3D tip shape; AFM; tip characterizer
13.  Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction 
Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.
In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.
PMCID: PMC3458610  PMID: 23019560
atomic force microscopy; force spectroscopy; NC-AFM; three-dimensional atomic force microscopy; tip asymmetry; tip elasticity
14.  Effects of Water Models on Binding Affinity: Evidence from All-Atom Simulation of Binding of Tamiflu to A/H5N1 Neuraminidase 
The Scientific World Journal  2014;2014:536084.
The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔGbind of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔGbind is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinations of these aqueous models and four force fields AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L. It is shown that there is no correlation between the binding free energy and the water density in the binding pocket in CHARMM. However, for three remaining force fields ΔGbind decays with increase of water density. SPC/E provides the lowest binding free energy for any force field, while the water effect is the most pronounced in CHARMM. In agreement with the popular GROMACS recommendation, the binding score obtained by combinations of AMBER-TIP3P, OPLS-TIP4P, and GROMOS-SPC is the most relevant to the experiments. For wild-type neuraminidase we have found that SPC is more suitable for CHARMM than TIP3P recommended by GROMACS for studying ligand binding. However, our study for three of its mutants reveals that TIP3P is presumably the best choice for CHARMM.
PMCID: PMC3929574  PMID: 24672329
15.  Research on Double-Probe, Double- and Triple-Tip Effects during Atomic Force Microscopy Scanning 
Scanning  2004;26(4):155-161.
Information obtained by atomic force microscopy (AFM) depends strongly on the kind of probe or tip used; therefore, probe and tip effects have to be taken into account when verifying or interpreting the data acquired. In many papers, double-tip effects have been mentioned while other research was done; however, there are only a few special reports on double- or triple-tip effects, especially double-probe effects. In our paper, metaphase chromosomes of Chinese hamster ovary (CHO) cells, aggregates of pectin molecules, membrane surface of mouse embryonic stem cells, and R-phycoerythrin-conjugated immunoglobulin G complexes were imaged by AFM with high-quality probes, double-probe cantilever, and double-tip and triple-tip probes, respectively, in order to determine double-probe, double-tip, and triple-tip effects during AFM scanning. We found that the double-probe, double-tip, and triple-tip effects share the same principle, and that these effects correlate with distance and height differences between probes of double-probe cantilever or tips of double-tip or multiple-tip probes. Since many other factors influence double-probe or double-tip effects, more in-depth studies must be undertaken. However, this initial research will make all users of AFM techniques aware of double-probe and double-tip or triple-tip effects during AFM scanning and aid in verifying or interpreting the data acquired.
PMCID: PMC2863299  PMID: 15473266
double-probe effects; double-tip effects; triple-tip effects; atomic force microscopy; tip artifacts; chromosome; pectin; phycoerythrin conjugated immunoglobulin G
16.  A diffusion-based neurite length-sensing mechanism involved in neuronal symmetry breaking 
Shootin1, one of the earliest markers of neuronal symmetry breaking, accumulates in the neurite tips of polarizing neurons in a neurite length-dependent manner. Thus, neurons sense their neurites' length and translate this spatial information into a molecular signal, shootin1 concentration.Quantitative live cell imaging of shootin1 dynamics combined with mathematical modeling analyses reveals that its anterograde transport and retrograde diffusion in neurite shafts account for the neurite length-dependent accumulation of shootin1.The neurite length-dependent shootin1 accumulation and shootin1-induced neurite outgrowth constitute a positive feedback loop that amplifies stochastic shootin1 signals in neurite tips.Quantitative mathematical modeling shows that the above positive feedback loop, together with shootin1 upregulation, constitutes a core mechanism for neuronal symmetry breaking.
Cell morphology and size must be properly controlled to ensure cellular function. Although there has been significant progress in understanding the molecular signals that change cell morphology, the manner in which cells monitor their size and length to regulate their morphology is poorly understood. Cultured hippocampal neurons polarize by forming a single long axon and multiple short dendrites (Craig and Banker, 1994; Arimura and Kaibuchi, 2007), and symmetry breaking is the initial step of this process. This symmetry-breaking step reproduces even when the neuronal axon is transected; the longest neurite usually grows rapidly to become an axon after transection, regardless of whether it is the axonal stump or another neurite (Goslin and Banker, 1989). Elongation of an immature neurite by mechanical tension also leads to its axonal specification (Lamoureux et al, 2002). These results suggest that cultured hippocampal neurons can sense neurite length, identify the longest one, and induce its subsequent axonogenesis for symmetry breaking. However, little is known about the mechanism for this process.
Shootin1 is one of the earliest markers of neuronal symmetry breaking (Toriyama et al, 2006). During the symmetry-breaking step, it undergoes a stochastic accumulation in neurite tips, and eventually accumulates predominantly in a single neurite that subsequently grows to become an axon. In this study, we demonstrated that shootin1 accumulates in neurite tips in a neurite length-dependent manner, regardless of whether it is the axonal stump or another neurite (Figure 3A, C–F). Thus, morphological information (neurite length) is translated into a molecular signal (shootin1 concentration in neurite tips).
We previously reported that shootin1 is transported from the cell body to neurite tips as discrete boluses and diffuses back to the cell body (Toriyama et al, 2006). The boluses containing variable amounts of shootin1 traveled repeatedly but irregularly along neurites, and their arrival caused large stochastic fluctuations in shootin1 concentration in the neurite tips. To understand the mechanism of length-dependent shootin1 accumulation, we performed quantitative live cell imaging of the anterograde transport and retrograde diffusion of shootin1 and fitted the obtained data into mathematical models of the anterograde transport and retrograde diffusion. The parameters of these two models were derived entirely from quantitative experimental data, without any adjustment. Shootin1 concentration at neurite tips, calculated by integrating the two models, was neurite length dependent (Figure 3B) and showed good agreement with the experimental data (Figure 3A). These results suggest that the neurite length-dependent accumulation of shootin1 is quantitatively explained by its anterograde transport and retrograde diffusion.
This length-dependent shootin1 accumulation constitutes a positive feedback interaction with the previously reported shootin1-induced neurite outgrowth (Shimada et al, 2008). To analyze the functional role of this feedback loop, we quantified shootin1 upregulation (Toriyama et al, 2006) and shootin1-induced neurite outgrowth, and integrated them, together with the above model of length-dependent shootin1 accumulation, into a model neuron (Figure 7A). Furthermore, the parameters of the model components were chosen to give the best fit to the quantitative experimental data without any adjustment. Integrating the three components into a model neuron resulted in spontaneous symmetry breaking (Figure 7B and C). Furthermore, there are a total of 15 agreements between the model predictions and the experimental data, including the neurite length-dependent axon specification and regeneration (Goslin and Banker, 1989; Lamoureux et al, 2002). These data suggest that the three components in our model—namely, diffusion-based neurite length sensing system, shootin1-induced neurite outgrowth and shootin1 upregulation—are sufficient to induce neuronal symmetry breaking.
Bolus-like transport of shootin1 caused large stochastic fluctuations in shootin1 concentration in neurite tips. Interestingly, the generation of continuous shootin1 transport in our model neuron impaired the symmetry-breaking process (Figure 7D). This is consistent with theoretical models in which feedback amplification of fluctuations in signaling can give rise to robust patterns (Turing, 1952; Meinhardt and Gierer, 2000; Kondo, 2002), and underscores the importance of the stochastic fluctuating signals in spontaneous neuronal symmetry breaking.
The combination of quantitative experimentation and mathematical modeling is regarded as a powerful strategy for attaining a profound understanding of biological systems (Hodgkin and Huxley, 1952b; Lewis, 2008; Ferrell, 2009). By focusing on a simple system involving one of the earliest markers of neuronal symmetry breaking, shootin1, we were able to evaluate here the core components of neuronal symmetry breaking on the basis of quantitative experimental data. The present model may thus provide a core mechanism of neuronal symmetry breaking, to which other possible mechanisms can be added to increase the model's complexity in future studies.
Although there has been significant progress in understanding the molecular signals that change cell morphology, mechanisms that cells use to monitor their size and length to regulate their morphology remain elusive. Previous studies suggest that polarizing cultured hippocampal neurons can sense neurite length, identify the longest neurite, and induce its subsequent outgrowth for axonogenesis. We observed that shootin1, a key regulator of axon outgrowth and neuronal polarization, accumulates in neurite tips in a neurite length-dependent manner; here, the property of cell length is translated into shootin1 signals. Quantitative live cell imaging combined with modeling analyses revealed that intraneuritic anterograde transport and retrograde diffusion of shootin1 account for its neurite length-dependent accumulation. Our quantitative model further explains that the length-dependent shootin1 accumulation, together with shootin1-dependent neurite outgrowth, constitutes a positive feedback loop that amplifies stochastic fluctuations of shootin1 signals, thereby generating an asymmetric signal for axon specification and neuronal symmetry breaking.
PMCID: PMC2925530  PMID: 20664640
feedback loop; neuronal polarity; quantitative modeling; shootin1; stochasticity
17.  Application of Catalyst-free Click Reactions in Attaching Affinity Molecules to Tips of Atomic Force Microscopy for Detection of Protein Biomarkers 
Atomic Force Microscopy (AFM) has been extensively used in studies of biological interactions. Particularly, AFM based force spectroscopy and recognition imaging can sense biomolecules on a single molecule level, having great potential to become a tool for molecular diagnostics in clinics. These techniques, however, require affinity molecules to be attached to AFM tips in order to specifically detect their targets. The attachment chemistry currently used on silicon tips involves multiple steps of reactions and moisture sensitive chemicals, such as (3-aminopropyl)triethoxysilane (APTES) and N-hydroxysuccinimide (NHS) ester, making the process difficult to operate in aqueous solutions. In the present study, we have developed a user-friendly protocol to functionalize the AFM tips with affinity molecules. A key feature of it is that all reactions are carried out in aqueous solutions. In summary, we first synthesized a molecular anchor composed of cyclooctyne and silatrane for introduction of a chemically reactive function to AFM tips and a bi-functional polyethylene glycol linker that harnesses two orthogonal click reactions, copper free alkyne-azide cycloaddition and thiol-vinylsulfone Michael addition, for attaching affinity molecules to AFM tips. The attachment chemistry was then validated by attaching anti-thrombin DNA aptamers and cyclo-RGD peptides to silicon nitride (SiN) tips respectively, and measuring forces of unbinding these affinity molecules from their protein cognates human α-thrombin and human α5β1-integrin immobilized on mica surfaces. In turn, we used the same attachment chemistry to functionalize silicon tips with the same affinity molecules for AFM based recognition imaging, showing that the disease-relevant biomarkers such as α-thrombin and α5β1-integrin can be detected with high sensitivity and specificity by the single molecule technique. These studies demonstrate the feasibility of our attachment chemistry for the use in functionalization of AFM tips with affinity molecules.
PMCID: PMC3886287  PMID: 24180289
18.  Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy 
Scientific Reports  2014;4:3742.
The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments.
PMCID: PMC3894555  PMID: 24434734
19.  The atomic force microscope as a mechano–electrochemical pen 
We demonstrate a method that allows the controlled writing of metallic patterns on the nanometer scale using the tip of an atomic force microscope (AFM) as a “mechano–electrochemical pen”. In contrast to previous experiments, no voltage is applied between the AFM tip and the sample surface. Instead, a passivated sample surface is activated locally due to lateral forces between the AFM tip and the sample surface. In this way, the area of tip–sample interaction is narrowly limited by the mechanical contact between tip and sample, and well-defined metallic patterns can be written reproducibly. Nanoscale structures and lines of copper were deposited, and the line widths ranged between 5 nm and 80 nm, depending on the deposition parameters. A procedure for the sequential writing of metallic nanostructures is introduced, based on the understanding of the passivation process. The mechanism of this mechano–electrochemical writing technique is investigated, and the processes of site-selective surface depassivation, deposition, dissolution and repassivation of electrochemically deposited nanoscale metallic islands are studied in detail.
PMCID: PMC3201618  PMID: 22043454
atomic force microscopy; deposition; electrochemistry; nanoelectronics; nanofabrication; nanolithography; nanotechnology; NEMS and MEMS; scanning probe lithography
20.  Clinical outcome and predictors of survival after TIPS insertion in patients with liver cirrhosis 
AIM: To determine the clinical outcome and predictors of survival after transjugular intrahepatic portosystemic stent shunt (TIPS) implantation in cirrhotic patients.
METHODS: Eighty-one patients with liver cirrhosis and consequential portal hypertension had TIPS implantation (bare metal) for either refractory ascites (RA) (n = 27) or variceal bleeding (VB) (n = 54). Endpoints for the study were: technical success, stent occlusion and stent stenosis, rebleeding, RA and mortality. Clinical records of patients were collected and analysed. Baseline characteristics [e.g., age, sex, CHILD score and the model for end-stage liver disease score (MELD score), underlying disease] were retrieved. The Kaplan-Meier method was employed to calculate survival from the time of TIPS implantation and comparisons were made by log rank test. A multivariate analysis of factors influencing survival was carried out using the Cox proportional hazards regression model. Results were expressed as medians and ranges. Comparisons between groups were performed by using the Mann-Whitney U-test and the χ2 test as appropriate.
RESULTS: No difference could be seen in terms of age, sex, underlying disease or degree of portal pressure gradient (PPG) reduction between the ascites and the bleeding group. The PPG significantly decreased from 23.4 ± 5.3 mmHg (VB) vs 22.1 ± 5.5 mmHg (RA) before TIPS to 11.8 ± 4.0 vs 11.7 ± 4.2 after TIPS implantation (P = 0.001 within each group). There was a tendency towards more patients with stage CHILD A in the bleeding group compared to the ascites group (24 vs 6, P = 0.052). The median survival for the ascites group was 29 mo compared to > 60 mo for the bleeding group (P = 0.009). The number of radiological controls for stent patency was 6.3 for bleeders and 3.8 for ascites patients (P = 0.029). Kaplan-Meier calculation indicated that stent occlusion at first control (P = 0.027), ascites prior to TIPS implantation (P = 0.009), CHILD stage (P = 0.013), MELD score (P = 0.001) and those patients not having undergone liver transplantation (P = 0.024) were significant predictors of survival. In the Cox regression model, stent occlusion (P = 0.022), RA (P = 0.043), CHILD stage (P = 0.015) and MELD score (P = 0.004) turned out to be independent prognostic factors of survival. The anticoagulation management (P = 0.097), the porto-systemic pressure gradient (P = 0.460) and rebleeding episodes (P = 0.765) had no significant effect on the overall survival.
CONCLUSION: RA, stent occlusion, initial CHILD stage and MELD score are independent predictors of survival in patients with TIPS, speaking for a close follow-up in these circumstances.
PMCID: PMC3468853  PMID: 23066315
Transjugular intrahepatic portosystemic stent shunt; Liver cirrhosis; Ascites; Gastrointestinal hemorrhage; Treatment outcome
21.  Interactions and Self-Assembly of Stable Hydrocarbon Radicals on a Metal Support 
Stable hydrocarbon radicals are able to withstand ambient conditions. Their combination with a supporting surface is a promising route toward novel functionalities or carbon-based magnetic systems. This will remain elusive until the interplay of radical–radical interactions and interface effects is fundamentally explored. We employ the tip of a low-temperature scanning tunneling microscope as a local probe in combination with density functional theory calculations to investigate with atomic precision the electronic and geometric effects of a weakly interacting metal support on an archetypal hydrocarbon radical model system, i.e., the exceptionally stable spin-1/2 radical α,γ-bisdiphenylene-β-phenylallyl (BDPA). Our study demonstrates the self-assembly of stable and regular one- and two-dimensional radical clusters on the Au(111) surface. Different types of geometric configurations are found to result from the interplay between the highly anisotropic radical–radical interactions and interface effects. We investigate the interaction mechanisms underlying the self-assembly processes and utilize the different configurations as a geometric design parameter to demonstrate energy shifts of up to 0.6 eV of the radicals’ frontier molecular orbitals responsible for their electronic, magnetic, and chemical properties.
PMCID: PMC3557927  PMID: 23378866
22.  Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions 
Nanotechnology  2010;21(36):365302.
In this paper, the fabrication and electrical and electromechanical characterization of insulated scanning probes have been demonstrated in liquid solutions. The silicon cantilevers were sequentially coated with chromium and silicon dioxide, and the silicon dioxide was selectively etched at tip apex using focused electron beam induced etching (FEBIE) with XeF2 The chromium layer acted not only as the conductive path from the tip, but also as an etch resistant layer. This insulated scanning probe fabrication process is compatible with any commercial AFM tip and can be used to easily tailor the scanning probe tip properties because FEBIE does not require lithography. The suitability of the fabricated probes is demonstrated by imaging of standard topographical calibration grid as well as piezoresponse force microscopy (PFM) and electrical measurements in ambient and liquid environments.
PMCID: PMC3018872  PMID: 20702930
23.  Interpreting motion and force for narrow-band intermodulation atomic force microscopy 
Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip–surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip–surface force that are in-phase with the tip motion (F I) and quadrature to the motion (F Q). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that F I and F Q actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of F I and F Q from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components F I and F Q, providing deeper insight into the tip–surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.
PMCID: PMC3566785  PMID: 23400552
atomic force microscopy; AFM; frequency combs; force spectroscopy; high-quality-factor resonators; intermodulation; multifrequency
24.  Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions 
Metal ions exist in almost half of the proteins in the protein databank and they serve as structural, electron-transfer and catalytic elements in the metabolic processes of organisms. Molecular Dynamics (MD) simulation is a powerful tool that provides information about biomolecular systems at the atomic level. Coupled with the growth in computing power, algorithms like the Particle Mesh Ewald (PME) method have become the accepted standard when dealing with long-range interactions in MD simulations. The nonbonded model of metal ions consists of an electrostatic plus 12-6 Lennard Jones (LJ) potential and is used largely because of its speed relative to more accurate models. In previous work we found that ideal parameters do not exist that reproduce several experimental properties for M(II) ions simultaneously using the nonbonded model coupled with the PME method due to the underestimation of metal ion-ligand interactions. Via a consideration of the nature of the nonbonded model, we proposed that the observed error largely arises from overlooking charge-induced dipole interactions. The electrostatic plus 12-6 LJ potential model works reasonably well for neutral systems but does struggle with more highly charged systems. In the present work we designed and parameterized a new nonbonded model for metal ions by adding a 1/r4 term to the 12-6 model. We call it the 12-6-4 LJ-type nonbonded model due to its mathematical construction. Parameters were determined for 16 +2 metal ions for the TIP3P, SPC/E and TIP4PEW water models. The final parameters reproduce the experimental hydration free energies (HFE), ion-oxygen distances (IOD) in the first solvation shell and coordination numbers (CN) accurately for the metal ions investigated. Preliminary tests on MgCl2 at different concentrations in aqueous solution and Mg2+--nucleic acid systems show reasonable results suggesting that the present parameters can work in mixed systems. The 12-6-4 LJ-type nonbonded model is readily adopted into standard force fields like AMBER, CHARMM and OPLS-AA with only a modest computational overhead. The new nonbonded model doesn’t consider charge-transfer effects explicitly and, hence, may not suitable for the simulation of systems where charge-transfer effects play a decisive role.
PMCID: PMC3960013  PMID: 24659926
25.  Scanning Electrochemical Microscopy of One-Dimensional Nanostructure: Effects of Nanostructure Dimensions on the Tip Feedback Current under Unbiased Conditions 
Scanning electrochemical microscopy (SECM) is developed as a powerful approach to electrochemical characterization of individual one-dimensional (1D) nanostructures under unbiased conditions. 1D nanostructures comprise high-aspect-ratio materials with both nanoscale and macroscale dimensions such as nanowires, nanotubes, nanobelts, and nanobands. Finite element simulations demonstrate that the feedback current at a disk-shaped ultramicroelectrode tip positioned above an unbiased nanoband, as prepared on an insulating substrate, is sensitive to finite dimensions of the band, i.e., micrometer length, nanometer width, and nanometer height from the insulating surface. The electron-transfer rate of a redox mediator at the nanoband surface depends not only on the intrinsic rate but also on the open-circuit potential of the nanoband, which is determined by the dimensions of the nanoband as well as the tip inner and outer radii, and tip–substrate distance. The theoretical predictions are confirmed experimentally by employing Au nanobands as fabricated on a SiO2 surface by electron-beam lithography, thereby yielding well defined dimensions of 100 or 500 nm in width, 47 nm in height, and 50 μm in length. A 100 nm-wide nanoband can be detected by SECM imaging with ∼2 μm-diameter tips although the tip feedback current is compromised by finite electron-transfer kinetics for Ru(NH3)63+ at the nanoband surface.
PMCID: PMC2765406  PMID: 20160938
scanning electrochemical microscopy; feedback mode; one-dimensional nanostructure; gold nanoband; electron-beam lithography; finite element simulation

Results 1-25 (970686)