Search tips
Search criteria

Results 1-25 (994136)

Clipboard (0)

Related Articles

1.  Epigenetic gene promoter methylation at birth is associated with child’s later adiposity 
Diabetes  2011;60(5):1528-1534.
Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans.
Research Design and Methods
Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5′ from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5-95% range ≥10% we related methylation status to maternal pregnancy diet and to child’s adiposity at age 9 years. Replication was sought in a second independent cohort.
In cohort 1, RXRA chr9:136355885+ and eNOS chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient (β) 17% per standard deviation change in methylation (95% confidence interval (CI) 4 to 31%), P=0.009, n=64 and β=20% (9 to 32%), P<0.001, n=66, respectively) and %fat mass (β=10% (1 to 19%), P=0.023, n=64 and β=12% (4 to 20%), P=0.002, n=66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β=6% (2 to 10%) and β=4% (1 to 7%), respectively, both P=0.002, n=239).
Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.
PMCID: PMC3115550  PMID: 21471513
2.  Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content 
Calcified tissue international  2011;90(2):120-127.
Our previous work has shown associations between childhood adiposity and perinatal methylation status of several genes in umbilical cord tissue, including endothelial nitric oxide synthase (eNOS). There is increasing evidence that eNOS is important in bone metabolism; we therefore related the methylation status of the eNOS gene promoter in stored umbilical cord to childhood bone size and density in a group of 9-year old children.
We used Sequenom MassARRAY to assess the methylation status of 2 CpGs in the eNOS promoter, identified from our previous study, in stored umbilical cords of 66 children who formed part of a Southampton birth cohort and who had measurements of bone size and density at age 9 years (Lunar DPXL DXA instrument).
Percentage methylation varied greatly between subjects. For one of the two CpGs, eNOS chr7:150315553+, after taking account of age and sex there was a strong positive association between methylation status and the child’s whole body bone area (r=0.28,p=0.02), bone mineral content (r=0.34,p=0.005) and areal bone mineral density (r=0.34,p=0.005) at age 9 years. These associations were independent of previously documented maternal determinants of offspring bone mass.
Our findings suggest an association between methylation status at birth of a specific CpG within the eNOS promoter and bone mineral content in childhood. This supports a role for eNOS in bone growth and metabolism and implies that its contribution may at least in part occur during early skeletal development.
PMCID: PMC3629299  PMID: 22159788
Epigenetic; methylation; umbilical cord; eNOS; DXA
3.  Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth 
Maternal vitamin D deficiency has been associated with reduced offspring bone mineral accrual. Retinoid-X Receptor-alpha (RXRA) is an essential cofactor in the action of 1,25(OH)2-vitamin D, and RXRA methylation in umbilical cord DNA has been associated with later offspring adiposity. We tested the hypothesis that RXRA methylation in umbilical cord DNA collected at birth is associated with offspring skeletal development, assessed by dual-energy X-ray absorptiometry, in a population-based mother-offspring cohort (Southampton Women’s Survey). Relationships between maternal plasma 25(OH)-vitamin D concentrations and cord RXRA methylation were also investigated. In 230 children aged 4 years, higher % methylation at 4 out of 6 RXRA CpG sites measured was correlated with lower offspring % bone mineral content (%BMC) (β=−0.02 to −0.04%/SD, p=0.002 to 0.043) and BMC corrected for body size (β=−2.1 to −3.4g/SD, p=0.002 to 0.047), with a further site associated with %BMC only. Similar relationships for %BMC were observed in a second independent cohort (n=64). Maternal free 25(OH)-vitamin D index was negatively associated with methylation at one of these RXRA CpG sites (β=−3.3 SD/unit, p=0.03). In addition to the mechanistic insights afforded by associations between maternal free 25(OH)-vitamin D index, RXRA methylation in umbilical cord DNA, and childhood BMC, such epigenetic marks in early life might represent novel biomarkers for adverse bone outcomes in the offspring.
PMCID: PMC3836689  PMID: 23907847
Epigenetic; methylation; umbilical cord; RXRA; vitamin D; DXA
4.  DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults 
Clinical Epigenetics  2012;4(1):21.
The insulin-like growth factor 2 (IGF2) and H19 imprinted genes control growth and body composition. Adverse in-utero environments have been associated with obesity-related diseases and linked with altered DNA methylation at the IGF2/H19 locus. Postnatally, methylation at the IGF2/H19 imprinting control region (ICR) has been linked with cerebellum weight. We aimed to investigate whether decreased IGF2/H19 ICR methylation is associated with decreased birth and childhood anthropometry and increased contemporaneous adiposity.
DNA methylation in peripheral blood (n = 315) at 17 years old was measured at 12 cytosine-phosphate-guanine sites (CpGs), analysed as Sequenom MassARRAY EpiTYPER units within the IGF2/H19 ICR. Birth size, childhood head circumference (HC) at six time-points and anthropometry at age 17 years were measured. DNA methylation was investigated for its association with anthropometry using linear regression.
The principal component of IGF2/H19 ICR DNA methylation (representing mean methylation across all CpG units) positively correlated with skin fold thickness (at four CpG units) (P-values between 0.04 to 0.001) and subcutaneous adiposity (P = 0.023) at age 17, but not with weight, height, BMI, waist circumference or visceral adiposity. IGF2/H19 methylation did not associate with birth weight, length or HC, but CpG unit 13 to 14 methylation was negatively associated with HC between 1 and 10 years. β-coefficients of four out of five remaining CpG units also estimated lower methylation with increasing childhood HC.
As greater IGF2/H19 methylation was associated with greater subcutaneous fat measures, but not overall, visceral or central adiposity, we hypothesize that obesogenic pressures in youth result in excess fat being preferentially stored in peripheral fat depots via the IGF2/H19 domain. Secondly, as IGF2/H19 methylation was not associated with birth size but negatively with early childhood HC, we hypothesize that the HC may be a more sensitive marker of early life programming of the IGF axis and of fetal physiology than birth size. To verify this, investigations of the dynamics of IGF2/H19 methylation and expression from birth to adolescence are required.
PMCID: PMC3507742  PMID: 23148549
Childhood; Fetal programming; DNA methylation; Insulin-like growth factor; Raine Study; Head circumference
5.  Associations of maternal weight status prior and during pregnancy with neonatal cardio-metabolic markers at birth: The Healthy Start Study 
Maternal obesity increases adult offspring risk for cardiovascular disease; however the role of offspring adiposity in mediating this association remains poorly characterized.
To investigate the associations of maternal pre-pregnant body mass index (maternal BMI) and gestational weight gain (GWG) with neonatal cardio-metabolic markers independent of fetal growth and neonatal adiposity.
A total of 753 maternal-infant pairs from the Healthy Start study, a large multi-ethnic pre-birth observational cohort were used. Neonatal cardio-metabolic markers included cord blood glucose, insulin, glucose-to-insulin ratio (Glu/Ins), total and high-density lipoprotein cholesterol (HDL-c), triglycerides, free fatty acids and leptin. Maternal BMI was abstracted from medical records or self-reported. GWG was calculated as the difference between the first pre-pregnant weight and the last weight measurement before delivery. Neonatal adiposity (percent fat mass) was measured within 72 hours of delivery using whole body air displacement plethysmography.
In covariate adjusted models, maternal BMI was positively associated with cord blood insulin (p=0.01) and leptin (p<0.001) levels and inversely associated with cord blood HDL-c (p=0.05) and Glu/Ins (p=0.003). Adjustment for fetal growth or neonatal adiposity attenuated the effect of maternal BMI on neonatal insulin, rendering the association non-significant. However, maternal BMI remained associated with higher leptin (p<0.0011), lower HDL-c (p=0.02) and Glu/Ins (p=0.05), independent of neonatal adiposity. GWG was positively associated with neonatal insulin (p=0.02), glucose (p=0.03) and leptin levels (p<0.001) and negatively associated with Glu/Ins (p=0.006). After adjusting for neonatal adiposity, GWG remained associated with higher neonatal glucose (p=0.02) and leptin levels (p=0.02) and lower Glu/Ins (p=0.048).
Maternal weight prior and/or during pregnancy is associated with neonatal cardio-metabolic makers including leptin, glucose, and HDL-c at delivery, independent of neonatal adiposity. Our results suggest that intrauterine exposure to maternal obesity influences metabolic processes beyond fetal growth and fat accretion.
PMCID: PMC4596750  PMID: 26055075
Maternal obesity; Pregnancy; Cardio-metabolic risk; Leptin
6.  Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood 
Clinical Epigenetics  2016;8:118.
Both higher and lower fetal growth are associated with cardio-metabolic health later in life, suggesting that prenatal developmental programming determines long-term cardiovascular disease risk. Epigenetic mechanisms, which orchestrate fetal growth and development, may offer insight on the early programming of health and disease. We investigated whether birth weight-for-gestational is associated with DNA methylation at birth and mid-childhood, measured via the Infinium 450K array.
Participants were from Project Viva, a pre-birth cohort of pregnant women and their children in Eastern Massachusetts. After exclusion of participants with maternal type 1 or 2 diabetes and gestational age <34 weeks, we used DNA methylation assays from 476 venous umbilical cord blood samples and a subset of 235 who additionally had peripheral blood samples available in mid-childhood (age 7–10 years). Among 392,918 CpG sites analyzed, birth weight-for-gestational age z-score was associated with cord blood DNA methylation at 34 CpGs (false discovery rate P < 0.05), after adjusting for maternal age, race/ethnicity, education, smoking, parity, delivery mode, pre-pregnancy BMI, gestational diabetes status, child sex, and estimated cord blood cell proportions based on a cord blood reference panel. Two of these CpGs were previously reported in epigenome-wide analyses of birth weight, and several other CpGs map to genes relevant to fetal growth and development. Namely, higher birth weight-for-gestational age was associated with higher methylation at four CpGs at the PBX1 locus (e.g., β (95% CI) for lead signal at cg06750897 = 1.9 (1.2, 2.6)), which encodes a transcription factor that regulates embryonic development. Birth weight-for-gestational age was also associated with mid-childhood blood DNA methylation at four of the 34 CpGs identified in cord blood analyses, including sites at the PBX1 locus described.
We identified CpG sites where birth weight-for-gestational age was associated with DNA methylation at birth, and for a subset of these sites, birth weight-for-gestational age was also associated with DNA methylation at mid-childhood.
Electronic supplementary material
The online version of this article (doi:10.1186/s13148-016-0285-3) contains supplementary material, which is available to authorized users.
PMCID: PMC5112715  PMID: 27891191
Epigenetics; DNA methylation; Birth weight
7.  The chromosome 3q25 genomic region is associated with measures of adiposity in newborns in a multi-ethnic genome-wide association study 
Human Molecular Genetics  2013;22(17):3583-3596.
Newborns characterized as large and small for gestational age are at risk for increased mortality and morbidity during the first year of life as well as for obesity and dysglycemia as children and adults. The intrauterine environment and fetal genes contribute to the fetal size at birth. To define the genetic architecture underlying the newborn size, we performed a genome-wide association study (GWAS) in 4281 newborns in four ethnic groups from the Hyperglycemia and Adverse Pregnancy Outcome Study. We tested for association with newborn anthropometric traits (birth length, head circumference, birth weight, percent fat mass and sum of skinfolds) and newborn metabolic traits (cord glucose and C-peptide) under three models. Model 1 adjusted for field center, ancestry, neonatal gender, gestational age at delivery, parity, maternal age at oral glucose tolerance test (OGTT); Model 2 adjusted for Model 1 covariates, maternal body mass index (BMI) at OGTT, maternal height at OGTT, maternal mean arterial pressure at OGTT, maternal smoking and drinking; Model 3 adjusted for Model 2 covariates, maternal glucose and C-peptide at OGTT. Strong evidence for association was observed with measures of newborn adiposity (sum of skinfolds model 3 Z-score 7.356, P = 1.90×10−13, and to a lesser degree fat mass and birth weight) and a region on Chr3q25.31 mapping between CCNL and LEKR1. These findings were replicated in an independent cohort of 2296 newborns. This region has previously been shown to be associated with birth weight in Europeans. The current study suggests that association of this locus with birth weight is secondary to an effect on fat as opposed to lean body mass.
PMCID: PMC3736865  PMID: 23575227
8.  Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children 
Background: Evidence suggests that in utero exposure to undernutrition and overnutrition might affect adiposity in later life. Epigenetic modification is suggested as a plausible mediating mechanism.
Methods: We used multivariable linear regression and a negative control design to examine offspring epigenome-wide DNA methylation in relation to maternal and offspring adiposity in 1018 participants.
Results: Compared with neonatal offspring of normal weight mothers, 28 and 1621 CpG sites were differentially methylated in offspring of obese and underweight mothers, respectively [false discovert rate (FDR)-corrected P-value < 0.05), with no overlap in the sites that maternal obesity and underweight relate to. A positive association, where higher methylation is associated with a body mass index (BMI) outside the normal range, was seen at 78.6% of the sites associated with obesity and 87.9% of the sites associated with underweight. Associations of maternal obesity with offspring methylation were stronger than associations of paternal obesity, supporting an intrauterine mechanism. There were no consistent associations of gestational weight gain with offspring DNA methylation. In general, sites that were hypermethylated in association with maternal obesity or hypomethylated in association with maternal underweight tended to be positively associated with offspring adiposity, and sites hypomethylated in association with maternal obesity or hypermethylated in association with maternal underweight tended to be inversely associated with offspring adiposity.
Conclusions: Our data suggest that both maternal obesity and, to a larger degree, underweight affect the neonatal epigenome via an intrauterine mechanism, but weight gain during pregnancy has little effect. We found some evidence that associations of maternal underweight with lower offspring adiposity and maternal obesity with greater offspring adiposity may be mediated via increased DNA methylation.
PMCID: PMC4588865  PMID: 25855720
Epigenetic; ALSPAC; ARIES; causality; epigenome-wide association study; longitudinal; overweight; overnutrition; undernutrition
9.  DNA methylation in neonates born to women receiving psychiatric care 
Epigenetics  2012;7(4):409-414.
Prenatal exposure both to maternal psychiatric illness and psychiatric medication has been linked with adverse child outcomes that affect physiological, emotional and psychiatric development. Studies suggest that epigenetic mechanisms, such as DNA methylation, may facilitate these effects. In this report, we explore the association between maternal psychiatric illness and treatment during pregnancy and neonatal DNA methylation patterns in a prospectively-characterized clinical cohort of 201 dyads. Associations between the percent of umbilical cord blood DNA methylated at 27,578 CpG sites and maternal psychiatric diagnosis, symptoms and antidepressant use were evaluated by fitting a separate linear mixed effects model for each CpG site. There were no significant changes in neonatal DNA methylation attributable to maternal psychiatric diagnosis or depressive symptoms during pregnancy. Exposure to an antidepressant medication was associated with differential methylation of CpG sites in TNFRSF21 and CHRNA2 (false discovery rate < 0.05), but the average difference in methylation for both CpG sites was less than 3% between each group. The results were not specific to type of antidepressant or duration of the exposure. This study suggests that there are no large effects of maternal psychiatric illness, depressive symptoms or prenatal exposure to antidepressants on neonatal DNA methylation. Delineation of the influence of maternal psychiatric illness and pharmacological exposures on the developing fetuses has critical implications for clinical care during pregnancy.
PMCID: PMC3368823  PMID: 22419064
antidepressants; depressive symptoms; DNA Methylation; HumanMethylation27 BeadChip; Infinium; prenatal exposures
10.  Exploring the Developmental Overnutrition Hypothesis Using Parental–Offspring Associations and FTO as an Instrumental Variable 
PLoS Medicine  2008;5(3):e33.
The developmental overnutrition hypothesis suggests that greater maternal obesity during pregnancy results in increased offspring adiposity in later life. If true, this would result in the obesity epidemic progressing across generations irrespective of environmental or genetic changes. It is therefore important to robustly test this hypothesis.
Methods and Findings
We explored this hypothesis by comparing the associations of maternal and paternal pre-pregnancy body mass index (BMI) with offspring dual energy X-ray absorptiometry (DXA)–determined fat mass measured at 9 to 11 y (4,091 parent–offspring trios) and by using maternal FTO genotype, controlling for offspring FTO genotype, as an instrument for maternal adiposity. Both maternal and paternal BMI were positively associated with offspring fat mass, but the maternal association effect size was larger than that in the paternal association in all models: mean difference in offspring sex- and age-standardised fat mass z-score per 1 standard deviation BMI 0.24 (95% confidence interval [CI]: 0.22 to 0.26) for maternal BMI versus 0.13 (95% CI: 0.11, 0.15) for paternal BMI; p-value for difference in effect < 0.001. The stronger maternal association was robust to sensitivity analyses assuming levels of non-paternity up to 20%. When maternal FTO, controlling for offspring FTO, was used as an instrument for the effect of maternal adiposity, the mean difference in offspring fat mass z-score per 1 standard deviation maternal BMI was −0.08 (95% CI: −0.56 to 0.41), with no strong statistical evidence that this differed from the observational ordinary least squares analyses (p = 0.17).
Neither our parental comparisons nor the use of FTO genotype as an instrumental variable, suggest that greater maternal BMI during offspring development has a marked effect on offspring fat mass at age 9–11 y. Developmental overnutrition related to greater maternal BMI is unlikely to have driven the recent obesity epidemic.
Using parental-offspring associations and theFTO gene as an instrumental variable for maternal adiposity, Debbie Lawlor and colleagues found that greater maternal BMI during offspring development does not appear to have a marked effect on offspring fat mass at age 9-11.
Editors' Summary
Since the 1970s, the proportion of children and adults who are overweight or obese (people who have an unhealthy amount of body fat) has increased sharply in many countries. In the US, 1 in 3 adults is now obese; in the mid-1970s it was only 1 in 7. Similarly, the proportion of overweight children has risen from 1 in 20 to 1 in 5. An adult is considered to be overweight if their body mass index (BMI)—their weight in kilograms divided by their height in meters squared—is between 25 and 30, and obese if it is more than 30. For children, the healthy BMI depends on their age and gender. Compared to people with a healthy weight (a BMI between 18.5 and 25), overweight or obese individuals have an increased lifetime risk of developing diabetes and other adverse health conditions, sometimes becoming ill while they are still young. People become unhealthily fat when they consume food and drink that contains more energy than they need for their daily activities. It should, therefore, be possible to avoid becoming obese by having a healthy diet and exercising regularly.
Why Was This Study Done?
Some researchers think that “developmental overnutrition” may have caused the recent increase in waistline measurements. In other words, if a mother is overweight during pregnancy, high sugar and fat levels in her body might permanently affect her growing baby's appetite control and metabolism, and so her offspring might be at risk of becoming obese in later life. If this hypothesis is true, each generation will tend to be fatter than the previous one and it will be very hard to halt the obesity epidemic simply by encouraging people to eat less and exercise more. In this study, the researchers have used two approaches to test the developmental overnutrition hypothesis. First, they have asked whether offspring fat mass is more strongly related to maternal BMI than to paternal BMI; it should be if the hypothesis is true. Second, they have asked whether a genetic indicator of maternal fatness—the “A” variant of the FTO gene—is related to offspring fat mass. A statistical association between maternal FTO genotype (genetic make-up) and offspring fat mass would support the developmental nutrition hypothesis.
What Did the Researchers Do and Find?
In 1991–1992, the Avon Longitudinal Study of Parents and Children (ALSPAC) enrolled about 14,000 pregnant women and now examines their offspring at regular intervals. The researchers first used statistical methods to look for associations between the self-reported prepregnancy BMI of the parents of about 4,000 children and the children's fat mass at ages 9–11 years measured using a technique called dual energy X-ray absorptiometry. Both maternal and paternal BMI were positively associated with offspring fat mass (that is, fatter parents had fatter children) but the effect of maternal BMI was greater than the effect of paternal BMI. When the researchers examined maternal FTO genotypes and offspring fat mass (after allowing for the offspring's FTO genotype, which would directly affect their fat mass), there was no statistical evidence to suggest that differences in offspring fat mass were related to the maternal FTO genotype.
What Do These Findings Mean?
Although the findings from first approach provide some support for the development overnutrition hypothesis, the effect of maternal BMI on offspring fat mass is too weak to explain the recent obesity epidemic. Developmental overnutrition could, however, be responsible for the much slower increase in obesity that began a century ago. The findings from the second approach provide no support for the developmental overnutrition hypothesis, although these results have wide error margins and need confirming in a larger study. The researchers also note that the effects of developmental overnutrition on offspring fat mass, although weak at age 9–11, might become more important at later ages. Nevertheless, for now, it seems unlikely that developmental overnutrition has been a major driver of the recent obesity epidemic. Interventions that aim to improve people's diet and to increase their physical activity levels could therefore slow or even halt the epidemic.
Additional Information.
Please access these Web sites via the online version of this summary at
See a related PLoS Medicine Perspective article
The MedlinePlus encyclopedia has a page on obesity (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on all aspects of obesity (in English and Spanish)
The UK National Health Service's health Web site (NHS Direct) provides information about obesity
The International Obesity Taskforce provides information about preventing obesity and on childhood obesity
The UK Foods Standards Agency, the United States Department of Agriculture, and Shaping America's Health all provide useful advice about healthy eating for adults and children
The ALSPAC Web site provides information about the Avon Longitudinal Study of Parents and Children and its results so far
PMCID: PMC2265763  PMID: 18336062
11.  Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome 
BMC Genomics  2014;15:30.
Environmental factors during perinatal development may influence developmental plasticity and disease susceptibility via alterations to the epigenome. Developmental exposure to the endocrine active compound, bisphenol A (BPA), has previously been associated with altered methylation at candidate gene loci. Here, we undertake the first genome-wide characterization of DNA methylation profiles in the liver of murine offspring exposed perinatally to multiple doses of BPA through the maternal diet.
Using a tiered focusing approach, our strategy proceeds from unbiased broad DNA methylation analysis using methylation-based next generation sequencing technology to in-depth quantitative site-specific CpG methylation determination using the Sequenom EpiTYPER MassARRAY platform to profile liver DNA methylation patterns in offspring maternally exposed to BPA during gestation and lactation to doses ranging from 0 BPA/kg (Ctr), 50 μg BPA/kg (UG), or 50 mg BPA/kg (MG) diet (N = 4 per group). Genome-wide analyses indicate non-monotonic effects of DNA methylation patterns following perinatal exposure to BPA, corroborating previous studies using multiple doses of BPA with non-monotonic outcomes. We observed enrichment of regions of altered methylation (RAMs) within CpG island (CGI) shores, but little evidence of RAM enrichment in CGIs. An analysis of promoter regions identified several hundred novel BPA-associated methylation events, and methylation alterations in the Myh7b and Slc22a12 gene promoters were validated. Using the Comparative Toxicogenomics Database, a number of candidate genes that have previously been associated with BPA-related gene expression changes were identified, and gene set enrichment testing identified epigenetically dysregulated pathways involved in metabolism and stimulus response.
In this study, non-monotonic dose dependent alterations in DNA methylation among BPA-exposed mouse liver samples and their relevant pathways were identified and validated. The comprehensive methylome map presented here provides candidate loci underlying the role of early BPA exposure and later in life health and disease status.
PMCID: PMC3902427  PMID: 24433282
Bisphenol A; DNA methylation; Environmental epigenomics; MethylPlex
12.  450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy 
Environmental Health Perspectives  2012;120(10):1425-1431.
Background: Epigenetic modifications, such as DNA methylation, due to in utero exposures may play a critical role in early programming for childhood and adult illness. Maternal smoking is a major risk factor for multiple adverse health outcomes in children, but the underlying mechanisms are unclear.
Objective: We investigated epigenome-wide methylation in cord blood of newborns in relation to maternal smoking during pregnancy.
Methods: We examined maternal plasma cotinine (an objective biomarker of smoking) measured during pregnancy in relation to DNA methylation at 473,844 CpG sites (CpGs) in 1,062 newborn cord blood samples from the Norwegian Mother and Child Cohort Study (MoBa) using the Infinium HumanMethylation450 BeadChip (450K).
Results: We found differential DNA methylation at epigenome-wide statistical significance (p-value < 1.06 × 10–7) for 26 CpGs mapped to 10 genes. We replicated findings for CpGs in AHRR, CYP1A1, and GFI1 at strict Bonferroni-corrected statistical significance in a U.S. birth cohort. AHRR and CYP1A1 play a key role in the aryl hydrocarbon receptor signaling pathway, which mediates the detoxification of the components of tobacco smoke. GFI1 is involved in diverse developmental processes but has not previously been implicated in responses to tobacco smoke.
Conclusions: We identified a set of genes with methylation changes present at birth in children whose mothers smoked during pregnancy. This is the first study of differential methylation across the genome in relation to maternal smoking during pregnancy using the 450K platform. Our findings implicate epigenetic mechanisms in the pathogenesis of the adverse health outcomes associated with this important in utero exposure.
PMCID: PMC3491949  PMID: 22851337
epigenetics; epigenome-wide; in utero; maternal smoking; methylation
13.  The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood 
Translational Psychiatry  2016;6(3):e765-.
Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=−2.23% 95% CI=−3.68 to −0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=−3.89% 95% CI=−6.06 to −1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=−3.70% 95% CI=−5.90 to −1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed.
PMCID: PMC4872456  PMID: 27023171
14.  DNA methylation signatures in cord blood associated with maternal gestational weight gain: results from the ALSPAC cohort 
BMC Research Notes  2014;7:278.
Epigenetic changes could mediate the association of maternal pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) with adverse offspring outcomes. However, studies in humans are lacking. Here, we examined the association of maternal pre-pregnancy BMI and GWG in different periods of pregnancy with cytosine-guanine (CpG) dinucleotide site methylation differences in newborn cord blood DNA from 88 participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort using the Illumina GoldenGate Panel I. Pyrosequencing was used for validation of the top associated locus and for replication in 170 non-overlapping mother-offspring pairs from the ALSPAC cohort.
After correction for multiple testing greater GWG in early pregnancy (between 0 to 18 weeks of gestation) was associated with increased DNA methylation levels in four CpG sites at MMP7, KCNK4, TRPM5 and NFKB1 genes (difference in methylation >5% per 400 g/week greater GWG) (q values 0.023 -0.065). Pre-pregnancy BMI and GWG in mid- or late pregnancy were not associated with differential DNA methylation at any CpG site. Pyrosequencing showed that greater GWG in early pregnancy was associated with increased DNA methylation levels at the top associated CpG site at MMP7, although association did not reach statistical significance (p = 0.302). Greater GWG in mid- (p = 0.167) and late-pregnancy (p = 0.037) were also associated with increased DNA methylation levels at the MMP7 CpG site. In addition, newborns of mothers who exceeded the IoM-recommended GWG had higher DNA methylation levels at the MMP7 CpG site than those of mothers with IoM-recommended GWG (p = 0.080). We failed to replicate findings.
Greater GWG in early pregnancy was associated with increased methylation at CpG sites at MMP7, KCNK4, TRPM5 and NFKB1 genes in offspring cord blood DNA. The specific association of GWG in early pregnancy with the top associated CpG site at MMP7 was not validated using Pyrosequencing and it did not replicate. However, given the potential functional relevancy of the four identified loci, we advocate further exploration of them in larger studies.
PMCID: PMC4108052  PMID: 24886386
DNA methylation; Epigenetics; Gestational weight gain
15.  Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood 
Maternal diet during pregnancy has been linked to offspring adiposity, but it is unclear whether maternal polyunsaturated fatty acid (PUFA) status during pregnancy affects offspring body composition.
We investigated the associations between maternal plasma n-3 and n-6 PUFA status at 34 weeks gestation and offspring body composition.
Design and setting
A prospective UK population-based mother-offspring cohort: the Southampton Women’s Survey (SWS).
12583 non-pregnant women were recruited into the SWS, of which 1987 delivered a baby before 31st December 2003. 293 mother-child pairs had complete measurements of maternal plasma PUFA concentrations in late pregnancy and offspring body composition at ages 4 and 6 years.
Main Outcomes Measured
Offspring body composition by DXA, yielding fat mass(FM), lean mass(LM), percentage fat mass(%FM) and percentage lean mass(%LM).
Maternal plasma n-6 PUFA concentration positively predicted offspring fat mass at 4 years (β=0.14 SD/SD, p=0.01) and 6 years (β=0.11 SD/SD, p=0.04), but there was no association with offspring lean mass at either age (β=0.005 SD/SD, p=0.89 & β=0.008 SD/SD, p=0.81, respectively). Maternal plasma n-3 PUFA concentration displayed no associations with offspring fat mass at 4 years (β=0.057 SD/SD, p=0.34) or 6 years (β=0.069 SD/SD, p=0.21). Maternal plasma n-3 PUFA status positively correlated with offspring lean mass on univariate analysis (4yrs β=0.11, p=0.06; 6yrs β=0.14, p=0.02), however this was confounded by a positive association with offspring height.
This observational study suggests that maternal n-6 PUFA status during pregnancy might influence offspring adiposity in childhood.
PMCID: PMC3604685  PMID: 23162098
long chain polyunsaturated fatty acids; adiposity; body composition; fetal programming
16.  Inter-individual variation of dietary fat-induced mesoderm specific transcript in adipose tissue within inbred mice is not caused by altered promoter methylation 
Mesoderm specific transcript (Mest), an imprinted gene associated with fat mass expansion under conditions of positive energy balance, shows highly variable expression (~80-fold) in white adipose tissue (WAT) of C57BL/6J (B6) mice fed an obesogenic diet. Since B6 mice are essentially genetically invariant and Mest is known to be regulated by CpG methylation within its immediate proximal promoter, the large variability in its expression in adipose tissue has the hallmarks of being controlled via an epigenetic mechanism. In this study, bisulfite sequencing and allelic discrimination analyses were performed to determine whether variations in CpG methylation within the Mest promoter were associated with its expression. Results showed no relationship between CpG methylation in the Mest promoter and high versus low expression in either WAT or isolated adipocytes; and, experiments using a single nucleotide polymorphism in the Mest promoter region between B6 and Castaneus mice showed the expected pattern for an imprinted gene with all maternal alleles being methylated. These data suggest that mechanisms independent of the CpG methylation status of the Mest promoter must underlie the control of its expression during adipose tissue expansion.
PMCID: PMC3951159  PMID: 19875931
imprinting; methylation; epigenetics; genetics; obesity; adiposity
17.  Maternal smoking and DNA methylation in newborns: In utero effect or epigenetic inheritance? 
Maternal smoking in pregnancy is associated with adverse health outcomes in children, including cancers; underlying mechanisms may include epigenetic modifications. Using Illumina’s 450K array, we previously identified differential DNA methylation related to maternal smoking during pregnancy at 26 CpG sites (CpGs) in 10 genes in newborn cord bloods from the Norwegian Mother and Child Cohort Study (MoBa). Whether these methylation signals in newborns reflect in utero exposure only or possibly epigenetic inheritance of smoking-related modifications is unclear.
We therefore evaluated the impact of the timing of mother’s smoking (before or during pregnancy using cotinine measured at 18 weeks gestation), the father’s smoking before conception, and the grandmother’s smoking during her pregnancy with the mother on methylation at these 26 CpGs in 1,042 MoBa newborns. We used robust linear regression, adjusting for covariates, applying Bonferroni correction.
The strongest and only statistically significant associations were observed for sustained smoking by the mother during pregnancy through at least gestational week 18 (p<1.6×10−5 for all 26 CpGs). We observed no statistically significant differential methylation due to smoking by the mother prior to pregnancy or that ceased by week 18, father’s smoking before conception, or grandmother’s smoking while pregnant with the mother.
Differential methylation at these CpGs in newborns appears to reflect sustained in utero exposure rather than epigenetic inheritance.
Smoking cessation in early pregnancy may negate effects on methylation. Analyses of maternal smoking during pregnancy and offspring health outcomes, including cancer, limited to ever smoking might miss true associations.
PMCID: PMC4140220  PMID: 24740201
Epigenetic; inheritance; methylation; prenatal; smoking
18.  Maternal Leptin Predicts Adiposity of the Neonate 
Increased adiposity at birth may identify infants at high risk of developing obesity. Maternal obesity and hyperglycemia in pregnancy are associated with increased neonatal adiposity; however, features of maternal obesity that contribute to increased neonatal adiposity need further study.
To measure adiposity in neonates of obese and normal-weight women without gestational diabetes to test the hypothesis that obese women have neonates with increased adiposity compared to neonates of normal-weight women.
Sixty-one pregnant women, with a normal or obese BMI, and their neonates participated in this cross-sectional study at an academic medical center. Neonatal adiposity, expressed as percent body fat (fat mass/body mass), was measured by air displacement plethysmography and cord blood was assayed for biomarkers.
Adiposity in neonates of obese and normal-weight mothers did not differ. Stratifying mothers by leptin level showed that neo nates born to mothers with higher leptin had significantly higher adiposity (13.2 vs. 11.1%, p = 0.035). In the entire cohort, adiposity positively correlated with cord blood leptin (r = 0.48, p < 0.001) and adiponectin (r = 0.27, p = 0.04) levels.
Obesity in normoglycemic pregnant women was not associated with increased neonatal adiposity. High maternal leptin levels identified neonates with increased adiposity.
PMCID: PMC4123455  PMID: 24334975
19.  Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood 
Environmental Health Perspectives  2015;124(5):666-673.
Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk.
The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development.
Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression.
Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = –0.0014; 95% CI: –0.0023, –0.0005, p = 0.002), stronger in males (β = –0.0024; 95% CI: –0.0038, –0.0009, p = 0.003) than in females (β = –0.0009; 95% CI: –0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = –0.0013; 95% CI: –0.0023, –0.0003, p = 0.01) DMR methylation, but primarily in females, (β = –0.0017; 95% CI: –0.0029, –0.0006, p = 0.005) rather than in males, (β = –0.0004; 95% CI: –0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months.
Our findings provide evidence that early childhood lead exposure results in sex-dependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood.
Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. 2016. Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect 124:666–673;
PMCID: PMC4858407  PMID: 26115033
20.  Increased methylation at differentially methylated region of GNAS in infants born to gestational diabetes 
BMC Medical Genetics  2014;15:108.
Offspring of pregnancy complicated with gestational diabetes (GDM) are at high risk for metabolic diseases. The mechanisms behind the association of intrauterine exposure to GDM and high risk of health problems in later life remain largely unknown. The aim of this study was to clarify the alteration in methylation levels at differentially methylated regions (DMRs) of GNAS and IGF2 in fetuses of GDM women and to explore the possible mechanisms linking maternal GDM with high risk of metabolic diseases in later life of GDM offspring.
Lymphocytes were isolated from umbilical cord blood of infants born to 87 women with GDM and 81 women with normal pregnancy. Genomic DNA was extracted and DNA methylation levels of GNAS and IGF2 DMRs were determined by Massarray quantitative methylation analysis.
The methylation levels were detected in 7 CpG sites of GNAS DMRs and 6 sites of IGF2 DMRs. Methylation levels were significantly higher at sites 4, 5 and 7 of GNAS DMR in GDM compared to normal pregnancy (P = 0.007, 0.008 and 0.008, respectively). The methylation level at site 4 of GNAS was significantly correlated with the presence of GDM (P = 0.003), the methylation levels at site 5 and 7 were significantly correlated with the presence of GDM (P = 0.002 for both) and gestational age (P = 0.027 for both). There was no significant difference in any sites of IGF2 DMR (P > 0.05 for all).
We concluded maternal GDM-induced hypermethylation at GNAS DMR and this condition may be among the mechanisms associating maternal GDM with increased risk of metabolic diseases in later life of offspring.
PMCID: PMC4411875  PMID: 25269528
Gestational diabetes mellitus; Methylation; DNA; DMR; GNAS; IGF2
21.  A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits 
PLoS ONE  2016;11(6):e0157776.
Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and diabetes.
PMCID: PMC4913906  PMID: 27322064
22.  Antidepressant medication during pregnancy and epigenetic changes in umbilical cord blood: a systematic review 
Clinical Epigenetics  2016;8(1):94.
Epigenetic mechanisms are important for the regulation of gene expression and differentiation in the fetus and the newborn child. Symptoms of maternal depression and antidepressant use affects up to 20 % of pregnant women, and may lead to epigenetic changes with life-long impact on child health. The aim of this review is to investigate whether there is an association between exposure to maternal antidepressants during pregnancy and epigenetic changes in the newborn.
Material and methods
Systematic literature searches were performed in MEDLINE and EMBASE combining MeSH terms covering epigenetic changes, use of antidepressant medication, pregnancy and newborns. A keyword search was also performed. We included studies on pregnant women and their children where there was a history of maternal depressed mood or anxiety, a reported use of antidepressant medication, and measurements of epigenetic changes in umbilical cord blood. Studies using genome-wide or candidate-based epigenetic analyses were included. Citations and references from the included articles were investigated to locate further relevant articles. The completeness of reporting as well as the risk of bias and confounding was assessed.
Six studies were included. They all investigated methylation changes. Genome-wide methylation changes were examined in 184 children and methylation status in specific genes was examined in 96 children exposed to antidepressant medication. Three of the studies found an association between use of antidepressant medication during pregnancy and methylation status at various CpG sites measured in cord blood of the newborn. One of these studies found an association in African-Americans, but not Caucasians.
The remaining three studies found associations between maternal mood and epigenetic changes in umbilical cord blood but no association between epigenetic changes and maternal use of antidepressant medication.
The included studies have not established a clear association between use of antidepressant medication during pregnancy and epigenetic changes in the cord blood. Future studies using newer, more wide-ranging epigenetic methods could discover possible new differentially methylated sites. Larger sample sizes and good validity of exposures are warranted in order to adjust for level of maternal depression, other maternal illness, maternal use of other types of medication, and maternal ethnicity.
PROSPERO registration number: CRD42015026575.
PMCID: PMC5015265  PMID: 27610205
DNA methylation; Prenatal exposures; Antidepressants; SSRI; Depression; Review
23.  Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport 
PLoS ONE  2015;10(12):e0143653.
Maternal environment and lifestyle factors may modify placental function to match the mother’s capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content) on a selection of metabolic and amino acid transporter genes and their associations with fetal growth.
RNA was extracted from 102 term Southampton Women’s Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR.
Increased placental LAT2 (p = 0.01), y+LAT2 (p = 0.03), aspartate aminotransferase 2 (p = 0.02) and decreased aspartate aminotransferase 1 (p = 0.04) mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01), ASCT1 (p = 0.03), mitochondrial branched chain aminotransferase (p = 0.02) and glutamine synthetase (p = 0.05) was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05) associated with higher maternal diet quality (prudent dietary pattern) pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05) and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01) associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01). Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001).
A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking, physical activity and diet raises the possibility that their effects are mediated in part through alterations in placental function. The observed changes in placental gene expression in relation to modifiable maternal factors are important as they could form part of interventions aimed at maintaining a healthy lifestyle for the mother and for optimal fetal development.
PMCID: PMC4682815  PMID: 26657885
24.  Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep 
Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.
PMCID: PMC3617393  PMID: 23577020
maternal nutrition; pregnancy; gene expression; DNA methylation
25.  Serum Activin A and Follistatin Levels in Gestational Diabetes and the Association of the Activin A-Follistatin System with Anthropometric Parameters in Offspring 
PLoS ONE  2014;9(4):e92175.
The Activin A-Follistatin system has emerged as an important regulator of lipid and glucose metabolism with possible repercussions on fetal growth.
To analyze circulating activin A, follistatin and follistatin-like-3 (FSTL3) levels and their relationship with glucose metabolism in pregnant women and their influence on fetal growth and neonatal adiposity.
Design and methods
A prospective cohort was studied comprising 207 pregnant women, 129 with normal glucose tolerance (NGT) and 78 with gestational diabetes mellitus (GDM) and their offspring. Activin A, follistatin and FSTL3 levels were measured in maternal serum collected in the early third trimester of pregnancy. Serial fetal ultrasounds were performed during the third trimester to evaluate fetal growth. Neonatal anthropometry was measured to assess neonatal adiposity.
Serum follistatin levels were significantly lower in GDM than in NGT pregnant women (8.21±2.32 ng/mL vs 9.22±3.41, P = 0.012) whereas serum FSTL3 and activin A levels were comparable between the two groups. Serum follistatin concentrations were negatively correlated with HOMA-IR and positively with ultrasound growth parameters such as fractional thigh volume estimation in the middle of the third trimester and percent fat mass at birth. Also, in the stepwise multiple linear regression analysis serum follistatin levels were negatively associated with HOMA-IR (β = −0.199, P = 0.008) and the diagnosis of gestational diabetes (β = −0.138, P = 0.049). Likewise, fractional thigh volume estimation in the middle of third trimester and percent fat mass at birth were positively determined by serum follistatin levels (β = 0.214, P = 0.005 and β = 0.231, P = 0.002, respectively).
Circulating follistatin levels are reduced in GDM compared with NGT pregnant women and they are positively associated with fetal growth and neonatal adiposity. These data suggest a role of the Activin-Follistatin system in maternal and fetal metabolism during pregnancy.
PMCID: PMC3998926  PMID: 24763182

Results 1-25 (994136)