PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1100201)

Clipboard (0)
None

Related Articles

1.  Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells In Vitro 
Biomacromolecules  2009;10(3):541-546.
An injectable, biodegradable hydrogel composite of oligo(poly(ethylene glycol) fumarate) (OPF) and gelatin microparticles (MPs) has been investigated as a cell and growth factor carrier for cartilage tissue engineering applications. In this study, hydrogel composites with different swelling ratios were prepared by crosslinking OPF macromers with poly(ethylene glycol) (PEG) repeating units of varying molecular weights from 1,000 ~ 35,000. Rabbit marrow mesenchymal stem cells (MSCs) and MPs loaded with transforming growth factor-β1 (TGF-β1) were encapsulated in the hydrogel composites in order to examine the effect of the swelling ratio of the hydrogel composites on the chondrogenic differentiation of encapsulated rabbit marrow MSCs both in the presence and absence of TGF-β1. The swelling ratio of the hydrogel composites increased as the PEG molecular weight in the OPF macromers increased. Chondrocyte-specific genes were expressed at higher levels in groups containing TGF-β1-loaded MPs and varied with the swelling ratio of the hydrogel composites. OPF hydrogel composites with PEG repeating units of molecular weight 35,000 and 10,000 with TGF-β1-loaded MPs exhibited a 159 ± 95 and a 89 ± 31 fold increase in type II collagen gene expression at day 28, respectively, while OPF hydrogel composites with PEG repeating units of molecular weight 3,000 and 1,000 with TGF-β1-loaded MPs showed a 27 ± 10 and a 17 ± 7 fold increase in type II collagen gene expression, respectively, as compared to the composites with blank MPs at day 0. The results indicate that chondrogenic differentiation of encapsulated rabbit marrow MSCs within OPF hydrogel composites could be affected by their swelling ratio, thus suggesting the potential of OPF composite hydrogels as part of a novel strategy for controlling the differentiation of stem cells.
doi:10.1021/bm801197m
PMCID: PMC2765566  PMID: 19173557
injectable hydrogels; crosslinking; marrow mesenchymal stem cells; gelatin microparticles; TGF-β1; chondrogenic differentiation; cartilage tissue engineering
2.  A Stimuli-Responsive Hydrogel for Doxorubicin Delivery 
Biomaterials  2010;31(31):8051-8062.
The goal of this study was to develop a polymeric carrier for delivery of anti-tumor drugs and sustained release of these agents in order to optimize anti-tumor activity while minimizing systemic effects. We used oligo(poly(ethylene glycol) fumarate) (OPF) hydrogels modified with small negatively charged molecules, sodium methacrylate (SMA), for delivery of doxorubicin (DOX). SMA at different concentrations was incorporated into the OPF hydrogel with a photo-crosslinking method. The resulting hydrogels exhibited sensitivity to the pH and ionic strength of the surrounding environment. Our results revealed that DOX was bound to the negatively charged hydrogel through electrostatic interaction and was released in a timely fashion with an ion exchange mechanism. Release kinetics of DOX was directly correlated to the concentration of SMA in the hydrogel formulations. Anti-tumor activity of the released DOX was assessed using a human osteosarcoma cell line. Our data revealed that DOX released from the modified, charged hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of unmodified OPF hydrogels with or without DOX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using SMA-modified OPF hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments.
doi:10.1016/j.biomaterials.2010.06.054
PMCID: PMC2936247  PMID: 20696470
3.  Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate 
This study aimed to elucidate the role of charge in mediating chondrocyte response to loading by employing synthetic 3D hydrogels. Specifically, neutral poly(ethylene glycol) (PEG) hydrogels were employed where negatively charged chondroitin sulfate (ChS), one of the main extracellular matrix components of cartilage, was systematically incorporated into the PEG network at 0%, 20% or 40% to control the fixed charge density. PEG hydrogels were employed as a control environment for extracellular events which occur as a result of loading, but which are not associated with a charged matrix (e.g., cell deformation and fluid flow). Freshly isolated bovine articular chondrocytes were embedded in the hydrogels and subject to dynamic mechanical stimulation (0.3 Hz, 15% amplitude strains, 6 hours) and assayed for nitric oxide production, cell proliferation, proteoglycan synthesis, and collagen deposition. In the absence of loading, incorporation of charge inhibited cell proliferation by ~75%, proteoglycan synthesis by ~22–50% depending on ChS content, but had no affect on collagen deposition. Dynamic loading had no effect on cellular responses in PEG hydrogels. However, dynamically loading 20% ChS gels inhibited nitrite production by 50%, cell proliferation by 40%, but stimulated proteoglycan and collagen deposition by 162% and 565%, respectively. Dynamic loading of 40% ChS hydrogels stimulated nitrite production by 62% and proteoglycan synthesis by 123%, but inhibited cell proliferation by 54% and collagen deposition by 52%. Upon removing the load and culturing under free swelling conditions for 36 hrs, the enhanced matrix synthesis observed in the 20% ChS gels was not maintained suggesting that loading is necessary to stimulate matrix production. In conclusion, extracellular events associated with a charged matrix has a dramatic affect on how chondrocytes respond to mechanical stimulation within these artificial 3D matrices suggesting that streaming potentials and/or dynamic changes in osmolarity may be important regulators of chondrocytes while cell deformation and fluid flow appear to have less of an effect.
doi:10.1016/j.matbio.2009.08.004
PMCID: PMC2914691  PMID: 19720146
cartilage; chondrocyte; chondroitin sulfate; hydrogel; fixed charged density; dynamic load
4.  Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair 
Biomaterials  2011;32(32):8077-8086.
The transected rat thoracic (T9/10) spinal cord model is a platform for quantitatively compa0ring biodegradable polymer scaffolds. Schwann cell-loaded scaffolds constructed from poly (lactic co-glycolic acid) (PLGA), poly(ε-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) fumarate (OPF) hydrogel or positively charged OPF (OPF+) hydrogel were implanted into the model. We demonstrated that the mechanical properties (3-point bending and stiffness) of OPF and OPF+ hydrogels closely resembled rat spinal cord. After one month, tissues were harvested and analyzed by morphometry of neurofilament-stained sections at rostral, midlevel, and caudal scaffold. All polymers supported axonal growth. Significantly higher numbers of axons were found in PCLF (P < 0.01) and OPF+ (P < 0.05) groups, compared to that of the PLGA group. OPF+ polymers showed more centrally distributed axonal regeneration within the channels while other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed axons within the channels. The centralized distribution was associated with significantly more axons regenerating (P < 0.05). Volume of scar and cyst rostral and caudal to the implanted scaffold was measured and compared. There were significantly smaller cyst volumes in PLGA compared to PCLF groups. The model provides a quantitative basis for assessing individual and combined tissue engineering strategies.
doi:10.1016/j.biomaterials.2011.07.029
PMCID: PMC3163757  PMID: 21803415
OPF; PLGA; PCLF; axon regeneration; spinal cord injury; Schwann cell
5.  Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering 
Biomaterials  2007;28(21):3217-3227.
We investigated the development of an injectable, biodegradable hydrogel composite of oligo(poly(ethylene glycol) fumarate) (OPF) with encapsulated rabbit marrow mesenchymal stem cells (MSCs) and gelatin microparticles (MPs) loaded with transforming growth factor-β1 (TGF-β1) for cartilage tissue engineering applications. Rabbit MSCs and TGF-β1-loaded MPs were mixed with OPF, a poly(ethylene glycol)-diacrylate crosslinker and the radical initiators ammonium persulfate and N,N,N’,N’-tetramethylethylenediamine, and then crosslinked at 37°C for 8 min to form hydrogel composites. Three studies were conducted over 14 days in order to examine the effects of: 1) the composite formulation, 2) the MSC seeding density, and 3) the TGF-β1 concentration on the chondrogenic differentiation of encapsulated rabbit MSCs. Bioassay results showed no significant difference in DNA amount between groups, however, groups with MPs had a significant increase in glycosaminoglycan content per DNA starting at day 7 as compared to controls at day 0. Chondrocyte-specific gene expression of type II collagen and aggrecan were only evident in groups containing TGF-β1-loaded MPs and varied with TGF-β1 concentration in a dose dependent manner. Specifically, type II collagen gene expression exhibited a 161 ± 49 fold increase and aggrecan gene expression a 221 ± 151 fold increase after 14 days with the highest dose of TGF-β1 (16 ng/ml). These results indicate that encapsulated rabbit MSCs remained viable over the culture period and differentiated into chondrocyte-like cells, thus suggesting the potential of OPF composite hydrogels as part of a novel strategy for localized delivery of stem cells and bioactive molecules.
doi:10.1016/j.biomaterials.2007.03.030
PMCID: PMC2964378  PMID: 17445882
Cartilage tissue engineering; marrow mesenchymal stem cells; gelatin microparticles; injectable hydrogels; TGF-β1
6.  Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties 
Biomaterials  2014;35(21):5425-5435.
Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from the PNPHO copolymer. Moreover, our results demonstrated that more than 80% of cells encapsulated in these hydrogels remained viable, and the number of encapsulated cells increased for at least 5 days. These unique properties mark elastin-co-PNHPO hydrogels as favorable candidates for a broad range of tissue engineering applications.
doi:10.1016/j.biomaterials.2014.03.026
PMCID: PMC4419780  PMID: 24731705
Thermally responsive material; Elastin; Hydrogel; Injectable
7.  TENSILE PROPERTIES OF ENGINEERED CARTILAGE FORMED FROM CHONDROCYTE- AND MSC-LADEN HYDROGELS 
Objective
The objective of this study was to determine the capacity of chondrocyte-and mesenchymal stem cell (MSC)-laden hydrogel constructs to achieve native tissue tensile properties when cultured in a chemically defined medium supplemented with transforming growth factor-beta3 (TGF-β3).
Design
Cell-laden agarose hydrogel constructs (seeded with bovine chondrocytes or MSCs) were formed as prismatic strips and cultured in a chemically defined serum-free medium in the presence or absence of TGF-β3. The effects of seeding density (10 versus 30 million cells/mL) and cell type (chondrocyte versus MSC) were evaluated over a 56 day period. Biochemical content, collagenous matrix deposition and localization, and tensile properties (ramp modulus, ultimate strain, and toughness) were assessed bi-weekly.
Results
Results show that the tensile properties of cell seeded agarose constructs increase with time in culture. However, tensile properties (modulus, ultimate strain, and toughness) achieved on day 56 were not dependent on either the initial seeding density or the cell type employed. When cultured in medium supplemented with TGF-β3, tensile modulus increased and plateaued at a level of 300–400 kPa for each cell type and starting cell concentration. Ultimate strain and toughness also increased relative to starting values. Collagen deposition increased in constructs seeded with both cell types and at both seeding densities, with exposure to TGF-β3 resulting in a clear shift towards type II collagen deposition as determined by immunohistochemical staining.
Conclusions
These findings demonstrate that the tensile properties, an important and often overlooked metric of cartilage development, increase with time in culture in engineered hydrogel-based cartilage constructs. Under the free-swelling conditions employed in the present study, tensile moduli and toughness did not match that of the native tissue, though significant time-dependent increases were observed with the inclusion of TGF-β3. Of note, MSC-seeded constructs achieved tensile properties that were comparable to chondrocyte-seeded constructs, confirming the utility of this alternative cell source in cartilage tissue engineering. Further work, including both modulation of the chemical and mechanical culture environment, is required to optimize the deposition of collagen and its remodeling to achieve tensile properties in engineered constructs matching the native tissue.
doi:10.1016/j.joca.2008.02.005
PMCID: PMC2601559  PMID: 18353693
Cartilage; Tissue Engineering; Tensile Testing; Chondrocytes; 3D Culture; Mesenchymal Stem Cells
8.  Controlled Delivery of Vancomycin via Charged Hydrogels 
PLoS ONE  2016;11(1):e0146401.
Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.
doi:10.1371/journal.pone.0146401
PMCID: PMC4711919  PMID: 26760034
9.  A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair 
Background
Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invasive manner through a small gauge needle, forming a three-dimensional (3D) network structure in situ. However, an ongoing problem with fibrin/HA-based biomaterials is poor mechanical strength. This was addressed by modifying HA with methacrylic anhydride (MA) (HA-MA), which reinforces the fibrin gel, thereby improving mechanical properties. In this study, a range of fibrinogen (the fibrin precursor) and HA-MA concentrations were explored to determine optimal conditions for increased mechanical strength, BMSC proliferation, and chondrogenesis potential in vitro.
Results
Increased mechanical strength was achieved by HA-MA reinforcement within fibrin hydrogels, and was directly correlated with increasing HA-MA concentration. Live/dead staining and metabolic assays confirmed that the crosslinked fibrin/HA-MA hydrogels provided a suitable 3D environment for BMSC proliferation. Quantitative polymerase chain reaction (qPCR) of BMSCs incubated in the fibrin/HA-MA hydrogel confirmed decreased expression of collagen type 1 alpha 1 mRNA with an increase in Sox9 mRNA expression especially in the presence of a platelet lysate, suggesting early chondrogenesis.
Conclusion
Fibrin/HA-MA hydrogel may be a suitable delivery method for BMSCs, inducing BMSC differentiation into chondrocytes and potentially aiding in articular cartilage repair for OA therapy.
doi:10.1186/1754-1611-8-10
PMCID: PMC4109069  PMID: 25061479
Osteoarthritis; Fibrin; Hyaluronic acid; Mesenchymal stem cell; Hydrogel; Cartilage; Stem cell delivery; Regenerative medicine; Tissue engineering
10.  Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability 
Biomacromolecules  2008;9(4):1283-1292.
A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide–hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 °C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited lower critical solution temperatures (LCSTs) from 18 to 26 °C. After complete hydrolysis, hydrogels were soluble in phosphate buffered saline at 37 °C with LCSTs above 40.8 °C. Incorporation of type I collagen at varying mass fractions by covalent reaction with the copolymer backbone slightly increased LCSTs. Water content was 32–80% without collagen and increased to 230% with collagen at 37 °C. Hydrogels were highly flexible and relatively strong at 37 °C, with tensile strengths from 0.3 to 1.1 MPa and elongations at break from 344 to 1841% depending on NIPAAm/HEMAPLA ratio, AAc content, and polylactide length. Increasing the collagen content decreased both elongation at break and tensile strength. Hydrogel weight loss at 37 °C was 85–96% over 21 days and varied with polylactide content. Hydrogel weight loss at 37 °C was 85–96% over 21 days and varied with polylactide content. Degradation products were shown to be noncytotoxic. Cell adhesion on the hydrogels was 30% of that for tissue culture polystyrene but increased to statistically approximate this control surface after collagen incorporation. These newly described thermoresponsive copolymers demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.
doi:10.1021/bm701265j
PMCID: PMC2860788  PMID: 18324775
11.  Osteochondral Tissue Regeneration using a Bilayered Composite Hydrogel with Modulating Dual Growth Factor Release Kinetics in a Rabbit Model 
Biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) composite hydrogels have been investigated for the delivery of growth factors (GFs) with the aid of gelatin microparticles (GMPs) and stem cell populations for osteochondral tissue regeneration. In this study, a bilayered OPF composite hydrogel that mimics the distinctive hierarchical structure of native osteochondral tissue was utilized to investigate the effect of transforming growth factor-β3 (TGF-β3) with varying release kinetics and/or insulin-like growth factor-1 (IGF-1) on osteochondral tissue regeneration in a rabbit full-thickness osteochondral defect model. The four groups investigated included (i) a blank control (no GFs), (ii) GMP-loaded IGF-1 alone, (iii) GMP-loaded IGF-1 and gel-loaded TGF-β3, and (iv) GMP-loaded IGF-1 and GMP-loaded TGF-β3 in OPF composite hydrogels. The results of an in vitro release study demonstrated that TGF-β3 release kinetics could be modulated by the GF incorporation method. At 12 weeks post-implantation, the quality of tissue repair in both chondral and subchondral layers was analyzed based on quantitative histological scoring. All groups incorporating GFs resulted in a significant improvement in cartilage morphology compared to the control. Single delivery of IGF-1 showed higher scores in subchondral bone morphology as well as chondrocyte and glycosaminoglycan amount in adjacent cartilage tissue when compared to a dual delivery of IGF-1 and TGF-β3, independent of the TGF-β3 release kinetics. The results suggest that although the dual delivery of TGF-β3 and IGF-1 may not synergistically enhance the quality of engineered tissue, the delivery of IGF-1 alone from bilayered composite hydrogels positively affects osteochondral tissue repair and holds promise for osteochondral tissue engineering applications.
doi:10.1016/j.jconrel.2013.03.013
PMCID: PMC3661728  PMID: 23541928
Hydrogel; osteochondral defect; transforming growth factor-β3; insulin-like growth factor-1
12.  MODULATION OF CHONDROCYTE BEHAVIOR THROUGH TAILORING FUNCTIONAL SYNTHETIC SACCHARIDE-PEPTIDE HYDROGELS 
Biomaterials  2012;33(26):6052-6060.
Tailoring three-dimensional (3D) biomaterial environments to provide specific cues in order to modulate function of encapsulated cells could potentially eliminate the need for addition of exogenous cues in cartilage tissue engineering. We recently developed saccharide-peptide copolymer hydrogels for cell culture and tissue engineering applications. In this study, we aim to tailor our saccharide-peptide hydrogel for encapsulating and culturing chondrocytes in 3D and examine the effects of changing single amino acid moieties differing in hydrophobicity/hydrophilicity (valine (V), cysteine (C), tyrosine (Y)) on modulation of chondrocyte function. Encapsulated chondrocytes remained viable over 21 days in vitro. Glycosaminoglycan and collagen content was significantly higher in Y-functionalized hydrogels compared to V-functionalized hydrogels. Extensive matrix accumulation and concomitant increase in mechanical properties was evident over time, particularly with the presence of Y amino acid. After 21 days in vitro, Y-functionalized hydrogels attained a modulus of 193±46 kPa, compared to 44±21 kPa for V-functionalized hydrogels. Remarkably, mechanical and biochemical properties of chondrocyte-laden hydrogels were modulated by change in a single amino acid moiety. This unique property, combined with the versatility and biocompatibility, makes our saccharide-peptide hydrogels promising candidates for further investigation of combinatorial effects of multiple functional groups on controlling chondrocyte and other cellular function and behavior.
doi:10.1016/j.biomaterials.2012.04.058
PMCID: PMC3387337  PMID: 22672831
tissue engineering; chondrocyte; cartilage; sacchride-peptide; amino acid; functional group
13.  Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair 
PLoS ONE  2016;11(2):e0148372.
Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes including Mmp2, Mmp9, Mmp13, Adamts4 and Adamts5 was downregulated following Icariin treatment for 14 days. In a differentiation assay using bone marrow mesenchymal stem cells (MSCs) carrying HIF-1α floxed allele, the promotive effect of Icariin on chondrogenic differentiation is largely decreased following Cre recombinase-mediated deletion of HIF-1α in MSCs as indicated by Alcian blue staining for proteoglycan synthesis. In an alginate hydrogel 3D culture system, Icariin increases Safranin O positive (SO+) cartilage area. This phenotype is accompanied by upregulation of HIF-1α, increased proliferating cell nuclear antigen positive (PCNA+) cell numbers, SOX9+ chondrogenic cell numbers, and Col2 expression in the newly formed cartilage. Coincide with the micromass culture, Icariin treatment upregulates mRNA levels of Sox9, Col2α1, aggrecan and Col10α1 in the 3D cultures. We then generated alginate hydrogel 3D complexes incorporated with Icariin. The 3D complexes were transplanted in a mouse osteochondral defect model. ICRS II histological scoring at 6 and 12 weeks post-transplantation shows that 3D complexes incorporated with Icariin significantly enhance articular cartilage repair with higher scores particularly in selected parameters including SO+ cartilage area, subchondral bone and overall assessment than that of the controls. The results suggest that Icariin may inhibit PHD activity likely through competition for cellular iron ions and therefore it may serve as an HIF-1α activator to promote articular cartilage repair through regulating chondrocyte proliferation, differentiation and integration with subchondral bone formation.
doi:10.1371/journal.pone.0148372
PMCID: PMC4739592  PMID: 26841115
14.  Stimulation of neurite outgrowth using positively charged hydrogels 
Biomaterials  2009;30(23-24):3874-3881.
Autologous nerve grafts are currently the best option for the treatment of segmental peripheral nerve defects. However, autografts have several drawbacks including size mismatch and loss of sensation in the donor nerve’s sensory distribution. In this work, we have investigated the development of a synthetic hydrogel that contains positive charge for use as a substrate for nerve cell attachment and neurite outgrowth in culture. We have demonstrated that modification of oligo-(polyethylene glycol) fumarate (OPF) with a positively charged monomer improves primary sensory rat neuron attachment and differentiation in a dose-dependent manner. Positively charged hydrogels also supported attachment of dorsal root ganglion (DRG) explants that contain sensory neurons, Schwann cells and neuronal support cells. Furthermore, charged hydrogels were analyzed for the appearance of myelinated structures in a co-culture containing DRG neurons and Schwann cells. DRGs and Schwann cells remained viable on charged hydrogels for a time period of three weeks and neurites extended from the DRGs. Sudan black staining revealed that neurites emerging from DRGs were accompanied by migrating Schwann cells. These findings suggest that charged OPF hydrogels are capable of sustaining both primary nerve cells and the neural support cells that are critical for regeneration.
doi:10.1016/j.biomaterials.2009.04.018
PMCID: PMC2716054  PMID: 19427689
hydrogel; nerve regeneration; Schwann cells; scaffold
15.  A Factorial Analysis of the Combined Effects of Hydrogel Fabrication Parameters on the in vitro Swelling and Degradation of Oligo(poly(ethylene glycol) fumarate) Hydrogels 
In this study, a full factorial approach was employed to investigate the effects of poly(ethylene glycol) (PEG) molecular weight (10,000 vs. 35,000 nominal molecular weight), crosslinker-to-macromer carbon-carbon double bond ratio (40 vs. 60), crosslinker type (PEG-diacrylate (PEGDA) vs. N,N′–methylene bisacrylamide (MB)), crosslinking extent of incorporated gelatin microparticles (low vs. high), and incubation medium composition (with or without collagenase) on the swelling and degradation characteristics of oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel composites as indicated by the swelling ratio and the % mass remaining, respectively. Each factor consisted of two levels, which were selected based on previous in vitro and in vivo studies utilizing these hydrogels for various tissue engineering applications. Fractional factorial analyses of the main effects indicated that the mean swelling ratio and the mean % mass remaining of OPF composite hydrogels were significantly affected by every factor. In particular, increasing the PEG chain MW of OPF macromers significantly increased the mean swelling ratio and decreased the mean % mass remaining by 5.7±0.3 and 17.2±0.6 %, respectively. However, changing the crosslinker from MB to PEGDA reduced the mean swelling ratio and increased the mean % mass remaining of OPF composite hydrogels by 4.9±0.2 and 9.4±0.9 %, respectively. Additionally, it was found that the swelling characteristics of hydrogels fabricated with higher PEG chain MW or with MB were more sensitive to increases in DBR. Collectively, the main and cross effects observed between factors enables informed tuning of the swelling and degradation properties of OPF-based hydrogels for various tissue engineering applications.
doi:10.1002/jbm.a.35015
PMCID: PMC4012001  PMID: 24243766
hydrogels; swelling and degradation; factorial study; poly(ethylene glycol)-based materials; fabrication parameters
16.  Mechanically Strong Double Network Photocrosslinked Hydrogels from N, N-Dimethylacrylamide and Glycidyl Methacrylated Hyaluronan 
Biomaterials  2008;29(14):2153-2163.
Hyaluronan (HA) is a natural polysaccharide abundant in biological tissues and it can be modified to prepare biomaterials. In this work, HA modified with glycidyl methacrylate was photocrosslinked to form the first network (PHA), and then a series of highly porous PHA/N, N-dimethylacrylamide (DAAm) hydrogels (PHA/DAAm) with high mechanical strength were obtained by incorporating a second network of photocrosslinked DAAm into PHA network. Due to synergistic effect produced by double network (DN) structure, despite containing 90% of water, the resulting PHA/DAAm hydrogel showed a compressive modulus and a fracture stress over 0.5 MPa and 5.2 MPa, respectively. Compared to the photocrosslinked hyaluronan single network hydrogel, which is generally very brittle and fractures easily, the PHA/DAAm hydrogels are ductile. Mouse dermal fibroblast was used as a model cell line to validate in vitro non-cytotoxicity of the PHA/DAAm hydrogels. Cells deposited extracellular matrix on the surface of these hydrogels and this was confirmed by positive staining of Type I collagen by Sirius Red. The PHA/DAAm hydrogels were also resistant to biodegradation and largely retained their excellent mechanical properties even after two months of co-culturing with fibroblasts.
doi:10.1016/j.biomaterials.2008.01.012
PMCID: PMC2323023  PMID: 18272215
Hyaluronan; N, N-dimethylacrylamide; Hydrogels; Photocrosslinkable; Double network
17.  Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior 
Biomaterials  2012;33(30):7478-7488.
Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM.
doi:10.1016/j.biomaterials.2012.06.097
PMCID: PMC3600380  PMID: 22841922
Peptide; Hydrogel; Cell delivery; Self-assembly; Chondrocyte; Tissue engineering
18.  Comparison of Photopolymerizable Thiol-ene PEG and Acrylate-Based PEG Hydrogels for Cartilage Development 
Biomaterials  2013;34(38):9969-9979.
When designing hydrogels for tissue regeneration, differences in polymerization mechanism and network structure have the potential to impact cellular behavior. Poly(ethylene glycol) hydrogels were formed by free-radical photopolymerization of acrylates (chain-growth) or thiol-norbornenes (step-growth) to investigate the impact of hydrogel system (polymerization mechanism and network structure) on the development of engineered tissue. Bovine chondrocytes were encapsulated in hydrogels and cultured under free swelling or dynamic compressive loading. In the acrylate system immediately after encapsulation chondrocytes exhibited high levels of intracellular ROS concomitant with a reduction in hydrogel compressive modulus and higher variability in cell deformation upon compressive strain; findings that were not observed in the thiol-norbornene system. Long-term the quantity of sulfated glycosaminoglycans and total collagen was greater in the acrylate system, but the quality resembled that of hypertrophic cartilage with positive staining for aggrecan, collagens I, II, and X and collagen catabolism. The thiol-norbornene system led to hyaline-like cartilage production especially under mechanical loading with positive staining for aggrecan and collagen II and minimal staining for collagens I and X and collagen catabolism. Findings from this study confirm that the polymerization mechanism and network structure have long-term effects on the quality of engineered cartilage, especially under mechanical loading.
doi:10.1016/j.biomaterials.2013.09.020
PMCID: PMC4503261  PMID: 24060418
19.  An Injectable, Calcium Responsive Composite Hydrogel for the Treatment of Acute Spinal Cord Injury 
ACS Applied Materials & Interfaces  2014;6(3):1424-1438.
Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca2+ results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca2+ concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels consisting of alginate, chitosan, and genipin that interact with extracellular Ca2+ to enable in situ gelation while maintaining an elastic modulus similar to native spinal cord (∼1000 Pa). It was hypothesized that incorporation of genipin and chitosan would regulate hydrogel electrostatic characteristics and influence hydrogel porosity, degradation, and astrocyte behavior. Hydrogel composition was varied to create hydrogels with statistically similar mechanical properties (∼1000 Pa) that demonstrated tunable charge characteristics (6-fold range in free amine concentration) and degradation rate (complete degradation between 7 and 28 days; some blends persist after 28 days). Hydrogels demonstrate high sensitivity to Ca2+ concentration, as a 1 mM change during fabrication induced a significant change in elastic modulus. Additionally, hydrogels incubated in a Ca2+-containing solution exhibited an increased linear viscoelastic limit (LVE) and an increased elastic modulus above the LVE limit in a time dependent manner. An extension of the LVE limit implies a change in hydrogel cross-linking structure. Attachment assays demonstrated that addition of chitosan/genipin to alginate hydrogels induced up to a 4-fold increase in the number of attached astrocytes and facilitated astrocyte clustering on the hydrogel surface in a composition dependent manner. Furthermore, Western blots demonstrated tunable glial fibrillary acid protein (GFAP) expression in astrocytes cultured on hydrogel blends, with some hydrogel compositions demonstrating no significant increase in GFAP expression compared to astrocytes cultured on glass. Thus, alginate/chitosan/genipin hydrogel composites show promise as scaffolds that regulate astrocyte behavior and for the prevention of Ca2+-related secondary neuron damage during acute SCI.
doi:10.1021/am4027423
PMCID: PMC3982972  PMID: 24397537
alginate; chitosan; hydrogel; astrocytes; spinal cord injury; glial fibrillary acidic protein
20.  Repair of Osteochondral Defects with Biodegradable Hydrogel Composites Encapsulating Marrow Mesenchymal Stem Cells in a Rabbit Model 
Acta biomaterialia  2009;6(1):39-47.
This work investigated the delivery of marrow mesenchymal stem cells (MSCs), with or without the growth factor transforming growth factor-β1 (TGF-β1), from biodegradable hydrogel composites on the repair of osteochondral defects in a rabbit model. Three formulations of oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel composites containing gelatin microparticles (GMPs) and MSCs were implanted in osteochondral defects, including (1) OPF/GMP hydrogel composites; (2) OPF/GMP hydrogel composites encapsulating MSCs; and (3) OPF hydrogel composites containing TGF-β1 loaded GMPs and MSCs. At 12 weeks, the quality of new tissue formed in chondral and subchondral regions of defects was evaluated based on subjective and quantitative histological analysis. OPF hydrogel composites were partially degraded and the defects were filled with newly formed tissue at 12 weeks with no sign of persistent inflammation. With the implantation of scaffolds alone, newly formed chondral tissue had an appearance of hyaline cartilage with zonal organization and intense staining for glycosaminoglycans, while in the subchondral region hypertrophic cartilage with some extent of bone formation was often observed. The addition of MSCs, especially with TGF-β1 loaded GMPs, facilitated subchondral bone formation, as evidenced by more trabecular bone appearance. However, the delivery of MSCs with or without TGF-β1 at the dosage investigated did not improve cartilage morphology. While OPF-based hydrogel composites supported osteochondral tissue generation, further investigations are necessary to elucidate the effects of MSC seeding density and differentiation stage on new tissue formation and regeneration.
doi:10.1016/j.actbio.2009.07.041
PMCID: PMC2787824  PMID: 19660580
cartilage tissue engineering; mesenchymal stem cells; hydrogel composites; osteochondral defects
21.  On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage 
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one’s quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth.
doi:10.1016/j.jmbbm.2012.10.016
PMCID: PMC3606675  PMID: 23276516
22.  Comparison of Cellular Architecture, Axonal Growth, and Blood Vessel Formation Through Cell-Loaded Polymer Scaffolds in the Transected Rat Spinal Cord 
Tissue Engineering. Part A  2014;20(21-22):2985-2997.
The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF+) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF+ scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF+ scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration.
doi:10.1089/ten.tea.2013.0551
PMCID: PMC4229864  PMID: 24854680
23.  The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel 
Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA) and/or chondroitin sulphate (CS) supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG) production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D) fibrin-alginate hydrogels.
doi:10.3390/jfb5030197
PMCID: PMC4192613  PMID: 25238548
osteoarthritis; hyaluronic acid (HA); hydrogel; tissue engineering
24.  Effect of Chitosan Incorporation and Scaffold Geometry on Chondrocyte Function in Dense Collagen Type I Hydrogels 
Tissue Engineering. Part A  2013;19(23-24):2553-2564.
Tissue engineering approaches for articular cartilage (AC) repair using collagen type I (Coll)-based hydrogels are limited by their low collagen fibril density (CFD; <0.5 wt%) and their poor capacity to support chondrocyte differentiation. Chitosan (CTS) is a well-characterized polysaccharide that mimics the glycosaminoglycans (GAGs) present in native AC extracellular matrix and exhibits chondroprotective properties. Here dense Coll/CTS hydrogel discs (16 mm diameter, 140–250 μm thickness) with CFD (∼6 wt%) approaching that of AC were developed to investigate the effect of CTS content on the growth and differentiation of three-dimensionally seeded RCJ3.1C5.18 chondroprogenitor cells. Compared to dense Coll alone, cells seeded within Coll/CTS showed increased viability and metabolic activity, as well as a decrease in cell-mediated gel contraction. Immunohistochemistry for collagen type II, in combination with Safranin O staining and GAG quantification, indicated greater chondroprogenitor differentiation within Coll/CTS, compared to cells seeded within Coll alone. The complex interplay between scaffold geometry, microstructure, composition, mechanical properties and cell function was further evaluated by rolling dense planar sheets to prepare cylindrically shaped constructs having clinically relevant diameters (3–5 mm diameter, 9 mm height). The compressive modulus of the cylindrically shaped constructs decreased significantly after 7 days in culture, and remained unchanged up to 21 days for each scaffold composition. Unlike Coll, cells seeded within Coll/CTS showed greater viability along the entire radial extent of the cylindrical rolls and increased GAG production at each time point. While GAG content decreased over time and reduced cell viability was observed within the core region of all cylindrical rolls, the incorporation of CTS diminished both these effects. In summary, these findings provide insight into the challenges involved when scaling up scaffolds designed and optimised in vitro for tissue repair.
doi:10.1089/ten.tea.2013.0114
PMCID: PMC3856934  PMID: 23859275
25.  A synthetic thermo-sensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides 
Biomacromolecules  2016;17(6):2137-2147.
Hydrogels based on triblock copolymers of polyethylene glycol and partially methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) are an attractive class of biomaterials due to their biodegradability, cytocompatibility, and tunable thermo-responsive and mechanical properties. By fine-tuning these properties, the hydrogels can be 3D bioprinted, to generate e.g. constructs for cartilage repair. This study investigated whether hydrogels based on the above mentioned polymer with a 10% degree of methacrylation (M10P10), support cartilage formation by chondrocytes, and whether the incorporation of methacrylated chondroitin sulfate (CSMA) or methacrylated hyaluronic acid (HAMA) can improve the mechanical properties, long-term stability, and printability.
Chondrocyte-laden M10P10 hydrogels were cultured for 42 days to evaluate chondrogenesis. M10P10 hydrogels with or without polysaccharides were evaluated for their mechanical properties (before and after UV photo-cross-linking), degradation kinetics, and printability.
Extensive cartilage matrix production occurred in M10P10 hydrogels, highlighting their potential for cartilage repair strategies. The incorporation of polysaccharides increased the storage modulus of polymer mixtures and decreased the degradation kinetics in cross-linked hydrogels. Addition of HAMA to M10P10 hydrogels improved printability and resulted in 3D constructs with excellent cell viability. Hence, this novel combination of M10P10 with HAMA forms an interesting class of hydrogels for cartilage bioprinting.
doi:10.1021/acs.biomac.6b00366
PMCID: PMC4931898  PMID: 27171342
Thermo-sensitive block copolymers; hyaluronic acid; chondroitin sulfate; hydrogel; cartilage regeneration; 3D bioprinting

Results 1-25 (1100201)