Search tips
Search criteria

Results 1-25 (1158688)

Clipboard (0)

Related Articles

1.  Crystallization and preliminary X-ray diffraction analysis of mevalonate kinase from Methanosarcina mazei  
Recombinant mevalonate kinase from M. mazei has been crystallized. Diffraction data were collected to 2.08 Å resolution.
Mevalonate kinase (MVK), which plays an important role in catalysing the biosynthesis of isoprenoid compounds derived from the mevalonate pathway, transforms mevalonate to 5-phosphomevalonate using ATP as a cofactor. Mevalonate kinase from Methanosarcina mazei (MmMVK) was expressed in Escherichia coli, purified and crystallized for structural analysis. Diffraction-quality crystals of MmMVK were obtained by the vapour-diffusion method using 0.32 M MgCl2, 0.08 M bis-tris pH 5.5, 16%(w/v) PEG 3350. The crystals belonged to space group P21212, with unit-cell parameters a = 97.11, b = 135.92, c = 46.03 Å. Diffraction data were collected to 2.08 Å resolution.
PMCID: PMC3509989  PMID: 23192048
mevalonate kinase; Methanosarcina mazei; multiple-wavelength anomalous dispersion
2.  Molecular characterization of farnesyl pyrophosphate synthase from Bacopa monniera by comparative modeling and docking studies 
Bioinformation  2012;8(22):1075-1081.
Farnesyl pyrophosphate synthase (FPS; EC is a key enzyme in isoprenoid biosynthetic pathway and provides precursors for the biosynthesis of various pharmaceutically important metabolites. It catalyzes head to tail condensation of two isopentenyl pyrophosphate molecules with dimethylallyl pyrophosphate to form C15 compound farnesyl pyrophosphate. Recent studies have confirmed FPS as a molecular target of bisphosphonates for drug development against bone diseases as well as pathogens. Although large numbers of FPSs from different sources are known, very few protein structures have been reported till date. In the present study, FPS gene from medicinal plant Bacopa monniera (BmFPS) was characterized by comparative modeling and docking. Multiple sequence alignment showed two highly conserved aspartate rich motifs FARM and SARM (DDXXD). The 3-D model of BmFPS was generated based on structurally resolved FPS crystal information of Gallus gallus. The generated models were validated by various bioinformatics tools and the final model contained only α-helices and coils. Further, docking studies of modeled BmFPS with substrates and inhibitors were performed to understand the protein ligand interactions. The two Asp residues from FARM (Asp100 and Asp104) as well as Asp171, Lys197 and Lys262 were found to be important for catalytic activity. Interaction of nitrogen containing bisphosphonates (risedronate, alendronate, zoledronate and pamidronate) with modeled BmFPS showed competitive inhibition; where, apart from Asp (100, 104 and 171), Thr175 played an important role. The results presented here could be useful for designing of mutants for isoprenoid biosynthetic pathway engineering well as more effective drugs against osteoporosis and human pathogens.
IPP - Isopentenyl Pyrophosphate, DMAPP - Dimethylallyl Pyrophosphate, GPP - Geranyl Pyrophosphate, FPP - FPPFarnesyl Pyrophosphate, DOPE - Discrete Optimized Protein Energy, BmFPS - Bacopa monniera Farnesyl Pyrophosphate Synthase, RMSD - Root Mean square Deviation, OPLS-AA - Optimized Potentials for Liquid Simulations- All Atom, FARM - First Aspartate Rich Motif, SARM - Second Aspartate Rich Motif.
PMCID: PMC3523221  PMID: 23251041
Bacopa monniera; Bisphosphonates; Comparative modeling and docking; Farnesyl pyrophosphate synthase
3.  Identification in Haloferax volcanii of Phosphomevalonate Decarboxylase and Isopentenyl Phosphate Kinase as Catalysts of the Terminal Enzyme Reactions in an Archaeal Alternate Mevalonate Pathway 
Journal of Bacteriology  2014;196(5):1055-1063.
Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase.
PMCID: PMC3957691  PMID: 24375100
4.  Staphylococcus aureus Mevalonate Kinase: Isolation and Characterization of an Enzyme of the Isoprenoid Biosynthetic Pathway 
Journal of Bacteriology  2004;186(1):61-67.
It has been proposed that isoprenoid biosynthesis in several gram-positive cocci depends on the mevalonate pathway for conversion of acetyl coenzyme A to isopentenyl diphosphate. Mevalonate kinase catalyzes a key reaction in this pathway. In this study the enzyme from Staphylococcus aureus was expressed in Escherichia coli, isolated in a highly purified form, and characterized. The overall amino acid sequence of this enzyme was very heterologous compared with the sequences of eukaryotic mevalonate kinases. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical gel filtration chromatography suggested that the native enzyme is a monomer with a molecular mass of approximately 33 kDa. The specific activity was 12 U/mg, and the pH optimum was 7.0 to 8.5. The apparent Km values for R,S-mevalonate and ATP were 41 and 339 μM, respectively. There was substantial substrate inhibition at millimolar levels of mevalonate. The sensitivity to feedback inhibition by farnesyl diphosphate and its sulfur-containing analog, farnesyl thiodiphosphate, was characterized. These compounds were competitive inhibitors with respect to ATP; the Ki values were 46 and 45 μM for farnesyl diphosphate and its thio analog, respectively. Parallel measurements with heterologous eukaryotic mevalonate kinases indicated that S. aureus mevalonate kinase is much less sensitive to feedback inhibition (Ki difference, 3 orders of magnitude) than the human enzyme. In contrast, both enzymes tightly bound trinitrophenyl-ATP, a fluorescent substrate analog, suggesting that there are similarities in structural features that are important for catalytic function.
PMCID: PMC303434  PMID: 14679225
5.  Farnesyl pyrophosphate synthase modulators: a patent review (2006 - 2010) 
Farnesyl pyrophosphosphate synthase (FPPS (also known as farnesyl diphosphate synthase, FDPS)) is one of the key enzymes involved in the mevalonate pathway and as such is widely expressed. FPPS modulators, specifically FPPS inhibitors, are useful in treating a number of diseases, including bone related disorders characterized by excessive bone resorption e.g. osteoporosis, cancer metathesis to bone and infectious diseases caused by certain parasites.
Areas covered
This review covers structures and applications of novel FPPS modulators described in the patent literature from 2006 to 2010. Patents disclosing new formulations and uses of existing FPPS inhibitors are also reviewed. Thirty-three patents retrieved from the USPTO, EP and WIPO databases are examined with the goal of defining current trends in drug discovery related to FPPS inhibition, and its therapeutic effects.
Expert opinion
Bisphosphonates continue to dominate in this area, although other types of modulator are making their appearance. Remarkable for their high bone mineral affinity, bisphosphonates are structural mimics of the dimethylallyl pyrophosphate (DMAPP) substrate of FPPS, and constitute the major type of FPPS inhibitor currently used in the clinic for treatment of bone-related diseases. Lipophilic bisphosphonates and new classes of non-bisphosphonate FPPS inhibitors (salicylic acid and quinoline derivatives) have been introduced as possible alternatives for treatment of soft tissue diseases, such as some cancers. Novel formulations, fluorescent diagnostic probes and new therapeutic applications of existing FPPS inhibitors are also areas of significant patent activity, demonstrating growing recognition of the versatility and underdeveloped potential of these drugs.
PMCID: PMC3510766  PMID: 21702715
farnesyl pyrophosphate synthase; FPPS; bisphosphonate; osteoporosis; cancer therapeutics; bone diseases; malaria; infectious diseases; fluorescent imaging probes
6.  Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis of Amorpha-4,11-diene 
PLoS ONE  2013;8(11):e79650.
In vitro synthesis of chemicals and pharmaceuticals using enzymes is of considerable interest as these biocatalysts facilitate a wide variety of reactions under mild conditions with excellent regio-, chemo- and stereoselectivities. A significant challenge in a multi-enzymatic reaction is the need to optimize the various steps involved simultaneously so as to obtain high-yield of a product. In this study, statistical experimental design was used to guide the optimization of a total synthesis of amorpha-4,11-diene (AD) using multienzymes in the mevalonate pathway. A combinatorial approach guided by Taguchi orthogonal array design identified the local optimum enzymatic activity ratio for Erg12:Erg8:Erg19:Idi:IspA to be 100∶100∶1∶25∶5, with a constant concentration of amorpha-4,11-diene synthase (Ads, 100 mg/L). The model also identified an unexpected inhibitory effect of farnesyl pyrophosphate synthase (IspA), where the activity was negatively correlated with AD yield. This was due to the precipitation of farnesyl pyrophosphate (FPP), the product of IspA. Response surface methodology was then used to optimize IspA and Ads activities simultaneously so as to minimize the accumulation of FPP and the result showed that Ads to be a critical factor. By increasing the concentration of Ads, a complete conversion (∼100%) of mevalonic acid (MVA) to AD was achieved. Monovalent ions and pH were effective means of enhancing the specific Ads activity and specific AD yield significantly. The results from this study represent the first in vitro reconstitution of the mevalonate pathway for the production of an isoprenoid and the approaches developed herein may be used to produce other isopentenyl pyrophosphate (IPP)/dimethylallyl pyrophosphate (DMAPP) based products.
PMCID: PMC3835790  PMID: 24278153
7.  Functional Characterization of the Xanthophyllomyces dendrorhous Farnesyl Pyrophosphate Synthase and Geranylgeranyl Pyrophosphate Synthase Encoding Genes That Are Involved in the Synthesis of Isoprenoid Precursors 
PLoS ONE  2014;9(5):e96626.
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.
PMCID: PMC4010515  PMID: 24796858
8.  Mevalonate Analogues as Substrates of Enzymes in the Isoprenoid Biosynthetic Pathway of Streptococcus pneumoniae 
Bioorganic & medicinal chemistry  2009;18(3):1124-1134.
Survival of the human pathogen Streptococcus pneumoniae requires a functional mevalonate pathway, which produces isopentenyl diphosphate, the essential building block of isoprenoids. Flux through this pathway appears to be regulated at the mevalonate kinase (MK) step, which is strongly feedback-inhibited by diphosphomevalonate (DPM), the penultimate compound in the pathway. The human mevalonate pathway is not regulated by DPM, making the bacterial pathway an attractive antibiotic target. Since DPM has poor drug characteristics, being highly charged, we propose to use unphosphorylated, cell-permeable prodrugs based on mevalonate that will be phosphorylated in turn by MK and phosphomevalonate kinase (PMK) to generate the active compound in situ. To test the limits of this approach, we synthesized a series of C3-substituted mevalonate analogues to probe the steric and electronic requirements of the MK and PMK active sites. MK and PMK accepted substrates with up to two additional carbons, showing a preference for small substitutents. This result establishes the feasibility of using a prodrug strategy for DPM-based antibiotics in S. pneumoniae and identified several analogues to be tested as inhibitors of MK. Among the substrates accepted by both enzymes were cyclopropyl, vinyl, and ethynyl mevalonate analogues that, when diphosphorylated, might be mechanism-based inactivators of the next enzyme in the pathway, diphosphomevalonate decarboxylase.
PMCID: PMC2842986  PMID: 20056424
Isoprenoid pathway; mevalonic acid; phosphomevalonic acid; diphosphomevalonic acid; mevalonate kinase; phosphomevalonate kinase; diphosphomevalonate decarboxylase; prodrug
9.  Discovery of a metabolic alternative to the classical mevalonate pathway 
eLife  2013;2:e00672.
Eukarya, Archaea, and some Bacteria encode all or part of the essential mevalonate (MVA) metabolic pathway clinically modulated using statins. Curiously, two components of the MVA pathway are often absent from archaeal genomes. The search for these missing elements led to the discovery of isopentenyl phosphate kinase (IPK), one of two activities necessary to furnish the universal five-carbon isoprenoid building block, isopentenyl diphosphate (IPP). Unexpectedly, we now report functional IPKs also exist in Bacteria and Eukarya. Furthermore, amongst a subset of species within the bacterial phylum Chloroflexi, we identified a new enzyme catalyzing the missing decarboxylative step of the putative alternative MVA pathway. These results demonstrate, for the first time, a functioning alternative MVA pathway. Key to this pathway is the catalytic actions of a newly uncovered enzyme, mevalonate phosphate decarboxylase (MPD) and IPK. Together, these two discoveries suggest that unforeseen variation in isoprenoid metabolism may be widespread in nature.
eLife digest
Living things make thousands of chemicals that are vital for life, and are also useful as medicines, perfumes, and food additives. The largest family of these natural chemicals is called the isoprenoids, and members of this family are found in all three domains of life: the eukaryotes (such as plants and animals), the Archaea (an ancient group of single-celled microbes), and bacteria.
The isoprenoids are made from a smaller building block called isopentenyl diphosphate, IPP for short, that contains five carbon atoms and two phosphate groups. IPP can be produced in two ways. The classical mevalonate pathway is found in most eukaryotes, including humans; statin drugs are used to inhibit this pathway to treat those with high cholesterol and reduce the risk of heart disease. The second pathway does not use the compound mevalonate and is found in many, but not all, bacteria as well as the chloroplasts of plants. Until recently, however, the enzymes needed for the last two steps of the classical mevalonate pathway appeared to be missing in the Archaea and in some bacteria.
Researchers subsequently discovered that an enzyme called isopentenyl phosphate kinase, shortened to IPK, was responsible for one of these two missing steps—the addition of IPP’s second phosphate group. The way this enzyme worked also suggested that there was an alternative mevalonate pathway in which the order of the last two steps was reversed. However, the identity of the enzyme responsible for the other step—the removal of a molecule of carbon dioxide to make the starting material needed by IPK—remained mysterious.
Now Dellas et al. have discovered the enzyme responsible for this missing step in Green non-sulphur bacteria, confirming the existence of the alternative mevalonate pathway for the first time. Previously it had been thought that this enzyme acted in the classical mevalonate pathway; but in fact this enzyme has evolved a new function and is not involved in the classical pathway at all. Moreover, Dellas et al. show that Green non-sulphur bacteria, and some eukaryotes, also have functional IPK enzymes. This means that IPK has now unexpectedly been observed in all three domains of life, and hints at another target to medically control mevalonate pathways. The discovery of the missing enzyme in the alternative pathway opens the door to the re-examination of many other living things, to find which have the new pathway and to work out why.
PMCID: PMC3857490  PMID: 24327557
Mevalonate pathway; Isopentenyl diphosphate; Archaea; Mevalonate phosphate decarboxylase; Chloroflexi; Plants; Arabidopsis; Other
10.  Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum 
Malaria Journal  2013;12:184.
Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites.
The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate.
The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic parasites with a haemagglutinin-tagged version of FPPS. Also, the present data demonstrate that the recombinant protein is inhibited by risedronate.
The rPfFPPS is a bifunctional FPPS/GGPPS enzyme and the structure of products FOH and GGOH were confirmed mass spectrometry. Plasmodial FPPS represents a potential target for the rational design of chemotherapeutic agents to treat malaria.
PMCID: PMC3679732  PMID: 23734739
Plasmodium falciparum; Malaria; Isoprenoids; Farnesyl diphosphate; Farnesyl diphosphate synthase; Geranylgeranyl diphosphate; Geranylgeranyl diphosphate synthase
11.  Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis 
Isoprenoids are a diverse group of molecules found in all organisms, where they perform such important biological functions as hormone signaling (e.g., steroids) in mammals, antioxidation (e.g., carotenoids) in plants, electron transport (e.g., ubiquinone), and cell wall biosynthesis intermediates in bacteria. All isoprenoids are synthesized by the consecutive condensation of the five-carbon monomer isopentenyl diphosphate (IPP) to its isomer, dimethylallyl diphosphate (DMAPP). The biosynthetic pathway for the formation of IPP from acetyl-CoA (i.e., the mevalonate pathway) had been established mainly in mice and the budding yeast Saccharomyces cerevisiae. Curiously, most prokaryotic microorganisms lack homologs of the genes in the mevalonate pathway, even though IPP and DMAPP are essential for isoprenoid biosynthesis in bacteria. This observation provided an impetus to search for an alternative pathway to synthesize IPP and DMAPP, ultimately leading to the discovery of the mevalonate-independent 2-C-methyl-d-erythritol 4-phosphate pathway. This review article focuses on our significant contributions to a comprehensive understanding of the biosynthesis of IPP and DMAPP.
PMCID: PMC3365244  PMID: 22450534
biosynthesis; inhibitor; isoprenoid; MEP pathway; mevalonate pathway; terpenoid
12.  Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis 
Plant Signaling & Behavior  2011;6(12):2044-2046.
The role of peroxisomes in isoprenoid metabolism, especially in plants, has been questioned in several reports. A recent study of Sapir-Mir et al.1 revealed that the two isoforms of isopentenyl diphosphate (IPP) isomerase, catalyzing the isomerisation of IPP to dimethylallyl diphosphate (DMAPP) are found in the peroxisome. In this addendum, we provide additional data describing the peroxisomal localization of 5-phosphomevalonate kinase and mevalonate 5-diphosphate decarboxylase, the last two enzymes of the mevalonic acid pathway leading to IPP.2 This finding was reinforced in our latest report showing that a short isoform of farnesyl diphosphate, using IPP and DMAPP as substrates, is also targeted to the organelle.3 Therefore, the classical sequestration of isoprenoid biosynthesis between plastids and cytosol/ER can be revisited by including the peroxisome as an additional isoprenoid biosynthetic compartment within plant cells.
PMCID: PMC3337203  PMID: 22080790
5-phosphomevalonate kinase; Arabidopsis thaliana; Catharanthus roseus; farnesyl diphosphate synthase; isoprenoid; mevalonate 5-diphosphate decarboxylase; mevalonic acid pathway; peroxisome
13.  An Enzymatic Platform for the Synthesis of Isoprenoid Precursors 
PLoS ONE  2014;9(8):e105594.
The isoprenoid family of compounds is estimated to contain ∼65,000 unique structures including medicines, fragrances, and biofuels. Due to their structural complexity, many isoprenoids can only be obtained by extraction from natural sources, an inherently risky and costly process. Consequently, the biotechnology industry is attempting to genetically engineer microorganisms that can produce isoprenoid-based drugs and fuels on a commercial scale. Isoprenoid backbones are constructed from two, five-carbon building blocks, isopentenyl 5-pyrophosphate and dimethylallyl 5-pyrophosphate, which are end-products of either the mevalonate or non-mevalonate pathways. By linking the HMG-CoA reductase pathway (which produces mevalonate) to the mevalonate pathway, these building block can be synthesized enzymatically from acetate, ATP, NAD(P)H and CoA. Here, the enzymes in these pathways are used to produce pathway intermediates and end-products in single-pot reactions and in remarkably high yield, ∼85%. A strategy for the regio-specific incorporation of isotopes into isoprenoid backbones is developed and used to synthesize a series of isotopomers of diphosphomevalonate, the immediate end-product of the mevalonate pathway. The enzymatic system is shown to be robust and capable of producing quantities of product in aqueous solutions that meet or exceed the highest levels achieved using genetically engineered organisms in high-density fermentation.
PMCID: PMC4143292  PMID: 25153179
14.  Synthesis and Evaluation of Chlorinated Substrate Analogues for Farnesyl Diphosphate Synthase 
The Journal of organic chemistry  2011;76(6):1838-1843.
Substrate analogues for isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where the C3 methyl groups were replaced by chlorine, were synthesized and evaluated as substrates for avian farnesyl diphosphate synthase (FPPase). The IPP analogue (3-ClIPP) was a co-substrate when incubated with dimethylallyl diphosphate (DMAPP) or geranyl diphosphate (GPP) to give the corresponding chlorinated analogues of geranyl diphosphate (3-ClGPP) and farnesyl diphosphate (3-ClFPP), respectively. No products were detected in incubations of 3-ClIPP with 3-ClDMAPP. Incubation of IPP with 3-ClDMAPP gave 11-ClFPP as the sole product. Values of KM3-ClIPP (with DMAPP) and KM3-ClDMAPP (with IPP) were similar to those for IPP and DMAPP, however values of kcat for both analogues were substantially lower. These results are consistent with a dissociative electrophilic alkylation mechanism where the rate-limiting step changes from heterolytic cleavage of the carbon-oxygen bond in the allylic substrate to alkylation of the double bond of the homoallylic substrate.
PMCID: PMC3055917  PMID: 21344952
15.  Characterization of an Isopentenyl Diphosphate Isomerase involved in the Juvenile Hormone pathway in Aedes aegypti 
Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterwards IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg2+ or Mn2+ but not Zn2+ for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.
PMCID: PMC3438293  PMID: 22782071
Mosquito; IPP isomerase; juvenile hormone; corpora allata; Aedes
16.  Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels 
The isopentenols, including isoprenol and prenol, are excellent alternative fuels. However, they are not compounds largely accumulated in natural organism. The need for the next generation of biofuels with better physical and chemical properties impels us to develop biosynthetic routes for the production of isoprenol and prenol from renewable sugar. In this study, we use the heterogenous mevalonate-dependent (MVA) isoprenoid pathway for the synthesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) intermediates, and then convert IPP and DMAPP to isoprenol and prenol, respectively.
A mevalonate titer of 1.7 g/L was obtained by constructing an efficient MVA upper pathway in engineered E. coli. Different phosphatases and pyrophosphatases were investigated for their abilities in hydrolyzing the IPP and DMAPP. Consequently, ADP-ribose pyrophosphatase was found to be an efficient IPP and DMAPP hydrolase. Moreover, ADP-ribose pyrophosphatase from Bacillus subtilis (BsNudF) exhibited a equivalent substrate specificity towards IPP and DMAPP, while ADP-ribose pyrophosphatase from E. coli (EcNudF) presented a high substrate preference for DMAPP. Without the expression of any phosphatases or pyrophosphatases, a background level of isopentenols was synthesized. When the endogenous pyrophosphatase genes (EcNudF and yggV) that were capable of enhancing the hydrolyzation of the IPP and DMAPP were knocked out, the background level of isopentenols was still obtained. Maybe the synthesized IPP and DMAPP were hydrolyzed by some unknown hydrolases of E. coli. Finally, 1.3 g/L single isoprenol was obtained by blocking the conversion of IPP to DMAPP and employing the BsNudF, and 0.2 g/L ~80% prenol was produced by employing the EcNudF. A maximal yield of 12% was achieved in both isoprenol and prenol producing strains.
To the best of our knowledge, this is the first successful report on high-specificity production of isoprenol and prenol by microbial fermentation. Over 1.3 g/L isoprenol achieved in shake-flask experiments represents a quite encouraging titer of higher alcohols. In addition, the substrate specificities of ADP-ribose pyrophosphatases were determined and successfully applied for the high-specificity synthesis of isoprenol and prenol. Altogether, this work presents a promising strategy for high-specificity production of two excellent biofuels, isoprenol and prenol.
PMCID: PMC3654967  PMID: 23618128
Isoprenol; Prenol; Metabolic engineering; Escherichia coli; Biofuel
17.  Farnesyl Diphosphate Synthase: The Art of Compromise between Substrate Selectivity and Stereoselectivity 
Journal of the American Chemical Society  2006;128(49):15819-15823.
Farnesyl diphosphate (FPP) synthase catalyzes the consecutive head-to-tail condensations of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to give (E,E)-FPP (C15). The enzyme belongs to a genetically distinct family of chain elongation enzymes that install E-double bonds during each addition of a five-carbon isoprene unit. Analysis of the C10 and C15 products from incubations with avian FPP synthase reveals that small amounts of neryl diphosphate (Z-C10) and (Z,E)-FPP are formed along with the E-isomers during the C5 → C10 and C10 → C15 reactions. Similar results were obtained for FPP synthase from Escherichia coli, Artemisia tridentata (sage brush), Pyrococcus furiosus, and Methanobacter thermautotrophicus and for GPP and FPP synthesized in vivo by E. coli FPP synthase. When (R)-[2-2H]IPP was a substrate for chain elongation, no deuterium was found in the chain elongation products. In contrast, the deuterium in (S)-[2-2H]IPP was incorporated into all of the products. Thus, the pro-R hydrogen at C2 of IPP is lost when the E- and Z-double bond isomers are formed. The synthesis of Z-double bond isomers by FPP synthase during chain elongation is unexpected for a highly evolved enzyme and probably reflects a compromise between optimizing double bond stereoselectivity and the need to exclude DMAPP from the IPP binding site.
PMCID: PMC2516916  PMID: 17147392
18.  X-ray structures of isopentenyl phosphate kinase 
ACS chemical biology  2010;5(5):517-527.
Isoprenoid compounds are ubiquitous in nature, participating in important biological phenomena such as signal transduction, aerobic cellular respiration, photosynthesis, insect communication, and many others. They are derived from the 5-carbon isoprenoid substrates isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In Archaea and Eukarya, these building blocks are synthesized via the mevalonate pathway. However, the genes required to convert mevalonate phosphate (MP) to IPP are missing in several species of Archaea. An enzyme with isopentenyl phosphate kinase (IPK) activity was recently discovered in Methanocaldococcus jannaschii (MJ), suggesting a departure from the classical sequence of converting MP to IPP. We have determined the high-resolution crystal structures of isopentenyl phosphate kinases in complex with both substrates and products from Thermoplasma acidophilum (THA), as well as the IPK from Methanothermobacter thermautotrophicus (MTH), by means of single-wavelength anomalous diffraction (SAD) and molecular replacement. A histidine residue (His50) in THA IPK makes a hydrogen bond with the terminal phosphates of IP and IPP, poising these molecules for phosphoryl transfer through an in-line geometry. Moreover, a lysine residue (Lys14) makes hydrogen bonds with non-bridging oxygen atoms at Pα and Pγ and with the Pβ- Pγ bridging oxygen atom in ATP. These interactions suggest a transition state-stabilizing role for this residue. Lys14 is a part of a newly discovered “lysine triangle” catalytic motif in IPK’s that also includes Lys5 and Lys205. Moreover, His50, Lys5, Lys14, and Lys205 are conserved in all IPK’s and can therefore serve as fingerprints for identifying new homologues.
PMCID: PMC2879073  PMID: 20402538
19.  Characterization of Thermophilic Archaeal Isopentenyl Phosphate Kinases 
Biochemistry  2010;49(1):10.1021/bi9017957.
Archaea synthesize isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the essential building blocks of isoprenoid compounds, from mevalonate (MVA). However, an analysis of the genomes of several members of the Archaea failed to identify genes for the enzymes required to convert phosphomevalonate (PM) to IPP in Eukaryotes. The recent discovery of an isopentenyl kinase (IPK) in Methanocaldococcus jannaschii (MJ) suggests a new variation of the MVA pathway where PM is decarboxylated to give isopentenyl phosphate (IP), which is phosphorylated to produce IPP. A blast search using the MJ protein as a probe revealed a subfamily of amino acid kinases that include the fosfomycin resistance protein fomA, which deactivates the antibiotic by phosphorylation of its phosphonate residue in a reaction similar to the conversion of IP to IPP. IPK genes were cloned from two organisms identified in the search, Methanothermobacter thermautotrophicus (MTH) and Thermoplasma acidophilum (THA), and the His-tagged recombinant proteins were purified by Ni-NTA chromatography. The enzymes catalyze the reversible phosphorylation of IP by ATP, Keq = 6.3 ± 1. The catalytic efficiencies (V/K) of the proteins were ~2 × 106 M−1s−1. In the reverse direction, ADP was a substrate inhibitor for THA IPK, KiADP = 58 ± 6 µM but not for MTH IPK. Both enzymes were active over a broad range of pH and temperature. Five compounds, dimethylallyl phosphate, isopentenyl thiolophosphate, 1-butyl phosphate, 3-buten-1-yl phosphate, and geranyl phosphate, were evaluated as alternative substrate for the MTH and THA IP kinases. All of the compounds were phosphorylated, although the catalytic efficiency was low for geranyl phosphate.
PMCID: PMC3856865  PMID: 19928876
20.  A Whole-Cell Phenotypic Screening Platform for Identifying Methylerythritol Phosphate Pathway-Selective Inhibitors as Novel Antibacterial Agents 
Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition.
PMCID: PMC3421842  PMID: 22777049
21.  Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) 
Parasites & Vectors  2013;6:56.
Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential.
In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis.
From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed.
This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L. longipalpis pheromone gland as well as the flanking tissues. Using a comparative approach, a set of molecules potentially present in the mevalonate pathway emerge as interesting subjects for further study regarding their association to pheromone biosynthesis. The sequences presented here may be used as a reference set for future research on pheromone production or other characteristics of pheromone communication in this insect. Moreover, some matches for transcripts of unknown function may provide fertile ground of an in-depth study of pheromone-gland specific molecules.
PMCID: PMC3632494  PMID: 23497448
Lutzomyia longipalpis; Male pheromone gland; Transcriptome; Mevalonate pathway
22.  Indirect Stimulation of Human Vγ2Vδ2 T cells Through Alterations in Isoprenoid Metabolism1 
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-D-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/ApppI that directly stimulate. In this study, we further characterize stimulation by these compounds, and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates. However, the continuous presence of aminobisphosphonates was toxic for T cells, and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known antigen presenting molecules, and resistant to fixation. New classes of stimulatory compounds–mevalonate, the alcohol of HMBPP, and alkenyl phosphonates–likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct antigens. Transfection of APC with siRNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells, and increased cellular IPP. siRNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy.
PMCID: PMC3326638  PMID: 22013129
gamma delta T cell; Vgamma2Vdelta2 T cells; human; bisphosphonate; antigen presentation; prenyl pyrophosphates; isopentenyl pyrophosphate; isoprenoid metabolism; farnesyl diphosphate synthase; siRNA
23.  Isoprenoid Biosynthesis in Synechocystis sp. Strain PCC6803 Is Stimulated by Compounds of the Pentose Phosphate Cycle but Not by Pyruvate or Deoxyxylulose-5-Phosphate 
Journal of Bacteriology  2002;184(18):5045-5051.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-d-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate, an initial substrate of the MEP pathway in Escherichia coli, or by deoxyxylulose-5-phosphate, the first pathway intermediate in E. coli. However, high rates of IPP incorporation were obtained with addition of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety of pentose phosphate cycle compounds. Fosmidomycin (at 1 μM and 1 mM), an inhibitor of deoxyxylulose-5-phosphate reductoisomerase, did not significantly inhibit phototrophic growth of the cyanobacterium, nor did it affect [14C]IPP incorporation stimulated by DHAP plus GA3P. To date, it has not been possible to unequivocally demonstrate IPP isomerase activity in this cyanobacterium. The combined results suggest that the MEP pathway, as described for E. coli, is not the primary path by which isoprenoids are synthesized under photosynthetic conditions in Synechocystis sp. strain PCC6803. Our data support alternative routes of entry of pentose phosphate cycle substrates derived from photosynthesis.
PMCID: PMC135332  PMID: 12193620
24.  Identification of an Archaeal Type II Isopentenyl Diphosphate Isomerase in Methanothermobacter thermautotrophicus 
Journal of Bacteriology  2004;186(6):1811-1817.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II enzyme was recently discovered in Streptomyces sp. strain CL190. Open reading frame 48 (ORF48) in the archaeon Methanothermobacter thermautotrophicus encodes a putative type II IPP isomerase. A plasmid-encoded copy of the ORF complemented IPP isomerase activity in vivo in Salmonella enterica serovar Typhimurium strain RMC29, which contains chromosomal knockouts in the genes for type I IPP isomerase (idi) and 1-deoxy-d-xylulose 5-phosphate (dxs). The dxs gene was interrupted with a synthetic operon containing the Saccharomyces cerevisiae genes erg8, erg12, and erg19 allowing for the conversion of mevalonic acid to IPP by the mevalonate pathway. His6-tagged M. thermautotrophicus type II IPP isomerase was produced in Escherichia coli and purified by Ni2+ chromatography. The purified protein was characterized by matrix-assisted laser desorption ionization mass spectrometry. The enzyme has optimal activity at 70°C and pH 6.5. NADPH, flavin mononucleotide, and Mg2+ are required cofactors. The steady-state kinetic constants for the archaeal type II IPP isomerase from M. thermautotrophicus are as follows: Km, 64 μM; specific activity, 0.476 μmol mg−1 min−1; and kcat, 1.6 s−1.
PMCID: PMC355898  PMID: 14996812
25.  Detection of non-sterol isoprenoids by HPLC-MS/MS 
Analytical Biochemistry  2008;383(1):18-24.
Isoprenoids constitute an important class of biomolecules that participate in many different cellular processes. Most available detection methods only allow the identification of one or two specific non-sterol isoprenoid intermediates following radioactive or fluorescent labeling. We here report a rapid, non-radioactive and sensitive procedure for the simultaneous detection and quantification of the 8 main non-sterol intermediates of the isoprenoid biosynthesis pathway by means of tandem mass spectrometry. Intermediates were analyzed by HPLC-MS/MS in the multiple reaction monitoring mode using a silica-based C18 HPLC column. For quantification, their stable-isotope-labeled analogues were used as internal standards. HepG2 cells were used to validate the method. Mevalonate, phosphomevalonate and the 6 subsequent isoprenoid-pyrophosphates were readily determined with detection limits ranging from 0.03 to 1.0 μmol/L. The intra- and interassay variations for HepG2 cell homogenates supplemented with isoprenoid intermediates were 3.6–10.9% and 4.4–11.9%, respectively. Under normal culturing conditions, isoprenoid intermediates in HepG2 cells were below detection limits. However, incubation of the cells with pamidronate, an inhibitor of farnesyl pyrophosphate synthase, resulted in increased levels of MVA, IPP/DMAPP and GPP. This method will be suitable to measure profiles of isoprenoid intermediates in cells with compromised isoprenoid biosynthesis, and to determine the specificity of potential inhibitors of the pathway.
PMCID: PMC3401636  PMID: 18782552
Isoprenoid biosynthesis; Mevalonate kinase deficiency; Mass spectrometry; Farnesyl pyrophosphate; Geranylgeranyl pyrophosphate

Results 1-25 (1158688)