PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (931042)

Clipboard (0)
None

Related Articles

1.  Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery 
The Febs Journal  2008;275(11):2779-2794.
4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-d-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP. In addition, 4-fluoro-3,5-dihydroxy-4-methylpent-1-enylphosphonic acid (compound 1) was designed to mimic a fragment of the substrate, a synthetic route to 1 was elucidated and the complex structure determined. Surprisingly, this ligand occupies the binding site for the ATP α-phosphate not the binding site for the methyl-d-erythritol moiety of CDPME. Gel filtration and analytical ultracentrifugation indicate that AaIspE is a monomer in solution. The enzyme displays the characteristic α/β galacto-homoserine-mevalonate-phosphomevalonate kinase fold, with the catalytic centre positioned in a deep cleft between the ATP- and CDPME-binding domains. Comparisons indicate a high degree of sequence conservation on the IspE active site across bacterial species, similarities in structure, specificity of substrate recognition and mechanism. The biochemical characterization, attainment of well-ordered and reproducible crystals and the models resulting from the analyses provide reagents and templates to support the structure-based design of broad-spectrum antimicrobial agents.
doi:10.1111/j.1742-4658.2008.06418.x
PMCID: PMC2655357  PMID: 18422643
enzyme–ligand complex; GHMP kinase; isoprenoid biosynthesis; molecular recognition; non-mevalonate pathway
2.  The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery 
Background
The prevalence of tuberculosis, the prolonged and expensive treatment that this disease requires and an increase in drug resistance indicate an urgent need for new treatments. The 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid precursor biosynthesis is an attractive chemotherapeutic target because it occurs in many pathogens, including Mycobacterium tuberculosis, and is absent from humans. To underpin future drug development it is important to assess which enzymes in this biosynthetic pathway are essential in the actual pathogens and to characterize them.
Results
The fifth enzyme of this pathway, encoded by ispF, is 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF). A two-step recombination strategy was used to construct ispF deletion mutants in M. tuberculosis but only wild-type double crossover strains were isolated. The chromosomal copy could be deleted when a second functional copy was provided on an integrating plasmid, demonstrating that ispF is an essential gene under the conditions tested thereby confirming its potential as a drug target. We attempted structure determination of the M. tuberculosis enzyme (MtIspF), but failed to obtain crystals. We instead analyzed the orthologue M. smegmatis IspF (MsIspF), sharing 73% amino acid sequence identity, at 2.2 Å resolution. The high level of sequence conservation is particularly pronounced in and around the active site. MsIspF is a trimer with a hydrophobic cavity at its center that contains density consistent with diphosphate-containing isoprenoids. The active site, created by two subunits, comprises a rigid CDP-Zn2+ binding pocket with a flexible loop to position the 2C-methyl-D-erythritol moiety of substrate. Sequence-structure comparisons indicate that the active site and interactions with ligands are highly conserved.
Conclusion
Our study genetically validates MtIspF as a therapeutic target and provides a model system for structure-based ligand design.
doi:10.1186/1472-6807-7-68
PMCID: PMC2151065  PMID: 17956607
3.  A triclinic crystal form of Escherichia coli 4-diphosphocytidyl-2C-methyl-d-erythritol kinase and reassessment of the quaternary structure 
The structure of a triclinic crystal form of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase has been determined. Comparisons with a previously reported monoclinic crystal form raise questions about our knowledge of the quaternary structure of this enzyme.
4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE; EC 2.7.1.148) contributes to the 1-deoxy-d-xylulose 5-phosphate or mevalonate-independent biosynthetic pathway that produces the isomers isopentenyl diphosphate and dimethylallyl diphosphate. These five-carbon compounds are the fundamental building blocks for the biosynthesis of isoprenoids. The mevalonate-independent pathway does not occur in humans, but is present and has been shown to be essential in many dangerous pathogens, i.e. Plasmodium species, which cause malaria, and Gram-negative bacteria. Thus, the enzymes involved in this pathway have attracted attention as potential drug targets. IspE produces 4-­diphosphos­phocytidyl-2C-methyl-d-erythritol 2-phosphate by ATP-dependent phosphorylation of 4-diphosphocytidyl-2C-methyl-d-erythritol. A triclinic crystal structure of the Escherichia coli IspE–ADP complex with two molecules in the asymmetric unit was determined at 2 Å resolution and compared with a monoclinic crystal form of a ternary complex of E. coli IspE also with two molecules in the asymmetric unit. The molecular packing is different in the two forms. In the asymmetric unit of the triclinic crystal form the substrate-binding sites of IspE are occluded by structural elements of the partner, suggesting that the ‘triclinic dimer’ is an artefact of the crystal lattice. The surface area of interaction in the triclinic form is almost double that observed in the monoclinic form, implying that the dimeric assembly in the monoclinic form may also be an artifact of crystallization.
doi:10.1107/S1744309109054591
PMCID: PMC2833027  PMID: 20208151
mevalonate-independent pathway; isoprenoid biosynthesis; kinases
4.  Identification of Novel Small Molecule Inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria 
Bioorganic & medicinal chemistry  2011;19(19):5886-5895.
The biosyntheses of isoprenoids is essential for the survival in all living organisms, and requires one of the two biochemical pathways: (a) Mevalonate (MVA) Pathway or (b) Methylerythritol Phosphate (MEP) Pathway. The latter pathway, which is used by all Gram-negative bacteria, some Gram-positive bacteria and a few apicomplexan protozoa, provides an attractive target for the development of new antimicrobials because of its absence in humans. In this report, we describe two different approaches that we used to identify novel small molecule inhibitors of Escherichia coli and Yersinia pestis 4-diphosphocytidyl-2-C-methyl D-erythritol (CDP-ME) kinases, key enzymes of the MEP pathway encoded by the E. coli ispE and Y. pestis ipk genes, respectively. In the first approach, we explored existing inhibitors of the GHMP kinases while in the second approach; we performed computational high-throughput screening of compound libraries by targeting the CDP-ME binding site of the two bacterial enzymes. From the first approach, we identified two compounds with 6-(benzylthio)-2-(2-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazine-5-carbonitrile and (Z)-3-methyl-4-((5-phenylfuran-2-yl)methylene)isoxazol-5(4H)-one scaffolds which inhibited Escherichia coli CDP-ME kinase in vitro. We then performed substructure search and docking experiments based on these two scaffolds and identified twenty three analogs for structure-activity relationship (SAR) studies. Three new compounds from the isoxazol-5(4H)-one series have shown inhibitory activities against E. coli and Y. pestis CDP-ME kinases with the IC50 values ranging from 7μM to 13μM. The second approach by computational high-throughput screening (HTS) of two million drug-like compounds yielded two compounds with benzenesulfonamide and acetamide moieties which, at a concentration of 20μM, inhibited 80% and 65%, respectively, of control CDP-ME kinase activity.
doi:10.1016/j.bmc.2011.08.012
PMCID: PMC3188437  PMID: 21903402
5.  Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF, a potential drug target 
Chemistry & biology  2010;17(2):117-122.
SUMMARY
Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Since there is no ortholog of IspF in human cells IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening.
doi:10.1016/j.chembiol.2010.01.013
PMCID: PMC2837070  PMID: 20189102
6.  Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens 
Chemistry & biology  2009;16(12):1230-1239.
Summary
Many bacterial pathogens utilize the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesizing isoprenoid precursors, a pathway that is vital for bacterial survival and absent from human cells, providing a potential source of drug targets. However, the characterization of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase (IspE) has been hindered due to a lack of enantiopure CDP-ME and difficulty in obtaining pure IspE. Here, enantiopure CDP-ME was chemically synthesized and recombinant IspE from bacterial pathogens were purified and characterized. Although gene disruption was not possible in Mycobacterium tuberculosis, IspE is essential in Mycobacterium smegmatis. The biochemical and kinetic characteristics of IspE provide the basis for development of a high throughput screen and structural characterization.
doi:10.1016/j.chembiol.2009.10.014
PMCID: PMC4020808  PMID: 20064433
7.  Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment 
Background
2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF) catalyzes the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate to 2C-methyl-D-erythritol-2,4-cyclodiphosphate and cytidine monophosphate in production of isoprenoid-precursors via the methylerythritol phosphate biosynthetic pathway. IspF is found in the protozoan Plasmodium falciparum, a parasite that causes cerebral malaria, as well as in many Gram-negative bacteria such as Burkholderia cenocepacia. IspF represents a potential target for development of broad-spectrum antimicrobial drugs since it is proven or inferred as essential in these pathogens and absent from mammals. Structural studies of IspF from these two important yet distinct pathogens, and comparisons with orthologues have been carried out to generate reagents, to support and inform a structure-based approach to early stage drug discovery.
Results
Efficient recombinant protein production and crystallization protocols were developed, and high-resolution crystal structures of IspF from P. falciparum (Emphasis/Emphasis>IspF) and B. cenocepacia (BcIspF) in complex with cytidine nucleotides determined. Comparisons with orthologues, indicate a high degree of order and conservation in parts of the active site where Zn2+ is bound and where recognition of the cytidine moiety of substrate occurs. However, conformational flexibility is noted in that area of the active site responsible for binding the methylerythritol component of substrate. Unexpectedly, one structure of BcIspF revealed two molecules of cytidine monophosphate in the active site, and another identified citrate coordinating to the catalytic Zn2+. In both cases interactions with ligands appear to help order a flexible loop at one side of the active site. Difficulties were encountered when attempting to derive complex structures with other ligands.
Conclusions
High-resolution crystal structures of IspF from two important human pathogens have been obtained and compared to orthologues. The studies reveal new data on ligand binding, with citrate coordinating to the active site Zn2+ and when present in high concentrations cytidine monophosphate displays two binding modes in the active site. Ligand binding appears to order a part of the active site involved in substrate recognition. The high degree of structural conservation in and around the IspF active site suggests that any structural model might be suitable to support a program of structure-based drug discovery.
doi:10.1186/1472-6807-14-1
PMCID: PMC3927217  PMID: 24410837
Antimicrobial drug target; Isoprenoid biosynthesis; X-ray crystallography; Zn2+-dependent enzyme
8.  A Structure-Based Approach to Ligand Discovery for 2C-Methyl-d-erythritol-2,4-cyclodiphosphate Synthase: A Target for Antimicrobial Therapy† 
Journal of Medicinal Chemistry  2009;52(8):2531-2542.
The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Escherichia coli IspF (EcIspF) was performed by combining a hierarchical filtering methodology with molecular docking. Docked compounds were inspected and 10 selected for experimental validation. A surface plasmon resonance assay was developed and two weak ligands identified. Crystal structures of EcIspF complexes were determined to support rational ligand development. Cytosine analogues and Zn2+-binding moieties were characterized. One of the putative Zn2+-binding compounds gave the lowest measured KD to date (1.92 ± 0.18 μM). These data provide a framework for the development of IspF inhibitors to generate lead compounds of therapeutic potential against microbial pathogens.
doi:10.1021/jm801475n
PMCID: PMC2669732  PMID: 19320487
9.  Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs 
PLoS Computational Biology  2013;9(12):e1003395.
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.
Author Summary
Drug resistance has recently entered into media conversations through the lens of MRSA (methicillin-resistant Staphylococcus aureus) infections, but conventional therapies are also failing to address resistance in cases of malaria and other bacterial infections, such as tuberculosis. To address these problems, we must develop new antibacterial and antimalarial medications. Our research focuses on understanding the structure and dynamics of IspH, an enzyme whose function is necessary for the survival of most bacteria and malaria-causing protozoans. Using computer simulations, we track how the structure of IspH changes in the presence and absence of its natural substrate. By inspecting the pockets that form in the normal motions of IspH, we propose a couple new routes by which new molecules may be developed to disrupt the function of IspH. It is our hope that these structural studies may be precursors to the development of novel therapies that may add to our current arsenal against bacterial and malarial infections.
doi:10.1371/journal.pcbi.1003395
PMCID: PMC3868525  PMID: 24367248
10.  Chemoenzymatic synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol: A substrate for IspE 
Tetrahedron letters  2008;49(29-30):4461-4463.
Enantiomerically pure 2-C-methyl-D-erythritol 4-phosphate 1 (MEP) is synthesized from 1,2-O-isopropylidene-α-D-xylofuranose via facile benzylation in good yield. Subsequently, 1 is used for enzymatic synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2 (CDP-ME) using 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD). The chemoenzymatically synthesized 2 can be used as substrate for assay of IspE and for high throughput screening to identify IspE inhibitors.
doi:10.1016/j.tetlet.2008.05.074
PMCID: PMC2832204  PMID: 19088853
11.  1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (IspC) from Mycobacterium tuberculosis: towards Understanding Mycobacterial Resistance to Fosmidomycin 
Journal of Bacteriology  2005;187(24):8395-8402.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of organisms and is active against most gram-negative bacteria but not gram positives, including Mycobacterium tuberculosis, even though the mevalonate-independent pathway is the sole isopentenyl diphosphate biosynthetic pathway in this organism. Therefore, the enzymatic properties of recombinant IspC from M. tuberculosis were characterized. Rv2870c from M. tuberculosis converts 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol 4-phosphate in the presence of NADPH. The enzymatic activity is dependent on the presence of Mg2+ ions and exhibits optimal activity between pH 7.5 and 7.9; the Km for 1-deoxyxylulose 5-phosphate was calculated to be 47.1 μM, and the Km for NADPH was 29.7 μM. The specificity constant of Rv2780c in the forward direction is 1.5 × 106 M−1 min−1, and the reaction is inhibited by fosmidomycin, with a 50% inhibitory concentration of 310 nM. In addition, Rv2870c complements an inactivated chromosomal copy of IspC in Salmonella enterica, and the complemented strain is sensitive to fosmidomycin. Thus, M. tuberculosis resistance to fosmidomycin is not due to intrinsic properties of Rv2870c, and the enzyme appears to be a valid drug target in this pathogen.
doi:10.1128/JB.187.24.8395-8402.2005
PMCID: PMC1316992  PMID: 16321944
12.  Absence of Substrate Channeling between Active Sites in the Agrobacterium tumefaciens IspDF and IspE Enzymes of the Methyl Erythritol Phosphate Pathway† 
Biochemistry  2006;45(11):3548-3553.
The conversion of 2C-methyl-d-erythritol 4-phosphate (MEP) to 2C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE (D152A) mutant in presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site in the IspF module of IspDF.
doi:10.1021/bi0520075
PMCID: PMC2516919  PMID: 16533036
bifunctional; IspDF; IspE; non-channeling
13.  A Closer Look at the Spectroscopic Properties of Possible Reaction Intermediates in WT and Mutant (E)-4-hydroxy-3-methyl-but-2-enyl Diphosphate Reductase (IspH/LytB)† 
Biochemistry  2012;51(24):4835-4849.
(E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) into the two products isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is not only the direct electron source for the reaction but that a reaction intermediate is bound directly to the cluster. This active form, has been trapped in a state, dubbed FeSA, that was detected in EPR spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH protein have been prepared and studied, His42, His124 and Glu126 (Aquifex aeolicus numbering), with particular attention to the effects on the cluster properties and possible reaction intermediates. None of the mutants affected the properties of the [4Fe-4S]+ cluster significantly, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing the His42 led to an increased Km value and much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in lower catalytic efficiency. In this case, however, enzyme showed the loss of the [4Fe-4S]+ EPR signal upon addition of HMBPP without the subsequent formation of the FeSA signal. Instead, a radical-type signal was observed in some of the samples indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound-intermediate complex FeSA. Replacing the Glu126 also resulted in lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. 31P- and 2H-ENDOR measurements on the FeSA species incubated with regular and 2H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in close proximity of the active-site cluster with the C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggest that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.
doi:10.1021/bi3001215
PMCID: PMC3426640  PMID: 22646150
(E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate reductase; IspH; EPR; ENDOR; reaction intermediate
14.  Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics 
PLoS ONE  2013;8(6):e66104.
The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.
doi:10.1371/journal.pone.0066104
PMCID: PMC3686787  PMID: 23840410
15.  Monoclonal Antibodies Recognizing the Surface Autolysin IspC of Listeria monocytogenes Serotype 4b: Epitope Localization, Kinetic Characterization, and Cross-Reaction Studies 
PLoS ONE  2013;8(2):e55098.
Listeria monocytogenes serotype 4b is responsible for a high percentage of fatal cases of food-borne infection. In a previous study, we created 15 monoclonal antibodies (MAbs) against a ∼77 kDa antigen that is associated with the cell surface of live L. monocytogenes serotype 4b cells. Here we report an extensive characterization of these MAbs to further their development as diagnostic reagents. The ∼77 kDa target antigen was identified by mass spectrometry and N-terminal sequencing to be IspC, a novel surface associated autolysin. Epitope localization experiments revealed that each of the 15 MAbs recognized the C-terminal cell-wall binding domain of IspC. The presence of IspC was shown to be highly conserved within L. monocytogenes serotype 4b, as evidenced by a strong reaction between anti-IspC MAbs and all 4b isolates. To determine the range of cross-reactivity with other L. monocytogenes serotypes ELISA was used to test each MAb against multiple isolates from each of the L. monocytogenes serotypes. Of the 15 MAbs, five: M2774, M2775, M2780, M2790 and M2797, showed specificity for L. monocytogenes serotype 4b and only cross reacted with serotype 4ab isolates. The kinetics of the interaction between each of the MAbs and IspC was measured using surface plasmon resonance. The MAbs M2773, M2792, M2775, M2797 and M2781 each had very low dissociation constants (4.5 × 10−9 to 1.2 × 10−8 M). While several of these antibodies have properties which could be useful in diagnostic tests, the combined high fidelity and affinity of M2775 for the IspC protein and serotype 4b isolates, makes it a particularly promising candidate for use in the development of a specific L. monocytogenes serotype 4b diagnostic test.
doi:10.1371/journal.pone.0055098
PMCID: PMC3563664  PMID: 23390515
16.  Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation 
Background
We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1) and uterus (ISP1 and ISP2). These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers.
Results
Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo.
Conclusion
On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.
doi:10.1186/1471-213X-6-61
PMCID: PMC1713233  PMID: 17156484
17.  2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity 
ACS chemical biology  2012;7(10):1702-1710.
There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites and isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP) and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2Cmethyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme.
doi:10.1021/cb300243w
PMCID: PMC3477264  PMID: 22839733
cyclodiphosphate synthase; IspF; methylerythritol phosphate; MEP pathway regulation
18.  Discovery of acetylene hydratase activity of the iron–sulphur protein IspH 
Nature communications  2012;3:1042.
The final step of the methylerythritol phosphate isoprenoid biosynthesis pathway is catalysed by the iron–sulphur enzyme IspH, producing the universal precursors of terpenes: isopentenyl diphosphate and dimethylallyl diphosphate. Here we report an unforeseen reaction discovered during the investigation of the interaction of IspH with acetylene inhibitors by X-ray crystallography, Mößbauer, and nuclear magnetic resonance spectroscopy. In addition to its role as a 2H+/2e− reductase, IspH can hydrate acetylenes to aldehydes and ketones via anti-Markovnikov/Markovnikov addition. The reactions only occur with the oxidised protein and proceed via η1-O-enolate intermediates. One of these is characterized crystallographically and contains a C4 ligand oxygen bound to the unique, fourth iron in the 4Fe-4S cluster: this intermediate subsequently hydrolyzes to produce an aldehyde product. This unexpected side to IspH reactivity is of interest in the context of the mechanism of action of other acetylene hydratases, as well as in the design of antiinfectives targeting IspH.
doi:10.1038/ncomms2052
PMCID: PMC3745992  PMID: 22948824
19.  Cytidine derivatives as IspF inhibitors of Burkolderia pseudomallei 
Bioorganic & medicinal chemistry letters  2013;23(24):10.1016/j.bmcl.2013.09.101.
Published biological data suggest that the methyl erythritol phosphate (MEP) pathway, a non-mevalonate isoprenoid biosynthetic pathway, is essential for certain bacteria and other infectious disease organisms. One highly conserved enzyme in the MEP pathway is 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF). Fragment-bound complexes of IspF from Burkholderia pseudomallei were used to design and synthesize a series of molecules linking the cytidine moiety to different zinc pocket fragment binders. Testing by surface plasmon resonance (SPR) found one molecule in the series to possess binding affinity equal to that of cytidine diphosphate, despite lacking any metal-coordinating phosphate groups. Close inspection of the SPR data suggest different binding stoichiometries between IspF and test compounds. Crystallographic analysis shows important variations between the binding mode of one synthesized compound and the pose of the bound fragment from which it was designed. The binding modes of these molecules add to our structural knowledge base for IspF and suggest future refinements in this compound series.
doi:10.1016/j.bmcl.2013.09.101
PMCID: PMC3874807  PMID: 24157367
Fragment screening; MEP pathway; IspF; Non-mevalonate; Anti-infective; SPR
20.  Implantation Serine Proteinase 1 Exhibits Mixed Substrate Specificity that Silences Signaling via Proteinase-Activated Receptors 
PLoS ONE  2011;6(11):e27888.
Implantation S1 family serine proteinases (ISPs) are tryptases involved in embryo hatching and uterine implantation in the mouse. The two different ISP proteins (ISP1 and ISP2) have been detected in both pre- and post-implantation embryo tissue. To date, native ISP obtained from uterus and blastocyst tissues has been isolated only as an active hetero-dimer that exhibits trypsin-like substrate specificity. We hypothesised that in isolation, ISP1 might have a unique substrate specificity that could relate to its role when expressed alone in individual tissues. Thus, we isolated recombinant ISP1 expressed in Pichia pastoris and evaluated its substrate specificity. Using several chromogenic substrates and serine proteinase inhibitors, we demonstrate that ISP1 exhibits trypsin-like substrate specificity, having a preference for lysine over arginine at the P1 position. Phage display peptide mimetics revealed an expanded but mixed substrate specificity of ISP1, including chymotryptic and elastase activity. Based upon targets observed using phage display, we hypothesised that ISP1 might signal to cells by cleaving and activating proteinase-activated receptors (PARs) and therefore assessed PARs 1, 2 and 4 as potential ISP1 targets. We observed that ISP1 silenced enzyme-triggered PAR signaling by receptor-disarming. This PAR-disarming action of ISP1 may be important for embryo development and implantation.
doi:10.1371/journal.pone.0027888
PMCID: PMC3223204  PMID: 22132161
21.  Inhibition of IspH, a [4Fe-4S]2+ enzyme involved in the biosynthesis of isoprenoids via the MEP pathway 
The MEP pathway, which is absent in animals but present in most pathogenic bacteria, in the parasite responsible for malaria and in plant plastids, is a target for the development of antimicrobial drugs. IspH, an oxygen-sensitive [4Fe-4S] enzyme, catalyzes the last step of this pathway and converts (E)-4-hydroxy-2-methylbut-2-enyl 1-diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A crucial step in the mechanism of this enzyme is the binding of the C4 hydroxyl of HMBPP to the unique fourth iron site in the [4Fe-4S]2+ moiety. Here we report the synthesis and the kinetic investigations of two new extremely potent inhibitors of E. coli IspH where the OH group of HMBPP is replaced by an amino and a thiol group. (E)-4-Mercapto-3-methyl-but-2-en-1-yl diphosphate is a reversible tight-binding inhibitor of IspH with Ki = 20 ± 2 nM. A detailed kinetic analysis revealed that (E)-4-amino-3-methylbut-2-en-1-yl diphosphate is a reversible slow-binding inhibitor of IspH with Ki = 54 ± 19 nM. The slow binding behavior of this inhibitor is best described by a one-step mechanism with the slow step consisting in the formation of the enzyme-inhibitor (EI) complex.
doi:10.1021/ja309557s
PMCID: PMC3644560  PMID: 23316732
22.  Toxoplasma ISP4 is a central IMC sub-compartment protein whose localization depends on palmitoylation but not myristoylation 
Apicomplexan parasites utilize a peripheral membrane system called the inner membrane complex (IMC) to facilitate host cell invasion and parasite replication. We recently identified a novel family of Toxoplasma IMC Sub-compartment Proteins (ISP1/2/3) that localize to sub-domains of the IMC using a targeting mechanism that is dependent on coordinated myristoylation and palmitoylation of a series of residues in the N-terminus of the protein. While the precise functions of the ISPs are unknown, deletion of ISP2 results in replication defects, suggesting that this family of proteins plays a role in daughter cell formation. Here we have characterized a fourth ISP family member (ISP4) and discovered that this protein localizes to the central IMC sub-compartment, similar to ISP2. Like ISP1/3, ISP4 is dispensable for the tachyzoite lytic cycle as the disruption of ISP4 does not produce any gross replication or growth defects. Surprisingly, targeting of ISP4 to the IMC membranes is dependent on residues predicted for palmitoylation but not myristoylation, setting its trafficking apart from the other ISP proteins and demonstrating distinct mechanisms of protein localization to the IMC membranes, even within a family of highly-related proteins.
doi:10.1016/j.molbiopara.2012.05.002
PMCID: PMC3383393  PMID: 22659420
Toxoplasma; Inner Membrane Complex; ISP; palmitoylation; myristoylation; endodyogeny
23.  Isolation of Marine Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Cycloclasticus Strains from the Gulf of Mexico and Comparison of Their PAH Degradation Ability with That of Puget Sound Cycloclasticus Strains 
Applied and Environmental Microbiology  1998;64(12):4703-4710.
Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 102 to 106 cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and phenotypic characteristics, these 23 strains are members of the genus Cycloclasticus. Three representatives were chosen for a complete phylogenetic analysis, which confirmed the close relationship of these isolates to type strain Cycloclasticus pugetii PS-1, which was isolated from Puget Sound. PAH substrate utilization tests which included high-molecular-weight PAHs revealed that these isolates had similar, broad substrate ranges which included naphthalene, substituted naphthalenes, phenanthrene, biphenyl, anthracene, acenaphthene, and fluorene. Degradation of pyrene and fluoranthene occurred only when the strains were incubated with phenanthrene. Two distinct partial PAH dioxygenase iron sulfur protein (ISP) gene sequences were PCR amplified from Puget Sound and Gulf of Mexico Cycloclasticus strains. Phylogenetic analyses of these sequences revealed that one ISP type is related to the bph type of ISP sequences, while the other ISP type is related to the nah type of ISP sequences. The predicted ISP amino acid sequences for the Gulf of Mexico and Puget Sound strains are identical, which supports the hypothesis that these geographically separated isolates are closely related phylogentically. Cycloclasticus species appear to be numerically important and widespread PAH-degrading bacteria in both Puget Sound and the Gulf of Mexico.
PMCID: PMC90912  PMID: 9835552
24.  Ecotin-like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation 
Cellular Microbiology  2012;14(8):1271-1286.
Leishmania ISPs are ecotin-like natural peptide inhibitors of trypsin-family serine peptidases, enzymes that are absent from the Leishmania genome. This led to the proposal that ISPs inhibit host serine peptidases and we have recently shown that ISP2 inhibits neutrophil elastase, thereby enhancing parasite survival in murine macrophages. In this study we show that ISP1 has less serine peptidase inhibitory activity than ISP2, and in promastigotes both are generally located in the cytosol and along the flagellum. However, in haptomonad promastigotes there is a prominent accumulation of ISP1 and ISP2 in the hemidesmosome and for ISP2 on the cell surface. An L. major mutant deficient in all three ISP genes (Δisp1/2/3) was generated and compared with Δisp2/3 mutants to elucidate the physiological role of ISP1. In in vitro cultures, the Δisp1/2/3 mutant contained more haptomonad, nectomonad and leptomonad promastigotes with elongated flagella and reduced motility compared with Δisp2/3 populations, moreover it was characterized by very high levels of release of exosome-like vesicles from the flagellar pocket. These data suggest that ISP1 has a primary role in flagellar homeostasis, disruption of which affects differentiation and flagellar pocket dynamics.
doi:10.1111/j.1462-5822.2012.01798.x
PMCID: PMC3440592  PMID: 22486816
25.  Unveiling the Expression Characteristics of IspC, a Cell Wall-Associated Peptidoglycan Hydrolase in Listeria monocytogenes, during Growth under Stress Conditions 
Applied and Environmental Microbiology  2012;78(22):7833-7840.
Listeria monocytogenes serotype 4b is a food-borne pathogen of public health concern, since it accounts for approximately 40% of human listeriosis cases. We have recently identified IspC, a surface-localized peptidoglycan hydrolase, as the antigen recognized by a number of monoclonal antibodies (MAbs) produced against a serotype 4b strain for diagnostic applications. To determine whether IspC, which is well conserved among various serotype 4b strains, is a useful diagnostic marker in antibody-based methods, we assessed the expression of IspC in L. monocytogenes cultured under normal and stress conditions. A functional promoter directing the transcription of the ispC gene was identified upstream of the ispC open reading frame by constructing a promoterless lacZ gene fusion with the putative ispC promoter region and by 5′ rapid amplification of cDNA ends analysis. Using both the lacZ reporter gene system and immunofluorescent staining with an IspC-specific MAb, we provide evidence that IspC is expressed on the cell surface in all growth conditions tested (temperature, osmotic stress, pH, ethanol, oxidative stress, anaerobic conditions, carbon source, and type of growth media) that allow for cellular division, although the level of ispC gene expression varies. These results demonstrated the usefulness of IspC as an excellent diagnostic marker for the serotype 4b strains and imply that IspC, in conjunction with specific MAbs, can be targeted for detection and isolation of L. monocytogenes serotype 4b strains directly from food, environmental, and clinical samples with minimal or no need for culture enrichment.
doi:10.1128/AEM.02065-12
PMCID: PMC3485955  PMID: 22923393

Results 1-25 (931042)