PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1699205)

Clipboard (0)
None

Related Articles

1.  Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to examine the effectiveness, safety, and cost-effectiveness of noninvasive positive pressure ventilation (NPPV) in the following patient populations: patients with acute respiratory failure (ARF) due to acute exacerbations of chronic obstructive pulmonary disease (COPD); weaning of COPD patients from invasive mechanical ventilation (IMV); and prevention of or treatment of recurrent respiratory failure in COPD patients after extubation from IMV.
Clinical Need and Target Population
Acute Hypercapnic Respiratory Failure
Respiratory failure occurs when the respiratory system cannot oxygenate the blood and/or remove carbon dioxide from the blood. It can be either acute or chronic and is classified as either hypoxemic (type I) or hypercapnic (type II) respiratory failure. Acute hypercapnic respiratory failure frequently occurs in COPD patients experiencing acute exacerbations of COPD, so this is the focus of this evidence-based analysis. Hypercapnic respiratory failure occurs due to a decrease in the drive to breathe, typically due to increased work to breathe in COPD patients.
Technology
There are several treatment options for ARF. Usual medical care (UMC) attempts to facilitate adequate oxygenation and treat the cause of the exacerbation, and typically consists of supplemental oxygen, and a variety of medications such as bronchodilators, corticosteroids, and antibiotics. The failure rate of UMC is high and has been estimated to occur in 10% to 50% of cases.
The alternative is mechanical ventilation, either invasive or noninvasive. Invasive mechanical ventilation involves sedating the patient, creating an artificial airway through endotracheal intubation, and attaching the patient to a ventilator. While this provides airway protection and direct access to drain sputum, it can lead to substantial morbidity, including tracheal injuries and ventilator-associated pneumonia (VAP).
While both positive and negative pressure noninvasive ventilation exists, noninvasive negative pressure ventilation such as the iron lung is no longer in use in Ontario. Noninvasive positive pressure ventilation provides ventilatory support through a facial or nasal mask and reduces inspiratory work. Noninvasive positive pressure ventilation can often be used intermittently for short periods of time to treat respiratory failure, which allows patients to continue to eat, drink, talk, and participate in their own treatment decisions. In addition, patients do not require sedation, airway defence mechanisms and swallowing functions are maintained, trauma to the trachea and larynx are avoided, and the risk for VAP is reduced. Common complications are damage to facial and nasal skin, higher incidence of gastric distension with aspiration risk, sleeping disorders, and conjunctivitis. In addition, NPPV does not allow direct access to the airway to drain secretions and requires patients to cooperate, and due to potential discomfort, compliance and tolerance may be low.
In addition to treating ARF, NPPV can be used to wean patients from IMV through the gradual removal of ventilation support until the patient can breathe spontaneously. Five to 30% of patients have difficultly weaning. Tapering levels of ventilatory support to wean patients from IMV can be achieved using IMV or NPPV. The use of NPPV helps to reduce the risk of VAP by shortening the time the patient is intubated.
Following extubation from IMV, ARF may recur, leading to extubation failure and the need for reintubation, which has been associated with increased risk of nosocomial pneumonia and mortality. To avoid these complications, NPPV has been proposed to help prevent ARF recurrence and/or to treat respiratory failure when it recurs, thereby preventing the need for reintubation.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of NPPV for the treatment of acute hypercapnic respiratory failure due to acute exacerbations of COPD compared with
usual medical care, and
invasive mechanical ventilation?
What is the effectiveness, cost-effectiveness, and safety of NPPV compared with IMV in COPD patients after IMV for the following purposes:
weaning COPD patients from IMV,
preventing ARF in COPD patients after extubation from IMV, and
treating ARF in COPD patients after extubation from IMV?
Research Methods
Literature Search
A literature search was performed on December 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), Wiley Cochrane, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Since there were numerous studies that examined the effectiveness of NPPV for the treatment of ARF due to exacerbations of COPD published before 2004, pre-2004 trials which met the inclusion/exclusion criteria for this evidence-based review were identified by hand-searching reference lists of included studies and systematic reviews.
Inclusion Criteria
English language full-reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies performed with patients with a mix of conditions if results are reported for COPD patients separately;
patient population: (Question 1) patients with acute hypercapnic respiratory failure due to an exacerbation of COPD; (Question 2a) COPD patients being weaned from IMV; (Questions 2b and 2c) COPD patients who have been extubated from IMV.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
studies examining noninvasive negative pressure ventilation
studies comparing modes of ventilation
studies comparing patient-ventilation interfaces
studies examining outcomes not listed below, such as physiologic effects including heart rate, arterial blood gases, and blood pressure
Outcomes of Interest
mortality
intubation rates
length of stay (intensive care unit [ICU] and hospital)
health-related quality of life
breathlessness
duration of mechanical ventilation
weaning failure
complications
NPPV tolerance and compliance
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1, otherwise, the results were summarized descriptively. Dichotomous data were pooled into relative risks using random effects models and continuous data were pooled using weighted mean differences with a random effects model. Analyses using data from RCTs were done using intention-to-treat protocols; P values < 0.05 were considered significant. A priori subgroup analyses were planned for severity of respiratory failure, location of treatment (ICU or hospital ward), and mode of ventilation with additional subgroups as needed based on the literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
NPPV for the Treatment of ARF due to Acute Exacerbations of COPD
NPPV Plus Usual Medical Care Versus Usual Medical Care Alone for First Line Treatment
A total of 1,000 participants were included in 11 RCTs1; the sample size ranged from 23 to 342. The mean age of the participants ranged from approximately 60 to 72 years of age. Based on either the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria or the mean percent predicted forced expiratory volume in 1 second (FEV1), 4 of the studies included people with severe COPD, and there was inadequate information to classify the remaining 7 studies by COPD severity. The severity of the respiratory failure was classified into 4 categories using the study population mean pH level as follows: mild (pH ≥ 7.35), moderate (7.30 ≤ pH < 7.35), severe (7.25 ≤ pH < 7.30), and very severe (pH < 7.25). Based on these categories, 3 studies included patients with a mild respiratory failure, 3 with moderate respiratory failure, 4 with severe respiratory failure, and 1 with very severe respiratory failure.
The studies were conducted either in the ICU (3 of 11 studies) or general or respiratory wards (8 of 11 studies) in hospitals, with patients in the NPPV group receiving bilevel positive airway pressure (BiPAP) ventilatory support, except in 2 studies, which used pressure support ventilation and volume cycled ventilation, respectively. Patients received ventilation through nasal, facial, or oronasal masks. All studies specified a protocol or schedule for NPPV delivery, but this varied substantially across the studies. For example, some studies restricted the amount of ventilation per day (e.g., 6 hours per day) and the number of days it was offered (e.g., maximum of 3 days); whereas, other studies provided patients with ventilation for as long as they could tolerate it and recommended it for much longer periods of time (e.g., 7 to 10 days). These differences are an important source of clinical heterogeneity between the studies. In addition to NPPV, all patients in the NPPV group also received UMC. Usual medical care varied between the studies, but common medications included supplemental oxygen, bronchodilators, corticosteroids, antibiotics, diuretics, and respiratory stimulators.
The individual quality of the studies ranged. Common methodological issues included lack of blinding and allocation concealment, and small sample sizes.
Need for Endotracheal Intubation
Eleven studies reported the need for endotracheal intubation as an outcome. The pooled results showed a significant reduction in the need for endotracheal intubation in the NPPV plus UMC group compared with the UMC alone group (relative risk [RR], 0.38; 95% confidence interval [CI], 0.28−0.50). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Inhospital Mortality
Nine studies reported inhospital mortality as an outcome. The pooled results showed a significant reduction in inhospital mortality in the NPPV plus UMC group compared with the UMC group (RR, 0.53; 95% CI, 0.35−0.81). When subgrouped by severity of respiratory failure, the results remained significant for the moderate and severe respiratory failure groups.
GRADE: moderate
Hospital Length of Stay
Eleven studies reported hospital length of stay (LOS) as an outcome. The pooled results showed a significant decrease in the mean length of stay for the NPPV plus UMC group compared with the UMC alone group (weighted mean difference [WMD], −2.68 days; 95% CI, −4.41 to −0.94 days). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Complications
Five studies reported complications. Common complications in the NPPV plus UMC group included pneumonia, gastrointestinal disorders or bleeds, skin abrasions, eye irritation, gastric insufflation, and sepsis. Similar complications were observed in the UMC group including pneumonia, sepsis, gastrointestinal disorders or bleeds, pneumothorax, and complicated endotracheal intubations. Many of the more serious complications in both groups occurred in those patients who required endotracheal intubation. Three of the studies compared complications in the NPPV plus UMC and UMC groups. While the data could not be pooled, overall, the NPPV plus UMC group experienced fewer complications than the UMC group.
GRADE: low
Tolerance/Compliance
Eight studies reported patient tolerance or compliance with NPPV as an outcome. NPPV intolerance ranged from 5% to 29%. NPPV tolerance was generally higher for patients with more severe respiratory failure. Compliance with the NPPV protocol was reported by 2 studies, which showed compliance decreases over time, even over short periods such as 3 days.
NPPV Versus IMV for the Treatment of Patients Who Failed Usual Medical Care
A total of 205 participants were included in 2 studies; the sample sizes of these studies were 49 and 156. The mean age of the patients was 71 to 73 years of age in 1 study, and the median age was 54 to 58 years of age in the second study. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, patients in 1 study had very severe COPD. The COPD severity could not be classified in the second study. Both studies had study populations with a mean pH less than 7.23, which was classified as very severe respiratory failure in this analysis. One study enrolled patients with ARF due to acute exacerbations of COPD who had failed medical therapy. The patient population was not clearly defined in the second study, and it was not clear whether they had to have failed medical therapy before entry into the study.
Both studies were conducted in the ICU. Patients in the NPPV group received BiPAP ventilatory support through nasal or full facial masks. Patients in the IMV group received pressure support ventilation.
Common methodological issues included small sample size, lack of blinding, and unclear methods of randomization and allocation concealment. Due to the uncertainty about whether both studies included the same patient population and substantial differences in the direction and significance of the results, the results of the studies were not pooled.
Mortality
Both studies reported ICU mortality. Neither study showed a significant difference in ICU mortality between the NPPV and IMV groups, but 1 study showed a higher mortality rate in the NPPV group (21.7% vs. 11.5%) while the other study showed a lower mortality rate in the NPPV group (5.1% vs. 6.4%). One study reported 1-year mortality and showed a nonsignificant reduction in mortality in the NPPV group compared with the IMV group (26.1% vs. 46.1%).
GRADE: low to very low
Intensive Care Unit Length of Stay
Both studies reported LOS in the ICU. The results were inconsistent. One study showed a statistically significant shorter LOS in the NPPV group compared with the IMV group (5 ± 1.35 days vs. 9.29 ± 3 days; P < 0.001); whereas, the other study showed a nonsignificantly longer LOS in the NPPV group compared with the IMV group (22 ± 19 days vs. 21 ± 20 days; P = 0.86).
GRADE: very low
Duration of Mechanical Ventilation
Both studies reported the duration of mechanical ventilation (including both invasive and noninvasive ventilation). The results were inconsistent. One study showed a statistically significant shorter duration of mechanical ventilation in the NPPV group compared with the IMV group (3.92 ± 1.08 days vs. 7.17 ± 2.22 days; P < 0.001); whereas, the other study showed a nonsignificantly longer duration of mechanical ventilation in the NPPV group compared with the IMV group (16 ± 19 days vs. 15 ± 21 days; P = 0.86). GRADE: very low
Complications
Both studies reported ventilator-associated pneumonia and tracheotomies. Both showed a reduction in ventilator-associated pneumonia in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 34.6%, P = 0.07; and 6.4% vs. 37.2%, P < 0.001, respectively). Similarly, both studies showed a reduction in tracheotomies in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 23.1%, P = 0.29; and 6.4% vs. 34.6%; P < 0.001).
GRADE: very low
Other Outcomes
One of the studies followed patients for 12 months. At the end of follow-up, patients in the NPPV group had a significantly lower rate of needing de novo oxygen supplementation at home. In addition, the IMV group experienced significant increases in functional limitations due to COPD, while no increase was seen in the NPPV group. Finally, no significant differences were observed for hospital readmissions, ICU readmissions, and patients with an open tracheotomy, between the NPPV and IMV groups.
NPPV for Weaning COPD Patients From IMV
A total of 80 participants were included in the 2 RCTs; the sample sizes of the studies were 30 and 50 patients. The mean age of the participants ranged from 58 to 69 years of age. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, both studies included patients with very severe COPD. Both studies also included patients with very severe respiratory failure (mean pH of the study populations was less than 7.23). Chronic obstructive pulmonary disease patients receiving IMV were enrolled in the study if they failed a T-piece weaning trial (spontaneous breathing test), so they could not be directly extubated from IMV.
Both studies were conducted in the ICU. Patients in the NPPV group received weaning using either BiPAP or pressure support ventilation NPPV through a face mask, and patients in the IMV weaning group received pressure support ventilation. In both cases, weaning was achieved by tapering the ventilation level.
The individual quality of the studies ranged. Common methodological problems included unclear randomization methods and allocation concealment, lack of blinding, and small sample size.
Mortality
Both studies reported mortality as an outcome. The pooled results showed a significant reduction in ICU mortality in the NPPV group compared with the IMV group (RR, 0.47; 95% CI, 0.23−0.97; P = 0.04).
GRADE: moderate
Intensive Care Unit Length of Stay
Both studies reported ICU LOS as an outcome. The pooled results showed a nonsignificant reduction in ICU LOS in the NPPV group compared with the IMV group (WMD, −5.21 days; 95% CI, −11.60 to 1.18 days).
GRADE: low
Duration of Mechanical Ventilation
Both studies reported duration of mechanical ventilation (including both invasive and noninvasive ventilation) as an outcome. The pooled results showed a nonsignificant reduction in duration of mechanical ventilation (WMD, −3.55 days; 95% CI, −8.55 to 1.44 days).
GRADE: low
Nosocomial Pneumonia
Both studies reported nosocominal pneumonia as an outcome. The pooled results showed a significant reduction in nosocomial pneumonia in the NPPV group compared with the IMV group (RR, 0.14; 95% CI, 0.03−0.71; P = 0.02).
GRADE: moderate
Weaning Failure
One study reported a significant reduction in weaning failure in the NPPV group compared with the IMV group, but the results were not reported in the publication. In this study, 1 of 25 patients in the NPPV group and 2 of 25 patients in the IMV group could not be weaned after 60 days in the ICU.
NPPV After Extubation of COPD Patients From IMV
The literature was reviewed to identify studies examining the effectiveness of NPPV compared with UMC in preventing recurrence of ARF after extubation from IMV or treating acute ARF which has recurred after extubation from IMV. No studies that included only COPD patients or reported results for COPD patients separately were identified for the prevention of ARF postextubation.
One study was identified for the treatment of ARF in COPD patients that recurred within 48 hours of extubation from IMV. This study included 221 patients, of whom 23 had COPD. A post hoc subgroup analysis was conducted examining the rate of reintubation in the COPD patients only. A nonsignificant reduction in the rate of reintubation was observed in the NPPV group compared with the UMC group (7 of 14 patients vs. 6 of 9 patients, P = 0.67). GRADE: low
Conclusions
NPPV Plus UMC Versus UMC Alone for First Line Treatment of ARF due to Acute Exacerbations of COPD
Moderate quality of evidence showed that compared with UMC, NPPV plus UMC significantly reduced the need for endotracheal intubation, inhospital mortality, and the mean length of hospital stay.
Low quality of evidence showed a lower rate of complications in the NPPV plus UMC group compared with the UMC group.
NPPV Versus IMV for the Treatment of ARF in Patients Who Have Failed UMC
Due to inconsistent and low to very low quality of evidence, there was insufficient evidence to draw conclusions on the comparison of NPPV versus IMV for patients who failed UMC.
NPPV for Weaning COPD Patients From IMV
Moderate quality of evidence showed that weaning COPD patients from IMV using NPPV results in significant reductions in mortality, nosocomial pneumonia, and weaning failure compared with weaning with IMV.
Low quality of evidence showed a nonsignificant reduction in the mean LOS and mean duration of mechanical ventilation in the NPPV group compared with the IMV group.
NPPV for the Treatment of ARF in COPD Patients After Extubation From IMV
Low quality of evidence showed a nonsignificant reduction in the rate of reintubation in the NPPV group compared with the UMC group; however, there was inadequate evidence to draw conclusions on the effectiveness of NPPV for the treatment of ARF in COPD patients after extubation from IMV
PMCID: PMC3384377  PMID: 23074436
2.  Alteration of spontaneous brain activity in COPD patients 
Background and objective
Airflow limitation in chronic obstructive pulmonary disease (COPD) results in a decrease in oxygen transport to the brain. The aim of the present study was to explore the alteration of spontaneous brain activity induced by hypoxia in patients with COPD.
Patients and methods
Twenty-five stable patients with COPD and 25 matching healthy volunteers were investigated. Amplitude of low-frequency fluctuation (ALFF) of blood oxygenation level-dependent signal at resting state in the brain was analyzed using functional magnetic resonance imaging.
Results
Whole-brain analysis using functional magnetic resonance imaging revealed significant decreases in ALFF in the bilateral posterior cingulate gyri and right lingual gyrus and an increase in ALFF in the left postcentral gyrus of patients with COPD. After controlling for SaO2, patients with COPD only showed an increase in ALFF in the left postcentral gyrus. Region of interest analysis showed a decrease in ALFF in the left precentral gyrus and an increase in ALFF in the left caudate nucleus of patients with COPD. In all subjects, ALFF in the bilateral posterior cingulate gyri and right lingual gyrus showed positive correlations with visual reproduction.
Conclusion
We demonstrated abnormal spontaneous brain activity of patients with COPD, which may have a pathophysiologic meaning.
doi:10.2147/COPD.S110089
PMCID: PMC4968669  PMID: 27555761
chronic obstructive pulmonary disease; hypoxia; low-frequency fluctuation; neuronal activity; resting-state fMRI
3.  Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome 
PLoS ONE  2015;10(8):e0135021.
Background
Mal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent sensory perception abnormality is not well understood.
Methods
We investigated grey matter volume differences underlying persistent MdDS by performing voxel-based morphometry on whole brain and pre-specified ROIs in 28 individuals with MdDS and comparing them to 18 age, sex, and handedness matched controls.
Results
MdDS participants exhibited greater grey matter volume in the left inferior parietal lobule, right inferior occipital gyrus (area V3v), right temporal pole, bilateral cerebellar hemispheric lobules VIII/IX and left lobule VIIa/VIIb. Grey matter volumes were lower in bilateral inferior frontal, orbitofrontal, pregenual anterior cingulate cortex (pgACC) and left superior medial gyri (t = 3.0, p<0.005uncorr). In ROI analyses, there were no volume differences in the middle occipital gyrus (region of V5/MT) or parietal operculum 2 (region of the parietoinsular vestibular cortex). Illness duration was positively related to grey matter volume in bilateral inferior frontal gyrus/anterior insula (IFG/AI), right posterior insula, superior parietal lobule, left middle occipital gyrus (V5/MT), bilateral postcentral gyrus, anterior cerebellum, and left cerebellar hemisphere and vermian lobule IX. In contrast, illness duration was negatively related to volume in pgACC, posterior middle cingulate gyrus (MCC), left middle frontal gyrus (dorsolateral prefrontal cortex-DLPFC), and right cerebellar hemispheric lobule VIIIb (t = 3.0, p<0.005uncorr). The most significant differences were decreased volume in the pgACC and increased volume in the left IFG/AI with longer illness duration (qFDRcorr <0.05). Concurrent medication use did not correlate with these findings or have a relationship with duration of illness. MdDS participants showed positive correlations between grey matter volume in pgACC and bilateral cerebellar lobules VIII/IX, which was not seen in controls.
Conclusions
Individuals with MdDS show brain volume differences from healthy controls as well as duration of illness dependent volume changes in (a) visual-vestibular processing areas (IPL, SPL, V3, V5/MT), (b) default mode network structures (cerebellar IX, IPL, ACC), (c) salience network structures (ACC and IFG/AI) (d) somatosensory network structures (postcentral gyrus, MCC, anterior cerebellum, cerebellar lobule VIII), and (e) a structure within the central executive network (DLPFC). The identification of these associations may enhance future investigations into how exposure to oscillating environments can modulate brain function and affect motion perception as well cognitive and affective control.
doi:10.1371/journal.pone.0135021
PMCID: PMC4529307  PMID: 26252893
4.  Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients with Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to compare hospital-at-home care with inpatient hospital care for patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) who present to the emergency department (ED).
Clinical Need: Condition and Target Population
Acute Exacerbations of Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease is a disease state characterized by airflow limitation that is not fully reversible. This airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The natural history of COPD involves periods of acute-onset worsening of symptoms, particularly increased breathlessness, cough, and/or sputum, that go beyond normal day-to-day variations; these are known as acute exacerbations.
Two-thirds of COPD exacerbations are caused by an infection of the tracheobronchial tree or by air pollution; the cause in the remaining cases is unknown. On average, patients with moderate to severe COPD experience 2 or 3 exacerbations each year.
Exacerbations have an important impact on patients and on the health care system. For the patient, exacerbations result in decreased quality of life, potentially permanent losses of lung function, and an increased risk of mortality. For the health care system, exacerbations of COPD are a leading cause of ED visits and hospitalizations, particularly in winter.
Technology
Hospital-at-home programs offer an alternative for patients who present to the ED with an exacerbation of COPD and require hospital admission for their treatment. Hospital-at-home programs provide patients with visits in their home by medical professionals (typically specialist nurses) who monitor the patients, alter patients’ treatment plans if needed, and in some programs, provide additional care such as pulmonary rehabilitation, patient and caregiver education, and smoking cessation counselling.
There are 2 types of hospital-at-home programs: admission avoidance and early discharge hospital-at-home. In the former, admission avoidance hospital-at-home, after patients are assessed in the ED, they are prescribed the necessary medications and additional care needed (e.g., oxygen therapy) and then sent home where they receive regular visits from a medical professional. In early discharge hospital-at-home, after being assessed in the ED, patients are admitted to the hospital where they receive the initial phase of their treatment. These patients are discharged into a hospital-at-home program before the exacerbation has resolved. In both cases, once the exacerbation has resolved, the patient is discharged from the hospital-at-home program and no longer receives visits in his/her home.
In the models that exist to date, hospital-at-home programs differ from other home care programs because they deal with higher acuity patients who require higher acuity care, and because hospitals retain the medical and legal responsibility for patients. Furthermore, patients requiring home care services may require such services for long periods of time or indefinitely, whereas patients in hospital-at-home programs require and receive the services for a short period of time only.
Hospital-at-home care is not appropriate for all patients with acute exacerbations of COPD. Ineligible patients include: those with mild exacerbations that can be managed without admission to hospital; those who require admission to hospital; and those who cannot be safely treated in a hospital-at-home program either for medical reasons and/or because of a lack of, or poor, social support at home.
The proposed possible benefits of hospital-at-home for treatment of exacerbations of COPD include: decreased utilization of health care resources by avoiding hospital admission and/or reducing length of stay in hospital; decreased costs; increased health-related quality of life for patients and caregivers when treated at home; and reduced risk of hospital-acquired infections in this susceptible patient population.
Ontario Context
No hospital-at-home programs for the treatment of acute exacerbations of COPD were identified in Ontario. Patients requiring acute care for their exacerbations are treated in hospitals.
Research Question
What is the effectiveness, cost-effectiveness, and safety of hospital-at-home care compared with inpatient hospital care of acute exacerbations of COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on August 5, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 1990, to August 5, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
English language full-text reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies including patients with COPD as well as patients with other conditions, if results are reported for COPD patients separately;
studies performed in patients with acute exacerbations of COPD who present to the ED;
studies published between January 1, 1990, and August 5, 2010;
studies comparing hospital-at-home and inpatient hospital care for patients with acute exacerbations of COPD;
studies that include at least 1 of the outcomes of interest (listed below).
Cochrane Collaboration reviews have defined hospital-at-home programs as those that provide patients with active treatment for their acute exacerbation in their home by medical professionals for a limited period of time (in this case, until the resolution of the exacerbation). If a hospital-at-home program had not been available, these patients would have been admitted to hospital for their treatment.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
Outcomes of Interest
Patient/clinical outcomes
mortality
lung function (forced expiratory volume in 1 second)
health-related quality of life
patient or caregiver preference
patient or caregiver satisfaction with care
complications
Health system outcomes
hospital readmissions
length of stay in hospital and hospital-at-home
ED visits
transfer to long-term care
days to readmission
eligibility for hospital-at-home
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1; otherwise, results were summarized descriptively. Data from RCTs were analyzed using intention-to-treat protocols. In addition, a sensitivity analysis was done assigning all missing data/withdrawals to the event. P values less than 0.05 were considered significant. A priori subgroup analyses were planned for the acuity of hospital-at-home program, type of hospital-at-home program (early discharge or admission avoidance), and severity of the patients’ COPD. Additional subgroup analyses were conducted as needed based on the identified literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Fourteen studies met the inclusion criteria and were included in this review: 1 health technology assessment, 5 systematic reviews, and 7 RCTs.
The following conclusions are based on low to very low quality of evidence. The reviewed evidence was based on RCTs that were inadequately powered to observe differences between hospital-at-home and inpatient hospital care for most outcomes, so there is a strong possibility of type II error. Given the low to very low quality of evidence, these conclusions must be considered with caution.
Approximately 21% to 37% of patients with acute exacerbations of COPD who present to the ED may be eligible for hospital-at-home care.
Of the patients who are eligible for care, some may refuse to participate in hospital-at-home care.
Eligibility for hospital-at-home care may be increased depending on the design of the hospital-at-home program, such as the size of the geographical service area for hospital-at-home and the hours of operation for patient assessment and entry into hospital-at-home.
Hospital-at-home care for acute exacerbations of COPD was associated with a nonsignificant reduction in the risk of mortality and hospital readmissions compared with inpatient hospital care during 2- to 6-month follow-up.
Limited, very low quality evidence suggests that hospital readmissions are delayed in patients who received hospital-at-home care compared with those who received inpatient hospital care (mean additional days before readmission comparing hospital-at-home to inpatient hospital care ranged from 4 to 38 days).
There is insufficient evidence to determine whether hospital-at-home care, compared with inpatient hospital care, is associated with improved lung function.
The majority of studies did not find significant differences between hospital-at-home and inpatient hospital care for a variety of health-related quality of life measures at follow-up. However, follow-up may have been too late to observe an impact of hospital-at-home care on quality of life.
A conclusion about the impact of hospital-at-home care on length of stay for the initial exacerbation (defined as days in hospital or days in hospital plus hospital-at-home care for inpatient hospital and hospital-at-home, respectively) could not be determined because of limited and inconsistent evidence.
Patient and caregiver satisfaction with care is high for both hospital-at-home and inpatient hospital care.
PMCID: PMC3384361  PMID: 23074420
5.  Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of multidisciplinary care (MDC) compared with usual care (UC, single health care provider) for the treatment of stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Chronic obstructive pulmonary disease is a progressive disorder with episodes of acute exacerbations associated with significant morbidity and mortality. Cigarette smoking is linked causally to COPD in more than 80% of cases. Chronic obstructive pulmonary disease is among the most common chronic diseases worldwide and has an enormous impact on individuals, families, and societies through reduced quality of life and increased health resource utilization and mortality.
The estimated prevalence of COPD in Ontario in 2007 was 708,743 persons.
Technology
Multidisciplinary care involves professionals from a range of disciplines, working together to deliver comprehensive care that addresses as many of the patient’s health care and psychosocial needs as possible.
Two variables are inherent in the concept of a multidisciplinary team: i) the multidisciplinary components such as an enriched knowledge base and a range of clinical skills and experiences, and ii) the team components, which include but are not limited to, communication and support measures. However, the most effective number of team members and which disciplines should comprise the team for optimal effect is not yet known.
Research Question
What is the effectiveness and cost-effectiveness of MDC compared with UC (single health care provider) for the treatment of stable COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on July 19, 2010 using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 1, 1995 until July 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
health technology assessments, systematic reviews, or randomized controlled trials
studies published between January 1995 and July 2010;
COPD study population
studies comparing MDC (2 or more health care disciplines participating in care) compared with UC (single health care provider)
Exclusion Criteria
grey literature
duplicate publications
non-English language publications
study population less than 18 years of age
Outcomes of Interest
hospital admissions
emergency department (ED) visits
mortality
health-related quality of life
lung function
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six randomized controlled trials were obtained from the literature search. Four of the 6 studies were completed in the United States. The sample size of the 6 studies ranged from 40 to 743 participants, with a mean study sample between 66 and 71 years of age. Only 2 studies characterized the study sample in terms of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria, and in general the description of the study population in the other 4 studies was limited. The mean percent predicted forced expiratory volume in 1 second (% predicted FEV1) among study populations was between 32% and 59%. Using this criterion, 3 studies included persons with severe COPD and 2 with moderate COPD. Information was not available to classify the population in the sixth study.
Four studies had MDC treatment groups which included a physician. All studies except 1 reported a respiratory specialist (i.e., respiratory therapist, specialist nurse, or physician) as part of the multidisciplinary team. The UC group was comprised of a single health care practitioner who may or may not have been a respiratory specialist.
A meta-analysis was completed for 5 of the 7 outcome measures of interest including:
health-related quality of life,
lung function,
all-cause hospitalization,
COPD-specific hospitalization, and
mortality.
There was only 1 study contributing to the outcome of all-cause and COPD-specific ED visits which precluded pooling data for these outcomes. Subgroup analyses were not completed either because heterogeneity was not significant or there were a small number of studies that were meta-analysed for the outcome.
Quality of Life
Three studies reported results of quality of life assessment based on the St. George’s Respiratory Questionnaire (SGRQ). A mean decrease in the SGRQ indicates an improvement in quality of life while a mean increase indicates deterioration in quality of life. In all studies the mean change score from baseline to the end time point in the MDC treatment group showed either an improvement compared with the control group or less deterioration compared with the control group. The mean difference in change scores between MDC and UC groups was statistically significant in all 3 studies. The pooled weighted mean difference in total SGRQ score was −4.05 (95% confidence interval [CI], −6.47 to 1.63; P = 0.001). The GRADE quality of evidence was assessed as low for this outcome.
Lung Function
Two studies reported results of the FEV1 % predicted as a measure of lung function. A negative change from baseline infers deterioration in lung function and a positive change from baseline infers an improvement in lung function. The MDC group showed a statistically significant improvement in lung function up to 12 months compared with the UC group (P = 0.01). However this effect is not maintained at 2-year follow-up (P = 0.24). The pooled weighted mean difference in FEV1 percent predicted was 2.78 (95% CI, −1.82 to −7.37). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
Hospital Admissions
All-Cause
Four studies reported results of all-cause hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 4 studies were pooled to determine a summary estimate. There is a statistically significant 25% relative risk (RR) reduction in all-cause hospitalizations in the MDC group compared with the UC group (P < 0.001). The index of heterogeneity (I2) value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
COPD-Specific Hospitalization
Three studies reported results of COPD-specific hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically significant 33% RR reduction in all-cause hospitalizations in the MDC group compared with the UC group (P = 0.002). The I2 value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
Emergency Department Visits
All-Cause
Two studies reported results of all-cause ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically nonsignificant reduction in all-cause ED visits when data from these 2 studies are pooled (RR, 0.64; 95% CI, 0.31 to −1.33; P = 0.24). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
COPD-Specific
One study reported results of COPD-specific ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically significant 41% reduction in COPD-specific ED visits when the data from these 2 studies are pooled (RR, 0.59; 95% CI, 0.43−0.81; P < 0.001). The GRADE quality of evidence was assessed as moderate for this outcome.
Mortality
Three studies reported the mortality during the study follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically nonsignificant reduction in mortality between treatment groups (RR, 0.81; 95% CI, 0.52−1.27; P = 0.36). The I2 value is 19%, indicating low statistical heterogeneity between studies. All studies had a 12-month follow-up period. The GRADE quality of evidence was assessed as low for this outcome.
Conclusions
Significant effect estimates with moderate quality of evidence were found for all-cause hospitalization, COPD-specific hospitalization, and COPD-specific ED visits (Table ES1). A significant estimate with low quality evidence was found for the outcome of quality of life (Table ES2). All other outcome measures were nonsignificant and supported by low or very low quality of evidence.
Summary of Dichotomous Data
Abbreviations: CI, confidence intervals; COPD, chronic obstructive pulmonary disease; n, number.
Summary of Continuous Data
Abbreviations: CI, confidence intervals; FEV1, forced expiratory volume in 1 second; n, number; SGRQ, St. George’s Respiratory Questionnaire.
PMCID: PMC3384374  PMID: 23074433
6.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
7.  Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy 
Background
A comprehensive characterisation of grey and white matter changes in progressive supranuclear palsy (PSP), the second most common extrapyramidal syndrome after Parkinson disease, is still not available.
Objective
To evaluate grey and white matter changes in mild PSP patients by voxel based morphometry (VBM) and diffusion tensor imaging (DTI), respectively.
Methods
14 mild PSP patients and 14 healthy controls entered the study and underwent a clinical and neuropsychological evaluation according with a standardised assessment. Each subject had a structural magnetic resonance imaging (MRI) study. Processing analysis of MRI data was carried out according to optimised VBM and fractional anisotropy was determined.
Results
Compared with the controls, in PSP patients VBM analysis showed a significant clusters of reduced grey matter in premotor cortex, frontal operculum, anterior insula, hippocampus, and parahippocampal gyrus, bilaterally. With regard to subcortical brain regions, the pulvinar, dorsomedial and anterior nuclei of the thalamus, and superior and inferior culliculum were affected bilaterally. A bilateral decrease in fractional anisotropy in superior longitudinal fasciculus, anterior part of corpus callosum, arcuate fascicolus, posterior thalamic radiations, and internal capsule, probably involving the cortico‐bulbar tracts, was present in PSP patients.
Conclusions
These data provide evidence for both grey and white matter degeneration in PSP from the early disease stage. These structural changes suggest that atrophy of cortical and subcortical structures and neurodegeneration of specific fibre tracts contribute to neurological deficits in PSP.
doi:10.1136/jnnp.2005.075713
PMCID: PMC2077489  PMID: 16306152
progressive supranuclear palsy; magnetic resonance imaging; voxel based morphometry; diffusion tensor imaging
8.  Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of smoking cessation interventions in the management of chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Tobacco smoking is the main risk factor for COPD. It is estimated that 50% of older smokers develop COPD and more than 80% of COPD-associated morbidity is attributed to tobacco smoking. According to the Canadian Community Health Survey, 38.5% of Ontarians who smoke have COPD. In patients with a significant history of smoking, COPD is usually present with symptoms of progressive dyspnea (shortness of breath), cough, and sputum production. Patients with COPD who smoke have a particularly high level of nicotine dependence, and about 30.4% to 43% of patients with moderate to severe COPD continue to smoke. Despite the severe symptoms that COPD patients suffer, the majority of patients with COPD are unable to quit smoking on their own; each year only about 1% of smokers succeed in quitting on their own initiative.
Technology
Smoking cessation is the process of discontinuing the practice of inhaling a smoked substance. Smoking cessation can help to slow or halt the progression of COPD. Smoking cessation programs mainly target tobacco smoking, but may also encompass other substances that can be difficult to stop smoking due to the development of strong physical addictions or psychological dependencies resulting from their habitual use.
Smoking cessation strategies include both pharmacological and nonpharmacological (behavioural or psychosocial) approaches. The basic components of smoking cessation interventions include simple advice, written self-help materials, individual and group behavioural support, telephone quit lines, nicotine replacement therapy (NRT), and antidepressants. As nicotine addiction is a chronic, relapsing condition that usually requires several attempts to overcome, cessation support is often tailored to individual needs, while recognizing that in general, the more intensive the support, the greater the chance of success. Success at quitting smoking decreases in relation to:
a lack of motivation to quit,
a history of smoking more than a pack of cigarettes a day for more than 10 years,
a lack of social support, such as from family and friends, and
the presence of mental health disorders (such as depression).
Research Question
What are the effectiveness and cost-effectiveness of smoking cessation interventions compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on June 24, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations (1950 to June Week 3 2010), EMBASE (1980 to 2010 Week 24), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, and the Centre for Reviews and Dissemination for studies published between 1950 and June 2010. A single reviewer reviewed the abstracts and obtained full-text articles for those studies meeting the eligibility criteria. Reference lists were also examined for any additional relevant studies not identified through the search. Data were extracted using a standardized data abstraction form.
Inclusion Criteria
English-language, full reports from 1950 to week 3 of June, 2010;
either randomized controlled trials (RCTs), systematic reviews and meta-analyses, or non-RCTs with controls;
a proven diagnosis of COPD;
adult patients (≥ 18 years);
a smoking cessation intervention that comprised at least one of the treatment arms;
≥ 6 months’ abstinence as an outcome; and
patients followed for ≥ 6 months.
Exclusion Criteria
case reports
case series
Outcomes of Interest
≥ 6 months’ abstinence
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Nine RCTs were identified from the literature search. The sample sizes ranged from 74 to 5,887 participants. A total of 8,291 participants were included in the nine studies. The mean age of the patients in the studies ranged from 54 to 64 years. The majority of studies used the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD staging criteria to stage the disease in study subjects. Studies included patients with mild COPD (2 studies), mild-moderate COPD (3 studies), moderate–severe COPD (1 study) and severe–very severe COPD (1 study). One study included persons at risk of COPD in addition to those with mild, moderate, or severe COPD, and 1 study did not define the stages of COPD. The individual quality of the studies was high. Smoking cessation interventions varied across studies and included counselling or pharmacotherapy or a combination of both. Two studies were delivered in a hospital setting, whereas the remaining 7 studies were delivered in an outpatient setting. All studies reported a usual care group or a placebo-controlled group (for the drug-only trials). The follow-up periods ranged from 6 months to 5 years. Due to excessive clinical heterogeneity in the interventions, studies were first grouped into categories of similar interventions; statistical pooling was subsequently performed, where appropriate. When possible, pooled estimates using relative risks for abstinence rates with 95% confidence intervals were calculated. The remaining studies were reported separately.
Abstinence Rates
Table ES1 provides a summary of the pooled estimates for abstinence, at longest follow-up, from the trials included in this review. It also shows the respective GRADE qualities of evidence.
Summary of Results*
Abbreviations: CI, confidence interval; NRT, nicotine replacement therapy.
Statistically significant (P < 0.05).
One trial used in this comparison had 2 treatment arms each examining a different antidepressant.
Conclusions
Based on a moderate quality of evidence, compared with usual care, abstinence rates are significantly higher in COPD patients receiving intensive counselling or a combination of intensive counselling and NRT.
Based on limited and moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving NRT compared with placebo.
Based on a moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving the antidepressant bupropion compared to placebo.
PMCID: PMC3384371  PMID: 23074432
9.  Experiences of Living and Dying With COPD 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective of Analysis
The objective of this analysis was to review empirical qualitative research on the experiences of patients with chronic obstructive pulmonary disease (COPD), informal caregivers (“carers”), and health care providers—from the point of diagnosis, through daily living and exacerbation episodes, to the end of life.
Clinical Need and Target Population
Qualitative empirical studies (from social sciences, clinical, and related fields) can offer important information about how patients experience their condition. This exploration of the qualitative literature offers insights into patients’ perspectives on COPD, their needs, and how interventions might affect their experiences. The experiences of caregivers are also explored.
Research Question
What do patients with COPD, their informal caregivers (“carers”), and health care providers experience over the course of COPD?
Research Methods
Literature Search
Search Strategy
Literature searches for studies published from January 1, 2000, to November 2010 were performed on November 29, 2010, using OVID MEDLINE; on November 26, 2010, using ISI Web of Science; and on November 28, 2010, using EBSCO Cumulative Index to Nursing and Allied Health Literature (CINAHL). Titles and abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. One additional report, highly relevant to the synthesis, appeared in early 2011 during the drafting of this analysis and was included post hoc.
Inclusion Criteria
English-language full reports
studies published between January 1, 2000, and November 2010
primary qualitative empirical research (using any descriptive or interpretive qualitative methodology, including the qualitative component of mixed-methods studies) and secondary syntheses of primary qualitative empirical research
studies addressing any aspect of the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers; studies addressing multiple conditions were included if COPD was addressed explicitly
Exclusion Criteria
studies addressing topics other than the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers
studies labelled “qualitative” but not using a qualitative descriptive or interpretive methodology (e.g., case studies, experiments, or observational analysis using qualitative categorical variables)
quantitative research (i.e., using statistical hypothesis testing, using primarily quantitative data or analyses, or expressing results in quantitative or statistical terms)
studies that did not pose an empirical research objective or question, or involve the primary or secondary analysis of empirical data
Outcomes of Interest
qualitative descriptions and interpretations (narrative or theoretical) of personal and social experiences of COPD
Summary of Findings
Experiences at Diagnosis
Patients typically seek initial treatment for an acute episode rather than for chronic early symptoms of COPD.
Many patients initially misunderstand terms such as COPD, chronic obstructive pulmonary disease, or exacerbation.
Patients may not realize that COPD is incurable and fatal; some physicians themselves do not consider early COPD to be a fatal disease.
Smokers may not readily understand or agree with the idea that smoking caused or worsens their COPD. Those who believe there is a causal link may feel regret or shame.
Experiences of Living Day to Day
COPD patients experience alternating good days and bad days. A roller-coaster pattern of ups and downs becomes apparent, and COPD becomes a way of life.
Patients use many means (social, psychological, medical, organizational) to control what they can, and to cope with what they cannot. Economic hardship, comorbidities, language barriers, and low health literacy can make coping more difficult.
Increasing vulnerability and unpredictable setbacks make patients dependent on others for practical assistance, but functional limitations, institutional living or self-consciousness can isolate patients from the people they need.
For smokers, medical advice to quit can conflict with increased desire to smoke as a coping strategy.
Many of the factors that isolate COPD patients from social contact also isolate them from health care.
Experiences of Exacerbations
Patients may not always attribute repeated exacerbations to advancing disease, instead seeing them as temporary setbacks caused by activities, environmental factors, faltering self-management, or infection.
Lack of confidence in community-based services leads some patients to seek hospital admission, but patients also feel vulnerable when hospitalized. They may feel dependent on others for care or traumatized by hospital care routines.
Upon hospital discharge following an exacerbation, patients may face new levels of uncertainty about their illness, prognosis, care providers, and supports.
Experiences of the End of Life
Patients tend to be poorly informed about the long-term prognosis of COPD and what to expect toward the end of life; this lack of understanding impairs quality of life as the disease progresses.
As the end of life approaches, COPD patients face the usual challenges of daily living, but in a context of increasing exacerbations and deepening dependency. Activities and mobility decrease, and life may become confined.
Some clinicians have difficulty identifying the beginning of “the end of life,” given the unpredictable course of COPD. Long-term physician-patient relationships, familiarity and understanding, trust, good communication skills, sensitivity, and secure discussion settings can help facilitate end-of-life discussions.
Divergent meanings and goals of palliative care in COPD lead to confusion about whether such services are the responsibility of home care, primary care, specialty care, or even critical care. Palliative end-of-life care may not be anticipated prior to referral for such care. A palliative care referral can convey the demoralizing message that providers have “given up.”
Experiences of Carers
Carers’ challenges often echo patients’ challenges, and include anxiety, uncertainty about the future, helplessness, powerlessness, depression, difficulties maintaining employment, loss of mobility and freedoms, strained relationships, and growing social isolation.
Carers feel pressured by their many roles, struggling to maintain patience when they feel overwhelmed, and often feeling guilty about not doing enough.
Carers often face their own health problems and may have difficulty sustaining employment.
Synthesis: A Disease Trajectory Reflecting Patient Experiences
The flux of needs in COPD calls for service continuity and flexibility to allow both health care providers and patients to respond to the unpredictable yet increasing demands of the disease over time.
PMCID: PMC3384365  PMID: 23074423
10.  Magnetic resonance imaging correlates of first-episode psychosis in young adult male patients: combined analysis of grey and white matter 
Background
Several patterns of grey and white matter changes have been separately described in young adults with first-episode psychosis. Concomitant investigation of grey and white matter densities in patients with first-episode psychosis without other psychiatric comorbidities that include all relevant imaging markers could provide clues to the neurodevelopmental hypothesis in schizophrenia.
Methods
We recruited patients with first-episode psychosis diagnosed according to the DSM-IV-TR and matched controls. All participants underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis and mean diffusivity voxel-based analysis (VBA) were used for grey matter data. Fractional anisotropy and axial, radial and mean diffusivity were analyzed using tract-based spatial statistics (TBSS) for white matter data.
Results
We included 15 patients and 16 controls. The mean diffusivity VBA showed significantly greater mean diffusivity in the first-episode psychosis than in the control group in the lingual gyrus bilaterally, the occipital fusiform gyrus bilaterally, the right lateral occipital gyrus and the right inferior temporal gyrus. Moreover, the TBSS analysis revealed a lower fractional anisotropy in the first-episode psychosis than in the control group in the genu of the corpus callosum, minor forceps, corticospinal tract, right superior longitudinal fasciculus, left middle cerebellar peduncle, left inferior longitudinal fasciculus and the posterior part of the fronto-occipital fasciculus. This analysis also revealed greater radial diffusivity in the first-episode psychosis than in the control group in the right corticospinal tract, right superior longitudinal fasciculus and left middle cerebellar peduncle.
Limitations
The modest sample size and the absence of women in our series could limit the impact of our results.
Conclusion
Our results highlight the structural vulnerability of grey matter in posterior areas of the brain among young adult male patients with first-episode psychosis. Moreover, the concomitant greater radial diffusivity within several regions already revealed by the fractional anisotropy analysis supports the idea of a late myelination in patients with first-episode psychosis.
doi:10.1503/jpn.110057
PMCID: PMC3447129  PMID: 22748698
11.  Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms 
BMC Neuroscience  2014;15:6.
Background
Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects.
Results
Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus.
Conclusions
Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.
doi:10.1186/1471-2202-15-6
PMCID: PMC3893393  PMID: 24397347
Tic; Tourette syndrome; DTI; Putamen; Thalamus; Cingulate gyrus
12.  Morphometric Brain Abnormalities in Schizophrenia in a Population-Based Sample: Relationship to Duration of Illness 
Schizophrenia Bulletin  2008;36(4):766-777.
Biased recruitment and sample selection may cause variability in neuroimaging studies. Epidemiologically principled population-based magnetic resonance imaging (MRI) studies of schizophrenia are very rare. We gathered structural MRI data on 154 subjects from the Northern Finland 1966 Birth Cohort, aged 33–35 (100 controls, 54 schizophrenia patients). Regional differences in density of gray matter, white matter, and cerebrospinal fluid (CSF) were identified between groups using nonparametric statistical analysis, and the relationship of the regional differences to duration of illness was explored. Gray matter reductions were found bilaterally in the cerebellum, thalamus, basal ganglia, middle frontal gyrus, inferior frontal gyrus, precentral gyrus, insula, superior temporal gyrus, fusiform gyrus, parahippocampal gyrus, cuneus, and lingual gyrus; in the left posterior cingulate, superior frontal gyrus, transverse temporal gyrus, and precuneus; and in the right postcentral gyrus. Gray matter excesses were observed bilaterally in the basal ganglia, anterior cingulate, and medial orbitofrontal cortices. There were white matter deficits in an extensive network including inter- and intrahemispheric tracts bilaterally in the frontal, temporal, parietal, and occipital lobes, subcortical structures, cerebellum, and brain stem. CSF excesses were found bilaterally in the lateral ventricles, third ventricle, interhemispheric, and left Sylvian fissure. We replicated the previous findings of structural brain abnormalities in schizophrenia on a general population level. Gray and white matter deficits were associated with duration of illness suggesting either that developmental brain deficits relate to an earlier age of onset or that brain abnormalities in schizophrenia are progressive in nature.
doi:10.1093/schbul/sbn141
PMCID: PMC2894604  PMID: 19015212
schizophrenia; magnetic resonance imaging; birth cohort; gray matter; white matter; voxel-based morphometry
13.  Pulmonary Rehabilitation for Patients With Chronic Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based review was to determine the effectiveness and cost-effectiveness of pulmonary rehabilitation in the management of chronic obstructive pulmonary disease (COPD).
Technology
Pulmonary rehabilitation refers to a multidisciplinary program of care for patients with chronic respiratory impairment that is individually tailored and designed to optimize physical and social performance and autonomy. Exercise training is the cornerstone of pulmonary rehabilitation programs, though they may also include components such as patient education and psychological support. Pulmonary rehabilitation is recommended as the standard of care in the treatment and rehabilitation of patients with COPD who remain symptomatic despite treatment with bronchodilators.
For the purpose of this review, the Medical Advisory Secretariat focused on pulmonary rehabilitation programs as defined by the Cochrane Collaboration—that is, any inpatient, outpatient, or home-based rehabilitation program lasting at least 4 weeks that includes exercise therapy with or without any form of education and/or psychological support delivered to patients with exercise limitations attributable to COPD.
Research Questions
What is the effectiveness and cost-effectiveness of pulmonary rehabilitation compared with usual care (UC) for patients with stable COPD?
Does early pulmonary rehabilitation (within 1 month of hospital discharge) in patients who had an acute exacerbation of COPD improve outcomes compared with UC (or no rehabilitation)?
Do maintenance or postrehabilitation programs for patients with COPD who have completed a pulmonary rehabilitation program improve outcomes compared with UC?
Research Methods
Literature Search
Search Strategy
For Research Questions 1and 2, a literature search was performed on August 10, 2010 for studies published from January 1, 2004 to July 31, 2010. For Research Question 3, a literature search was performed on February 3, 2011 for studies published from January 1, 2000 to February 3, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
Research questions 1 and 2:
published between January 1, 2004 and July 31, 2010
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing pulmonary rehabilitation with UC (no pulmonary rehabilitation)
duration of pulmonary rehabilitation program ≥ 6 weeks
pulmonary rehabilitation program had to include at minimum exercise training
Research question 3:
published between January 1, 2000 and February 3, 2011
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing a maintenance or postrehabilitation program with UC (standard follow-up)
duration of pulmonary rehabilitation program ≥ 6 weeks
initial pulmonary rehabilitation program had to include at minimum exercise training
Exclusion Criteria
Research questions 1, 2, and 3:
grey literature
duplicate publications
non-English language publications
study population ≤ 18 years of age
studies conducted in a palliative population
studies that did not report primary outcome of interest
Additional exclusion criteria for research question 3:
studies with ≤ 2 sessions/visits per month
Outcomes of Interest
The primary outcomes of interest for the stable COPD population were exercise capacity and health-related quality of life (HRQOL). For the COPD population following an exacerbation, the primary outcomes of interest were hospital readmissions and HRQOL. The primary outcomes of interest for the COPD population undertaking maintenance programs were functional exercise capacity and HRQOL.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Research Question 1: Effect of Pulmonary Rehabilitation on Outcomes in Stable COPD
Seventeen randomized controlled trials met the inclusion criteria and were included in this review.
The following conclusions are based on moderate quality of evidence.
Pulmonary rehabilitation including at least 4 weeks of exercise training leads to clinically and statistically significant improvements in HRQOL in patients with COPD.1
Pulmonary rehabilitation also leads to a clinically and statistically significant improvement in functional exercise capacity2 (weighted mean difference, 54.83 m; 95% confidence interval, 35.63–74.03; P < 0.001).
Research Question 2: Effect of Pulmonary Rehabilitation on Outcomes Following an Acute Exacerbation of COPD
Five randomized controlled trials met the inclusion criteria and are included in this review. The following conclusion is based on moderate quality of evidence.
Pulmonary rehabilitation (within 1 month of hospital discharge) after acute exacerbation significantly reduces hospital readmissions (relative risk, 0.50; 95% confidence interval, 0.33–0.77; P = 0.001) and leads to a statistically and clinically significant improvement in HRQOL.3
Research Question 3: Effect of Pulmonary Rehabilitation Maintenance Programs on COPD Outcomes
Three randomized controlled trials met the inclusion criteria and are included in this review. The conclusions are based on a low quality of evidence and must therefore be considered with caution.
Maintenance programs have a nonsignificant effect on HRQOL and hospitalizations.
Maintenance programs have a statistically but not clinically significant effect on exercise capacity (P = 0.01). When subgrouped by intensity and quality of study, maintenance programs have a statistically and marginally clinically significant effect on exercise capacity.
PMCID: PMC3384375  PMID: 23074434
14.  Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry 
Objectives: To test the applicability of an automated method of magnetic resonance image analysis (voxel based morphometry) to detect presence and severity of regional grey matter density reduction—a proxy of atrophy—in Alzheimer's disease.
Methods: Twenty nine probable Alzheimer's patients and 26 non-demented controls (mini-mental state examinations mean (SD) 21 (4) and 29 (1)) underwent high resolution 3D brain magnetic resonance imaging. Spatial normalisation to a stereotactic template, segmentation into grey matter, white matter, and cerebrospinal fluid, and smoothing of the grey matter were carried out based on statistical parametric mapping (SPM99) algorithms. Analyses were carried out: (a) contrasting all Alzheimer's patients with all controls (p<0.05 corrected for multiple comparisons); (b) contrasting the three Alzheimer's patients with mini-mental state of 26 and higher with all controls (p<0.0001 uncorrected); and (c) correlating grey matter density with mini-mental state score within the Alzheimer's group (p<0.0001 uncorrected).
Results: When all Alzheimer's patients were compared with controls, the largest atrophic regions corresponded to the right and left hippocampal/amygdalar complex. All parts of the hippocampus (head, body, and tail) were affected. More localised atrophic regions were in the temporal and cingulate gyri, precuneus, insular cortex, caudate nucleus, and frontal cortex. When the mildest Alzheimer's patients were contrasted with controls, the hippocampal/amygdalar complex were again found significantly atrophic bilaterally. The mini-mental state score correlated with grey matter density reduction in the temporal and posterior cingulate gyri, and precuneus, mainly to the right.
Conclusions: Voxel based morphometry with statistical parametric mapping is sensitive to regional grey matter density reduction in mild Alzheimer's disease.
doi:10.1136/jnnp.73.6.657
PMCID: PMC1757361  PMID: 12438466
15.  Voxel-based morphometry findings in Alzheimer's disease: neuropsychiatric symptoms and disability correlations – preliminary results 
Clinics  2011;66(6):1045-1050.
INTRODUCTION:
The role of structural brain changes and their correlations with neuropsychiatric symptoms and disability in Alzheimer's disease are still poorly understood.
OBJECTIVE:
To establish whether structural changes in grey matter volume in patients with mild Alzheimer's disease are associated with neuropsychiatric symptoms and disability.
METHODS:
Nineteen Alzheimer's disease patients (9 females; total mean age  = 75.2 y old ±4.7; total mean education level  = 8.5 y ±4.9) underwent a magnetic resonance imaging (MRI) examination and voxel-based morphometry analysis. T1-weighted images were spatially normalized and segmented. Grey matter images were smoothed and analyzed using a multiple regression design. The results were corrected for multiple comparisons. The Neuropsychiatric Inventory was used to evaluate the neuropsychiatric symptoms, and the Functional Activities Questionnaire and Disability Assessment for Dementia were used for functional evaluation.
RESULTS:
A significant negative correlation was found between the bilateral middle frontal gyri, left inferior temporal gyrus, right orbitofrontal gyrus, and Neuropsychiatric Inventory scores. A negative correlation was found between bilateral middle temporal gyri, left hippocampus, bilateral fusiform gyri, and the Functional Activities Questionnaire. There was a positive correlation between the right amygdala, bilateral fusiform gyri, right anterior insula, left inferior and middle temporal gyri, right superior temporal gyrus, and Disability Assessment for Dementia scores.
CONCLUSIONS:
The results suggest that the neuropsychiatric symptoms observed in Alzheimer's disease patients could be mainly due to frontal structural abnormalities, whereas disability could be associated with reductions in temporal structures.
doi:10.1590/S1807-59322011000600021
PMCID: PMC3129969  PMID: 21808873
Dementia; behavior disorder (Bpsd); Functional impairment; MRI
16.  COGNITIVE PROCESSING SPEED AND THE STRUCTURE OF WHITE MATTER PATHWAYS: CONVERGENT EVIDENCE FROM NORMAL VARIATION AND LESION STUDIES 
NeuroImage  2008;42(2):1032-1044.
We investigated the relation between cognitive processing speed and structural properties of white matter pathways via convergent imaging studies in healthy and brain-injured groups. Voxel-based morphometry (VBM) was applied to diffusion tensor imaging data from thirty-nine young healthy subjects in order to investigate the relation between processing speed, as assessed with the Digit-Symbol subtest from WAIS-III, and fractional anisotropy, an index of microstructural organization of white matter. Digit-Symbol performance was positively correlated with fractional anisotropy of white matter in the parietal and temporal lobes bilaterally and in the left middle frontal gyrus. Fiber tractography indicated that these regions are consistent with the trajectories of the superior and inferior longitudinal fasciculi. In a second investigation, we assessed the effect of white matter damage on processing speed using voxel-based lesion symptom mapping (VLSM) analysis of data from seventy-two patients with left hemisphere strokes. Lesions in left parietal white matter, together with cortical lesions in supramarginal and angular gyri were associated with impaired performance. These findings suggest that cognitive processing speed, as assessed by the Digit-Symbol test, is closely related to the structural integrity of white matter tracts associated with parietal and temporal cortices and left middle frontal gyrus. Further, fiber tractography applied to VBM results and the patient findings suggest that the superior longitudinal fasciculus, a major tract subserving fronto-parietal integration, makes a prominent contribution to processing speed.
doi:10.1016/j.neuroimage.2008.03.057
PMCID: PMC2630965  PMID: 18602840
Cognitive processing speed; diffusion tensor imaging; individual differences; magnetic resonance imaging; neural pathways; neuropsychology
17.  Shared intermediate phenotypes for schizophrenia and bipolar disorder: neuroanatomical features of subtypes distinguished by executive dysfunction 
Background
Shared genetic vulnerability for schizophrenia and bipolar disorder may be associated with common neuroanatomical features. In view of the evidence for working memory dysfunction as a candidate intermediate phenotype for both disorders, we explored neuroanatomical distinctions between subtypes defined according to working memory (n-back task) performance.
Methods
We analyzed T1-weighted MRI scans for patients with schizophrenia-spectrum disorder, bipolar-I disorder (BD-I) and healthy controls. The VBM8 toolbox was used to assess differences in grey and white matter volume across traditional diagnostic groups (schizophrenia v. BD-I). Subsequently, groups were defined as “executively spared” (ES) based on the achievement of greater than 50% accuracy in the 2-back task performance (comparable to performance in the control group) or “executively deficit” (ED) based on the achievement of less than 50% accuracy.
Results
Our study included 40 patients with schizophrenia-spectrum disorders, 30 patients with BD-I and 34 controls. Both the schizophrenia and BD-I groups showed grey matter volume reductions relative to the control group, but not relative to each other. The ED subtype (n = 32 [10 BD-I, 22 schizophrenia]) showed grey matter volume reductions in the bilateral superior and medial frontal gyri, right inferior opercular gyri and hippocampus relative to controls. The ES subtype (n = 38 [20 BD-I, 18 schizophrenia]) showed grey matter volume reductions in the right precuneus and left superior and medial orbital frontal gyri relative to controls. The ED subtype showed grey matter volume reduction in the right inferior frontal and precentral gyri relative to the ES subtype. There were no significant differences in white matter volume in any group comparisons.
Limitations
This analysis was limited by small sample sizes. Further, insufficient numbers were available to assess a control-deficit comparison group. We were unable to assess the effects of mood stabilizer dose on brain structure.
Conclusion
Neuroanatomical commonalities are evident among patients with schizophrenia-spectrum disorders and BD-I with working memory deficits. Reduced inferior frontal lobe volume may mediate cognitive deficits shared across the psychosis–mood spectrum.
doi:10.1503/jpn.130283
PMCID: PMC4275333  PMID: 25268788
18.  Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients 
Korean Journal of Radiology  2009;10(6):552-558.
Objective
To investigate gray matter concentration changes in the brains of narcoleptic patients.
Materials and Methods
Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images.
Results
Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05).
Conclusion
Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy.
doi:10.3348/kjr.2009.10.6.552
PMCID: PMC2770823  PMID: 19885310
Narcolepsy; Magnetic resonance (MR); Voxel based morphometry; Hypothalamus; Nucleus accumbens; Thalamus
19.  Voxel-based structural magnetic resonance imaging (MRI) study of patients with early onset schizophrenia 
Background
Investigation into the whole brain morphology of early onset schizophrenia (EOS) to date has been sparse. We studied the regional brain volumes in EOS patients, and the correlations between regional volume measures and symptom severity.
Methods
A total of 18 EOS patients (onset under 16 years) and 18 controls matched for age, gender, parental socioeconomic status, and height were examined. Voxel-based morphometric analysis using the Brain Analysis Morphological Mapping (BAMM) software package was employed to explore alterations of the regional grey (GM) and white matter (WM) volumes in EOS patients. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS).
Results
EOS patients had significantly reduced GM volume in the left parahippocampal, inferior frontal, and superior temporal gyri, compared with the controls. They also had less WM volume in the left posterior limb of the internal capsule and the left inferior longitudinal fasciculus. The positive symptom score of PANSS (higher values corresponding to more severe symptoms) was negatively related to GM volume in the bilateral posterior cingulate gyrus. The negative symptom score was positively correlated with GM volume in the right thalamus. As for the association with WM volume, the positive symptom score of PANSS was positively related to cerebellar WM (vermis region), and negatively correlated with WM in the brain stem (pons) and in the bilateral cerebellum (hemisphere region).
Conclusion
Our findings of regional volume alterations of GM and WM in EOS patients coincide with those of previous studies of adult onset schizophrenia patients. However, in brain regions that had no overall structural differences between EOS patients and controls (that is, the bilateral posterior cingulate gyrus, the right thalamus, the cerebellum, and the pons), within-subject analysis of EOS patients alone revealed that there were significant associations of the volume in these areas and the symptom severity. These findings suggest that at an early stage of the illness, especially for those with onset before brain maturation, a wide range of disturbed neural circuits, including these brain regions that show no apparent morphological changes, may contribute to the formation of the symptomatology.
doi:10.1186/1744-859X-7-25
PMCID: PMC2628340  PMID: 19102744
20.  Selective Alterations of White Matter Associated with Visuospatial and Sensorimotor Dysfunction in Turner Syndrome 
Turner syndrome (TS) is a neurogenetic disorder characterized by impaired spatial, numerical, and motor functioning but relatively spared verbal ability. Results from previous neuroimaging studies suggest that gray matter alterations in parietal and frontal regions may contribute to atypical visuospatial and executive functioning in TS. Recent findings in TS also indicate variations in the shape of parietal gyri and white matter microstructural anomalies of the temporal lobe. Diffusion tensor imaging and structural imaging methods were used to determine whether 10 females with TS and 10 age- and gender-matched control subjects exhibited differences in fractional anisotropy, white matter density, and local brain shape. Relative to controls, females with TS had lower fractional anisotropy (FA) values in the deep white matter of the left parietal-occipital region extending anteriorly along the superior longitudinal fasciculus into the deep white matter of the frontal lobe. In addition, decreased FA values were located bilaterally in the internal capsule extending into the globus pallidus and in the right prefrontal region. Voxel-based morphometry (VBM) analysis showed corresponding white matter density differences in the internal capsules and left centrum semiovale. Tensor-based morphometry analysis indicated that the FA and VBM results were not attributable to differences in the local shape of brain structures. Compared with controls, females with TS had increases in FA values and white matter density in language-related areas of the inferior parietal and temporal lobes. These complementary analyses provide evidence for alterations in white matter pathways that subserve affected and preserved cognitive functions in TS.
doi:10.1523/JNEUROSCI.1764-06.2006
PMCID: PMC3063771  PMID: 16807330
DTI; MRI; voxel-based morphometry; Turner syndrome; visual spatial; white matter; sensory motor
21.  Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness, cost-effectiveness, and safety of long-term oxygen therapy (LTOT) for chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Oxygen therapy is used in patients with COPD with hypoxemia, or very low blood oxygen levels, because they may have difficulty obtaining sufficient oxygen from inspired air.
Technology
Long-term oxygen therapy is extended use of oxygen. Oxygen therapy is delivered as a gas from an oxygen source. Different oxygen sources are: 1) oxygen concentrators, electrical units delivering oxygen converted from room air; 2) liquid oxygen systems, which deliver gaseous oxygen stored as liquid in a tank; and 3) oxygen cylinders, which contain compressed gaseous oxygen. All are available in portable versions. Oxygen is breathed in through a nasal cannula or through a mask covering the mouth and nose. The treating clinician determines the flow rate, duration of use, method of administration, and oxygen source according to individual patient needs. Two landmark randomized controlled trials (RCTs) of patients with COPD established the role of LTOT in COPD. Questions regarding the use of LTOT, however, still remain.
Research Question
What is the effectiveness, cost-effectiveness, and safety of LTOT compared with no LTOT in patients with COPD, who are stratified by severity of hypoxemia?
Research Methods
Literature Search
Search Strategy
A literature search was performed on September 8, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Library, and INAHTA for studies published from January 1, 2007 to September 8, 2010.
A single clinical epidemiologist reviewed the abstracts, obtained full-text articles for studies meeting the eligibility criteria, and examined reference lists for additional relevant studies not identified through the literature search. A second clinical epidemiologist and then a group of epidemiologists reviewed articles with an unknown eligibility until consensus was established.
Inclusion Criteria
patients with mild, moderate, or severe hypoxemia;
English-language articles published between January 1, 2007 and September 8, 2010;
journal articles reporting on effectiveness, cost-effectiveness, or safety for the comparison of interest;
clearly described study design and methods;
health technology assessments, systematic reviews, RCTs, or prospective cohort observational studies;
any type of observational study for the evaluation of safety.
Exclusion Criteria
no hypoxemia
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
studies comparing different oxygen therapy regimens
studies on nocturnal oxygen therapy
studies on short-burst, palliative, or ambulatory oxygen (supplemental oxygen during exercise or activities of daily living)
Outcomes of Interest
mortality/survival
hospitalizations
readmissions
forced expiratory volume in 1 second (FEV1)
forced vital capacity (FVC)
FEV1/FVC
pulmonary hypertension
arterial partial pressure of oxygen (PaO2)
arterial partial pressure of carbon dioxide (PaCO2)
end-exercise dyspnea score
endurance time
health-related quality of life
Note: Outcomes of interest were formulated according to existing studies, with arterial pressure of oxygen and carbon dioxide as surrogate outcomes.
Summary of Findings
Conclusions
Based on low quality of evidence, LTOT (~ 15 hours/day) decreases all-cause mortality in patients with COPD who have severe hypoxemia (PaO2 ~ 50 mm Hg) and heart failure.
The effect for all-cause mortality had borderline statistical significance when the control group was no LTOT: one study.
Based on low quality of evidence, there is no beneficial effect of LTOT on all-cause mortality at 3 and 7 years in patients with COPD who have mild-to-moderate hypoxemia (PaO2 ~ 59-65 mm Hg)1
Based on very low quality of evidence, there is some suggestion that LTOT may have a beneficial effect over time on FEV1 and PaCO2 in patients with COPD who have severe hypoxemia and heart failure: improved methods are needed.
Based on very low quality of evidence, there is no beneficial effect of LTOT on lung function or exercise factors in patients with COPD who have mild-to-moderate hypoxemia, whether survivors or nonsurvivors are assessed.
Based on low to very low quality of evidence, LTOT does not prevent readmissions in patients with COPD who have severe hypoxemia. Limited data suggest LTOT increases the risk of hospitalizations.
Limited work has been performed evaluating the safety of LTOT by severity of hypoxemia.
Based on low to very low quality of evidence, LTOT may have a beneficial effect over time on health-related quality of life in patients with COPD who have severe hypoxemia. Limited work using disease-specific instruments has been performed.
Ethical constraints of not providing LTOT to eligible patients with COPD prohibit future studies from examining LTOT outcomes in an ideal way.
PMCID: PMC3384376  PMID: 23074435
22.  Preterm birth and structural brain alterations in early adulthood 
NeuroImage : Clinical  2014;6:180-191.
Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT) birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM) and white matter (WM) maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM) we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks) and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised) and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001). WM volume in posterior corpus callosum/thalamus/fornix and GM volume in temporal gyri bilaterally, accounted for 21% of the variance of executive function (F = 9.9, p < 0.0001) and WM in the posterior corpus callosum/thalamus/fornix alone accounted for 17% of the variance of total non-verbal memory scores (F = 9.9, p < 0.0001). These results reveal that VPT birth continues to be associated with altered structural brain anatomy in early adult life, although it remains to be ascertained whether these changes reflect neurodevelopmental delays or long lasting structural alterations due to prematurity. GM and WM alterations correlate with length of gestation and mediate cognitive outcome.
Highlights
•Preterm birth is associated with brain alterations in early adulthood•Preterm birth affects maturation of both white and grey matter•Volume alterations are observed in temporal, frontal, parietal and occipital areas•Regional alterations mediate the effects of preterm birth on cognitive functioning
doi:10.1016/j.nicl.2014.08.005
PMCID: PMC4215396  PMID: 25379430
Very preterm; White matter; Grey matter; Brain volume; Cognitive outcome
23.  Brain pathology in first-episode psychosis: Magnetization transfer imaging provides additional information to MRI measurements of volume loss 
Neuroimage  2010;49(1-24):185-192.
Background
Loss of brain volume in first-episode psychosis can be detected using conventional magnetic resonance imaging (MRI), but subtle changes – not leading to reduction in volume – that may contribute to clinical and cognitive abnormalities, may go undetected. Magnetization transfer imaging (MTI), a technique more sensitive to subtle neuropathological changes than conventional MRI, could yield important information on the extent and nature of structural abnormalities.
Methods
Forty-eight patients (33 males) from a population-based sample with first-episode psychosis (41 with schizophrenia and 7 with schizoaffective psychosis) and 47 healthy volunteers (27 males) were studied. Differences in magnetization transfer ratio (MTR) and white and grey matter volumes between groups were investigated.
Results
In patients, MTR was reduced in right entorhinal cortex, fusiform, dentate and superior frontal gyri and in left superior frontal and inferior/rostral cingulate gyri. Grey matter volume was reduced in right insula, frontal operculum and middle and superior temporal gyri and in left middle temporal gyrus. Grey matter volume increases were seen in patients in the superior frontal gyrus. White matter volume loss was found adjacent to grey matter loss. In patients MTR was lower in all areas of volumetric differences between groups suggesting that both changes may be related. Similar findings were observed when patients with schizoaffective psychosis were removed from the analysis. The correlations between clinical and MRI parameters did not survive correction for multiple comparisons.
Conclusions
MTI frontal and temporal abnormalities suggesting neuroaxonal and myelin changes were more extensive in our patients than those detected with conventional MRI. Our findings also suggest that there is regional variation in the severity of structural brain abnormalities.
doi:10.1016/j.neuroimage.2009.07.037
PMCID: PMC2806943  PMID: 19632338
24.  What is the impact of child abuse on gray matter abnormalities in individuals with major depressive disorder: a case control study 
BMC Psychiatry  2016;16:397.
Background
Patients with major depressive disorder (MDD) present heterogeneous clinical symptoms, and childhood abuse is associated with deepening of psychopathology. The aim of this study was to identify structural brain abnormalities in MDD and to assess further differences in gray matter density (GMD) associated with childhood abuse in MDD.
Methods
Differences in regional GMD between 34 MDD patients and 26 healthy controls were assessed using magnetic resonance imaging and optimized voxel-based morphometry. Within the MDD group, further comparisons were performed focusing on the experience of maltreatment during childhood (23 MDD with child abuse vs 11 MDD without child abuse).
Results
Compared with healthy controls, the MDD patient group showed decreased GMD in the bilateral orbitofrontal cortices, right superior frontal gyrus, right posterior cingulate gyrus, bilateral middle occipital gyri, and left cuneus. In addition, the patient group showed increased GMD in bilateral postcentral gyri, parieto-occipital cortices, putamina, thalami, and hippocampi, and left cerebellar declive and tuber of vermis. Within the MDD patient group, the subgroup with abuse showed a tendency of decreased GMD in right orbitofrontal cortex, but showed increased GMD in the left postcentral gyrus compared to the subgroup without abuse.
Conclusions
Our findings suggest a complicated dysfunction of networks between cortical-subcortical circuits in MDD. In addition, increased GMD in postcentral gyrus and a possible reduction of GMD in the orbitofrontal cortex of MDD patients with abuse subgroup may be associated with abnormalities of body perception and emotional dysregulation.
Electronic supplementary material
The online version of this article (doi:10.1186/s12888-016-1116-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s12888-016-1116-y
PMCID: PMC5109685  PMID: 27842522
Major depressive disorder; Physical abuse; Emotional abuse; Voxel-based morphometry; Orbitofrontal cortex; Emotional dysregulation
25.  Similar and Different Gray Matter Deficits in Schizophrenia Patients and Their Unaffected Biological Relatives 
Neuroimaging studies have revealed significant reductions in the gray matter (GM) of several brain regions in patients with schizophrenia, a neuropsychiatric disorder with high hereditability. However, it is unclear whether unaffected relatives have GM abnormalities in common with their affected relatives, which may relate to susceptibility to developing schizophrenia. To address this issue, we conducted two separate meta-analyses of voxel-based morphometry to investigate GM abnormalities in schizophrenia patients and their unaffected relatives. One meta-analysis compared a patient group with healthy controls, whereas the other meta-analysis compared the unaffected relatives with healthy controls. Eight studies comprising 495 patients with schizophrenia, 584 unaffected relatives of patients, and 596 healthy controls were systematically included in the present study. Compared to healthy controls, the patient group showed decreased GM in the right cuneus, the right superior frontal gyrus, the right insula and the left claustrum, and increased GM in the bilateral putamen, the right parahippocampal gyrus, the left precentral gyrus, the left inferior temporal gyri, and the right cerebellar tonsil. The comparison between unaffected relatives and healthy controls showed a GM reduction in the left claustrum, the bilateral parahippocampal gyri, the left fusiform gyrus, the right inferior temporal gyrus, and the bilateral medial prefrontal cortices, whereas increased GM was observed in the right hippocampus, the right fusiform gyrus, the right precentral gyrus, and the right precuneus. Thus, our meta-analyses show that the GM changes in schizophrenia patients and their unaffected relatives are largely different, although there is subtle overlap in some regions.
doi:10.3389/fpsyt.2013.00150
PMCID: PMC3836186  PMID: 24319433
schizophrenia; unaffected relatives; MRI; voxel-based morphometry; gray matter; meta-analysis

Results 1-25 (1699205)