PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (733879)

Clipboard (0)
None

Related Articles

1.  Evidence of Recessive Alzheimer Disease Loci in a Caribbean Hispanic Data Set 
JAMA neurology  2013;70(10):1261-1267.
IMPORTANCE
The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding.
OBJECTIVE
To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations.
DESIGN
We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses.
SETTING
A whole-genome case-control ROH study.
PARTICIPANTS
A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants.
EXPOSURE
Alzheimer disease risk genes.
MAIN OUTCOMES AND MEASURES
We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection.
RESULTS
In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for multiple testing (empirical P value 1 [EMP1], .0001; EMP2, .002; 21 AD cases vs 2 controls). Among the African Hispanic subset, the most significant but nominal association was observed for CTNNA3, a well-known AD gene candidate (EMP1, .002; 10 AD cases vs 0 controls).
CONCLUSIONS AND RELEVANCE
Our results show that ROHs could significantly contribute to the etiology of AD. Future studies would require the analysis of larger, relatively inbred data sets that might reveal novel recessive AD genes. The next step is to conduct sequencing of top significant loci in a subset of samples with overlapping ROHs.
doi:10.1001/jamaneurol.2013.3545
PMCID: PMC3991012  PMID: 23978990
2.  Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease 
PLoS ONE  2012;7(3):e28787.
Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity.
We carried out genome wide SNP genotyping to look for extended runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above, where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus failed to identify a novel mutation causing EOPD in our cohort.
There is an increased rate of genome wide homozygosity in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we lack the power to detect them with this analysis.
doi:10.1371/journal.pone.0028787
PMCID: PMC3299635  PMID: 22427796
3.  Mass Homozygotes Accumulation in the NCI-60 Cancer Cell Lines As Compared to HapMap Trios, and Relation to Fragile Site Location 
PLoS ONE  2012;7(2):e31628.
Runs of homozygosity (ROH) represents extended length of homozygotes on a long genomic distance. In oncology, it is known as loss of heterozygosity (LOH) if identified exclusively in cancer cell rather than in matched control cell. Studies have identified several genomic regions which show consistent ROH in different kinds of carcinoma. To query whether this consistency can be observed on broader spectrum, both in more cancer types and in wider genomic regions, we investigated ROH patterns in the National Cancer Institute 60 cancer cell line panel (NCI-60) and HapMap Caucasian healthy trio families. Using results from Affymetrix 500 K SNP arrays, we report a genome wide significant association of ROH regions between the NCI-60 and HapMap samples, with much a higher level of ROH (11 fold) in the cancer cell lines. Analysis shows that more severe ROH found in cancer cells appears to be the extension of existing ROH in healthy state. In the HapMap trios, the adult subgroup had a slightly but significantly higher level (1.02 fold) of ROH than did the young subgroup. For several ROH regions we observed the co-occurrence of fragile sites (FRAs). However, FRA on the genome wide level does not show a clear relationship with ROH regions.
doi:10.1371/journal.pone.0031628
PMCID: PMC3276511  PMID: 22347499
4.  Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese 
Journal of Biomedical Research  2013;27(3):208-214.
Runs of homozygosity (ROHs) are a class of important but poorly studied genomic variations and may be involved in individual susceptibility to diseases. To better understand ROH and its relationship with lung cancer, we performed a genome-wide ROH analysis of a subset of a previous genome-wide case-control study (1,473 cases and 1,962 controls) in a Han Chinese population. ROHs were classified into two classes, based on lengths, intermediate and long ROHs, to evaluate their association with lung cancer risk using existing genome-wide single nucleotide polymorphism (SNP) data. We found that the overall level of intermediate ROHs was significantly associated with a decreased risk of lung cancer (odds ratio = 0.63; 95% confidence interval: 0.51-0.77; P = 4.78×10−6 ), while the long ROHs seemed to be a risk factor of lung cancer. We also identified one ROH region at 14q23.1 that was consistently associated with lung cancer risk in the study. These results indicated that ROHs may be a new class of variation which may be associated with lung cancer risk, and genetic variants at 14q23.1 may be involved in the development of lung cancer.
doi:10.7555/JBR.27.20130017
PMCID: PMC3664727  PMID: 23720676
lung cancer; runs of homozygosity (ROHs); genome-wide association study
5.  Risk of breast and prostate cancer is not associated with increased homozygosity in outbred populations 
Regions of restricted genetic heterogeneity due to identity by descent (autozygosity) are known to confer susceptibility to a number of diseases. Regions of germline homozygosity (ROHs) of 1–2 Mb, the result of autozygosity, are detectable at high frequency in outbred populations. Recent studies have reported that ROHs, possibly through exposing recessive disease-causing alleles or alternative mechanisms, are associated with an increased cancer risk. To examine whether homozygosity is associated with breast or prostate cancer risk, we analysed 500K single-nucleotide polymorphism data from two genome-wide association studies conducted by the Cancer Genetics Markers of Susceptibility initiatives (http://cgems.cancer.gov/). Six common ROHs were associated with breast cancer risk and four with prostate cancer (P<0.01). Intriguingly, one of the breast cancer ROHs maps to 6q22.31–6q22.3, a region that has been previously shown to confer breast cancer risk. Although none of the ROHs remained significantly associated with cancer risk after adjustment for multiple testing, a number of ROHs merit further interrogation. However, our findings provide no strong evidence that levels of measured homozygosity, whatever their aetiology (autozygosity, uniparental isodisomy or hemizygosity), confer an increased risk of developing breast or prostate cancer in predominantly outbred populations.
doi:10.1038/ejhg.2010.53
PMCID: PMC2987391  PMID: 20407466
homozygosity; risk; prostate; breast; cancer
6.  Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms 
BMC Genomics  2011;12:460.
Background
A central aim for studying runs of homozygosity (ROHs) in genome-wide SNP data is to detect the effects of autozygosity (stretches of the two homologous chromosomes within the same individual that are identical by descent) on phenotypes. However, it is unknown which current ROH detection program, and which set of parameters within a given program, is optimal for differentiating ROHs that are truly autozygous from ROHs that are homozygous at the marker level but vary at unmeasured variants between the markers.
Method
We simulated 120 Mb of sequence data in order to know the true state of autozygosity. We then extracted common variants from this sequence to mimic the properties of SNP platforms and performed ROH analyses using three popular ROH detection programs, PLINK, GERMLINE, and BEAGLE. We varied detection thresholds for each program (e.g., prior probabilities, lengths of ROHs) to understand their effects on detecting known autozygosity.
Results
Within the optimal thresholds for each program, PLINK outperformed GERMLINE and BEAGLE in detecting autozygosity from distant common ancestors. PLINK's sliding window algorithm worked best when using SNP data pruned for linkage disequilibrium (LD).
Conclusion
Our results provide both general and specific recommendations for maximizing autozygosity detection in genome-wide SNP data, and should apply equally well to research on whole-genome autozygosity burden or to research on whether specific autozygous regions are predictive using association mapping methods.
doi:10.1186/1471-2164-12-460
PMCID: PMC3188534  PMID: 21943305
7.  A recessive genetic model and runs of homozygosity in major depressive disorder 
Genome-wide association studies (GWASs) of major depressive disorder (MDD) have yet to identify variants that surpass the threshold for genome-wide significance. A recent study reported that runs of homozygosity (ROH) are associated with schizophrenia, reflecting a novel genetic risk factor resulting from increased parental relatedness and recessive genetic effects. Here we undertake an analysis of ROH for MDD using the 9,238 MDD cases and 9,521 controls reported in a recent mega-analysis of 9 GWAS. Since evidence for association with ROH could reflect a recessive mode of action at loci, we also conducted a genome-wide association analyses under a recessive model.
The genome-wide association analysis using a recessive model found no significant associations. Our analysis of ROH suggested that there was significant heterogeneity of effect across studies in effect (p=0.001), and it was associated with genotyping platform and country of origin. The results of the ROH analysis show that differences across studies can lead to conflicting systematic genome-wide differences between cases and controls that are unaccounted for by traditional covariates. They highlight the sensitivity of the ROH method to spurious associations, and the need to carefully control for potential confounds in such analyses. We found no strong evidence for a recessive model underlying MDD.
doi:10.1002/ajmg.b.32217
PMCID: PMC4234115  PMID: 24482242
8.  Effect of Artificial Selection on Runs of Homozygosity in U.S. Holstein Cattle 
PLoS ONE  2013;8(11):e80813.
The intensive selection programs for milk made possible by mass artificial insemination increased the similarity among the genomes of North American (NA) Holsteins tremendously since the 1960s. This migration of elite alleles has caused certain regions of the genome to have runs of homozygosity (ROH) occasionally spanning millions of continuous base pairs at a specific locus. In this study, genome signatures of artificial selection in NA Holsteins born between 1953 and 2008 were identified by comparing changes in ROH between three distinct groups under different selective pressure for milk production. The ROH regions were also used to estimate the inbreeding coefficients. The comparisons of genomic autozygosity between groups selected or unselected since 1964 for milk production revealed significant differences with respect to overall ROH frequency and distribution. These results indicate selection has increased overall autozygosity across the genome, whereas the autozygosity in an unselected line has not changed significantly across most of the chromosomes. In addition, ROH distribution was more variable across the genomes of selected animals in comparison to a more even ROH distribution for unselected animals. Further analysis of genome-wide autozygosity changes and the association between traits and haplotypes identified more than 40 genomic regions under selection on several chromosomes (Chr) including Chr 2, 7, 16 and 20. Many of these selection signatures corresponded to quantitative trait loci for milk, fat, and protein yield previously found in contemporary Holsteins.
doi:10.1371/journal.pone.0080813
PMCID: PMC3858116  PMID: 24348915
9.  Identification of genomic regions associated with inbreeding depression in Holstein and Jersey dairy cattle 
Background
Inbreeding reduces the fitness of individuals by increasing the frequency of homozygous deleterious recessive alleles. Some insight into the genetic architecture of fitness, and other complex traits, can be gained by using single nucleotide polymorphism (SNP) data to identify regions of the genome which lead to reduction in performance when identical by descent (IBD). Here, we compared the effect of genome-wide and location-specific homozygosity on fertility and milk production traits in dairy cattle.
Methods
Genotype data from more than 43 000 SNPs were available for 8853 Holstein and 4138 Jersey dairy cows that were part of a much larger dataset that had pedigree records (338 696 Holstein and 64 049 Jersey animals). Measures of inbreeding were based on: (1) pedigree data; (2) genotypes to determine the realised proportion of the genome that is IBD; (3) the proportion of the total genome that is homozygous and (4) runs of homozygosity (ROH) which are stretches of the genome that are homozygous.
Results
A 1% increase in inbreeding based either on pedigree or genomic data was associated with a decrease in milk, fat and protein yields of around 0.4 to 0.6% of the phenotypic mean, and an increase in calving interval (i.e. a deterioration in fertility) of 0.02 to 0.05% of the phenotypic mean. A genome-wide association study using ROH of more than 50 SNPs revealed genomic regions that resulted in depression of up to 12.5 d and 260 L for calving interval and milk yield, respectively, when completely homozygous.
Conclusions
Genomic measures can be used instead of pedigree-based inbreeding to estimate inbreeding depression. Both the diagonal elements of the genomic relationship matrix and the proportion of homozygous SNPs can be used to measure inbreeding. Longer ROH (>3 Mb) were found to be associated with a reduction in milk yield and captured recent inbreeding independently and in addition to overall homozygosity. Inbreeding depression can be reduced by minimizing overall inbreeding but maybe also by avoiding the production of offspring that are homozygous for deleterious alleles at specific genomic regions that are associated with inbreeding depression.
Electronic supplementary material
The online version of this article (doi:10.1186/s12711-014-0071-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12711-014-0071-7
PMCID: PMC4234836  PMID: 25407532
10.  Runs of Homozygosity Associated with Speech Delay in Autism in a Taiwanese Han Population: Evidence for the Recessive Model 
PLoS ONE  2013;8(8):e72056.
Runs of homozygosity (ROH) may play a role in complex diseases. In the current study, we aimed to test if ROHs are linked to the risk of autism and related language impairment. We analyzed 546,080 SNPs in 315 Han Chinese affected with autism and 1,115 controls. ROH was defined as an extended homozygous haplotype spanning at least 500 kb. Relative extended haplotype homozygosity (REHH) for the trait-associated ROH region was calculated to search for the signature of selection sweeps. Totally, we identified 676 ROH regions. An ROH region on 11q22.3 was significantly associated with speech delay (corrected p = 1.73×10−8). This region contains the NPAT and ATM genes associated with ataxia telangiectasia characterized by language impairment; the CUL5 (culin 5) gene in the same region may modulate the neuronal migration process related to language functions. These three genes are highly expressed in the cerebellum. No evidence for recent positive selection was detected on the core haplotypes in this region. The same ROH region was also nominally significantly associated with speech delay in another independent sample (p = 0.037; combinatorial analysis Stouffer’s z trend = 0.0005). Taken together, our findings suggest that extended recessive loci on 11q22.3 may play a role in language impairment in autism. More research is warranted to investigate if these genes influence speech pathology by perturbing cerebellar functions.
doi:10.1371/journal.pone.0072056
PMCID: PMC3745408  PMID: 23977206
11.  Identification of Novel Schizophrenia Loci by Homozygosity Mapping Using DNA Microarray Analysis 
PLoS ONE  2011;6(5):e20589.
The recent development of high-resolution DNA microarrays, in which hundreds of thousands of single nucleotide polymorphisms (SNPs) are genotyped, enables the rapid identification of susceptibility genes for complex diseases. Clusters of these SNPs may show runs of homozygosity (ROHs) that can be analyzed for association with disease. An analysis of patients whose parents were first cousins enables the search for autozygous segments in their offspring. Here, using the Affymetrix® Genome-Wide Human SNP Array 5.0 to determine ROHs, we genotyped 9 individuals with schizophrenia (SCZ) whose parents were first cousins. We identified overlapping ROHs on chromosomes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, and 21 in at least 3 individuals. Only the locus on chromosome 5 has been reported previously. The ROHs on chromosome 5q23.3–q31.1 include the candidate genes histidine triad nucleotide binding protein 1 (HINT1) and acyl-CoA synthetase long-chain family member 6 (ACSL6). Other overlapping ROHs may contain novel rare recessive variants that affect SCZ specifically in our samples, given the highly heterozygous nature of SCZ. Analysis of patients whose parents are first cousins may provide new insights for the genetic analysis of psychiatric diseases.
doi:10.1371/journal.pone.0020589
PMCID: PMC3105082  PMID: 21655227
12.  Runs of Homozygosity Do Not Influence Survival to Old Age 
PLoS ONE  2011;6(7):e22580.
Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age.
doi:10.1371/journal.pone.0022580
PMCID: PMC3143169  PMID: 21799906
13.  Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape 
PLoS Genetics  2012;8(11):e1003100.
Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD) and result in homozygous stretches along the genome of the offspring. Size and position of regions of homozygosity (ROHs) are expected to correlate with genomic features such as GC content and recombination rate, but also direction of selection. Thus, ROHs should be non-randomly distributed across the genome. Therefore, demographic history may not fully predict the effects of inbreeding. The porcine genome has a relatively heterogeneous distribution of recombination rate, making Sus scrofa an excellent model to study the influence of both recombination landscape and demography on genomic variation. This study utilizes next-generation sequencing data for the analysis of genomic ROH patterns, using a comparative sliding window approach. We present an in-depth study of genomic variation based on three different parameters: nucleotide diversity outside ROHs, the number of ROHs in the genome, and the average ROH size. We identified an abundance of ROHs in all genomes of multiple pigs from commercial breeds and wild populations from Eurasia. Size and number of ROHs are in agreement with known demography of the populations, with population bottlenecks highly increasing ROH occurrence. Nucleotide diversity outside ROHs is high in populations derived from a large ancient population, regardless of current population size. In addition, we show an unequal genomic ROH distribution, with strong correlations of ROH size and abundance with recombination rate and GC content. Global gene content does not correlate with ROH frequency, but some ROH hotspots do contain positive selected genes in commercial lines and wild populations. This study highlights the importance of the influence of demography and recombination on homozygosity in the genome to understand the effects of inbreeding.
Author Summary
Small populations have an increased risk of inbreeding depression due to a higher expression of deleterious alleles. This can have major consequences for the viability of these populations. In domesticated species like the pig that are artificially selected in breeding populations, but also in wild populations that experience habitat decline, maintaining genetic diversity is essential. Recent advances in sequence technology enabled us to identify patterns of nucleotide variation in individual genomes. We screened the full genome of wild boars and commercial pigs from Eurasia for regions of homozygosity. We found these regions of homozygosity were caused by the demographic history and effective population size of the pigs. European wild boars are least variable, but also European breeds contain large homozygous stretches in their genome. Moreover, the likelihood of a region becoming depleted depends on its position in the genome, because variation has a high correlation with recombination rate. The telomeric regions are much more variable, and the central region of chromosomes has a higher chance of containing long regions of homozygosity. These findings increase knowledge on the fine-scaled architecture of genomic variation, and they are particularly important for population genetic management.
doi:10.1371/journal.pgen.1003100
PMCID: PMC3510040  PMID: 23209444
14.  Analysis of homozygosity disequilibrium using whole-genome sequencing data 
BMC Proceedings  2014;8(Suppl 1):S15.
Homozygosity disequilibrium (HD), a nonrandom sizable run of homozygosity in the genome, may be related to the evolution of populations and may also confer susceptibility to disease. No studies have investigated HD using whole genome sequencing (WGS) analysis. In this study, we used an enhanced version of Loss-Of-Heterozygosity Analysis Suite (LOHAS) software to investigate HD through analysis of real and simulated WGS data sets provided by Genetic Analysis Workshop 18. Using a local polynomial model, we derived whole-genome profiles of homozygosity intensities for 959 individuals and characterized the patterns of HD. Generalized estimating equation analysis for 855 related samples was performed to examine the association between patterns of HD and 3 phenotypes of interest, namely diastolic blood pressure, systolic blood pressure, and hypertension status, with covariate adjustments for age and gender. We found that 4.48% of individuals in this study carried sizable runs of homozygosity (ROHs). Distributions of the length of ROHs were derived and revealed a familial aggregation of HD. Genome-wide homozygosity association analysis identified 5 and 3 ROHs associated with diastolic blood pressure and hypertension, respectively. These regions contain genes associated with calcium channels (CACNA1S), renin catalysis (REN), blood groups (ABO), apolipoprotein (APOA5), and cardiovascular diseases (RASGRP1). Simulation studies showed that our homozygosity association tests controlled type 1 error well and had a promising power. This study provides a useful analysis tool for studying HD and allows us to gain a deeper understanding of HD in the human genome.
doi:10.1186/1753-6561-8-S1-S15
PMCID: PMC4143806  PMID: 25519368
15.  Runs of homozygosity and population history in cattle 
BMC Genetics  2012;13:70.
Background
Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds.
Results
All animals genotyped on the HD panel displayed at least one ROH that was between 1–5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal’s pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples.
Conclusions
Our findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.
doi:10.1186/1471-2156-13-70
PMCID: PMC3502433  PMID: 22888858
Runs of homozygosity; Inbreeding; Cattle population history
16.  Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes 
The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.
doi:10.3389/fgene.2015.00005
PMCID: PMC4310349
Bos indicus; runs of homozygosity; selection; cattle; fertility; disease resistance
17.  Genomic Runs of Homozygosity Record Population History and Consanguinity 
PLoS ONE  2010;5(11):e13996.
The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (Ne), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental Ne (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects.
doi:10.1371/journal.pone.0013996
PMCID: PMC2981575  PMID: 21085596
18.  Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity 
BMC Genomics  2013;14:519.
Background
Hanwoo (Korean cattle), which originated from natural crossbreeding between taurine and zebu cattle, migrated to the Korean peninsula through North China. Hanwoo were raised as draft animals until the 1970s without the introduction of foreign germplasm. Since 1979, Hanwoo has been bred as beef cattle. Genetic variation was analyzed by whole-genome deep resequencing of a Hanwoo bull. The Hanwoo genome was compared to that of two other breeds, Black Angus and Holstein, and genes within regions of homozygosity were investigated to elucidate the genetic and genomic characteristics of Hanwoo.
Results
The Hanwoo bull genome was sequenced to 45.6-fold coverage using the ABI SOLiD system. In total, 4.7 million single-nucleotide polymorphisms and 0.4 million small indels were identified by comparison with the Btau4.0 reference assembly. Of the total number of SNPs and indels, 58% and 87%, respectively, were novel. The overall genotype concordance between the SNPs and BovineSNP50 BeadChip data was 96.4%. Of 1.6 million genetic differences in Hanwoo, approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Among 1,045 genes containing reliable specific NS/SS/Is in Hanwoo, 109 genes contained more than one novel damaging NS/SS/I. Of the genes containing NS/SS/Is, 610 genes were assigned as trait-associated genes. Moreover, 16, 78, and 51 regions of homozygosity (ROHs) were detected in Hanwoo, Black Angus, and Holstein, respectively. ‘Regulation of actin filament length’ was revealed as a significant gene ontology term and 25 trait-associated genes for meat quality and disease resistance were found in 753 genes that resided in the ROHs of Hanwoo. In Hanwoo, 43 genes were located in common ROHs between whole-genome resequencing and SNP chips in BTA2, 10, and 13 coincided with quantitative trait loci for meat fat traits. In addition, the common ROHs in BTA2 and 16 were in agreement between Hanwoo and Black Angus.
Conclusions
We identified 4.7 million SNPs and 0.4 million small indels by whole-genome resequencing of a Hanwoo bull. Approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Additionally, we found 25 trait-associated genes for meat quality and disease resistance among 753 genes that resided in the ROHs of Hanwoo. These findings will provide useful genomic information for identifying genes or casual mutations associated with economically important traits in cattle.
doi:10.1186/1471-2164-14-519
PMCID: PMC3750754  PMID: 23899338
Hanwoo; Resequencing; NS/SS/I; ROH
19.  Genetic Substructure of Kuwaiti Population Reveals Migration History 
PLoS ONE  2013;8(9):e74913.
The State of Kuwait is characterized by settlers from Saudi Arabia, Iran, and other regions of the Arabian Peninsula. The settlements and subsequent admixtures have shaped the genetics of Kuwait. High prevalence of recessive disorders and metabolic syndromes (that increase risk of diabetes) is seen in the peninsula. Understanding the genetic structure of its population will aid studies designed to decipher the underlying causes of these disorders. In this study, we analyzed 572,366 SNP markers from 273 Kuwaiti natives genotyped using the illumina HumanOmniExpress BeadChip. Model-based clustering identified three genetic subgroups with different levels of admixture. A high level of concordance (Mantel test, p=0.0001 for 9999 repeats) was observed between the derived genetic clusters and the surname-based ancestries. Use of Human Genome Diversity Project (HGDP) data to understand admixtures in each group reveals the following: the first group (Kuwait P) is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S) is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B) includes most of the tent-dwelling Bedouin surnames and is characterized by the presence of 17% African ancestry. Identity by Descent and Homozygosity analyses find Kuwait’s population to be heterogeneous (placed between populations that have large amount of ROH and the ones with low ROH) with Kuwait S as highly endogamous, and Kuwait B as diverse. Population differentiation FST estimates place Kuwait P near Asian populations, Kuwait S near Negev Bedouin tribes, and Kuwait B near the Mozabite population. FST distances between the groups are in the range of 0.005 to 0.008; distances of this magnitude are known to cause false positives in disease association studies. Results of analysis for genetic features such as linkage disequilibrium decay patterns conform to Kuwait’s geographical location at the nexus of Africa, Europe, and Asia.
doi:10.1371/journal.pone.0074913
PMCID: PMC3774671  PMID: 24066156
20.  Genome Features of “Dark-Fly”, a Drosophila Line Reared Long-Term in a Dark Environment 
PLoS ONE  2012;7(3):e33288.
Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed “Dark-fly”, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation.
doi:10.1371/journal.pone.0033288
PMCID: PMC3303825  PMID: 22432011
21.  Examining the Overlap Between Genome-Wide Rare Variant Association Signals and Linkage Peaks in Rheumatoid Arthritis 
Arthritis and rheumatism  2011;63(6):1522-1526.
Objective
With the exception of the major histocompatibility complex (MHC) and STAT4, no other rheumatoid arthritis (RA) linkage peak has been successfully fine-mapped to date. This apparent failure to identify association under peaks of linkage could be ascribed to the examination of common variation, when linkage is likely to be driven by rare variants. The purpose of this study was to investigate the overlap between genome-wide rare variant RA association signals observed in the Wellcome Trust Case Control Consortium (WTCCC) study and 11 replicating RA linkage peaks, defined as regions with evidence for linkage in >1 study.
Methods
The WTCCC data set contained 40,482 variants with minor allele frequency of ≤0.05 in 1,860 RA patients and 2,938 controls. Genotypes of all rare variants within a given gene region were collapsed into a single locus and a global P value was calculated per gene.
Results
The distribution of rare variant signals (association P ≤ 10−5) was found to differ significantly between regions with and without linkage evidence (P = 2 × 10−17 by Fisher’s exact test). No significant difference was observed after data from the MHC region were removed or when the effect of the HLA–DRB1 locus was accounted for.
Conclusion
The results suggest that rare variant association signals are significantly overrepresented under linkage peaks in RA, but the effect is driven by the MHC. This is the first study to examine the overlap between linkage peaks and rare variant association signals genome-wide in a complex disease.
doi:10.1002/art.30315
PMCID: PMC3428937  PMID: 21370227
22.  Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle 
Frontiers in Genetics  2014;5:101.
The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle. The current study compares three slick-haired Criollo-derived breeds including Senepol, Carora, and Romosinuano and three additional slick-haired cross-bred lineages to non-slick ancestral breeds. Genome-wide association (GWA), haplotype analysis, signatures of selection, runs of homozygosity (ROH), and identity by state (IBS) calculations were used to identify a 0.8 Mb (37.7–38.5 Mb) consensus region for the SLICK locus on BTA20 in which contains SKP2 and SPEF2 as possible candidate genes. Three specific haplotype patterns are identified in slick individuals, all with zero frequency in non-slick individuals. Admixture analysis identified common genetic patterns between the three slick breeds at the SLICK locus. Principal component analysis (PCA) and admixture results show Senepol and Romosinuano sharing a higher degree of genetic similarity to one another with a much lesser degree of similarity to Carora. Variation in GWA, haplotype analysis, and IBS calculations with accompanying population structure information supports potentially two mutations, one common to Senepol and Romosinuano and another in Carora, effecting genes contained within our refined location for the SLICK locus.
doi:10.3389/fgene.2014.00101
PMCID: PMC4010767  PMID: 24808908
SLICK; Criollo; Senepol; Carora; Romosinuano; thermo-tolerance
23.  Population-based study of genetic variation in individuals with autism spectrum disorders from Croatia 
BMC Medical Genetics  2010;11:134.
Background
Genome-wide studies on autism spectrum disorders (ASDs) have mostly focused on large-scale population samples, but examination of rare variations in isolated populations may provide additional insights into the disease pathogenesis.
Methods
As a first step in the genetic analysis of ASD in Croatia, we characterized genetic variation in a sample of 103 subjects with ASD and 203 control individuals, who were genotyped using the Illumina HumanHap550 BeadChip. We analyzed the genetic diversity of the Croatian population and its relationship to other populations, the degree of relatedness via Runs of Homozygosity (ROHs), and the distribution of large (>500 Kb) copy number variations.
Results
Combining the Croatian cohort with several previously published populations in the FastME analysis (an alternative to Neighbor Joining) revealed that Croatian subjects cluster, as expected, with Southern Europeans; in addition, individuals from the same geographic region within Europe cluster together. Whereas Croatian subjects could be separated from a sample of healthy control subjects of European origin from North America, Croatian ASD cases and controls are well mixed. A comparison of runs of homozygosity indicated that the number and the median length of regions of homozygosity are higher for ASD subjects than for controls (p = 6 × 10-3). Furthermore, analysis of copy number variants found a higher frequency of large chromosomal rearrangements (>2 Mb) in ASD cases (5/103) than in ethnically matched control subjects (1/197, p = 0.019).
Conclusions
Our findings illustrate the remarkable utility of high-density genotype data for subjects from a limited geographic area in dissecting genetic heterogeneity with respect to population and disease related variation.
doi:10.1186/1471-2350-11-134
PMCID: PMC2954843  PMID: 20858243
24.  Genome-Wide Association Study of Determinants of Anti-Cyclic Citrullinated Peptide Antibody Titer in Adults with Rheumatoid Arthritis 
Molecular Medicine  2009;15(5-6):136-143.
We carried out a genome-wide association study of genetic predictors of anti-cyclic citrullinated peptide antibody (anti-CCP) level in 531 self-reported non-Hispanic Caucasian Rheumatoid Arthritis (RA) patients enrolled in the Brigham Rheumatoid Arthritis Sequential Study (BRASS). For replication, we then analyzed 289 single nucleotide polymorphisms (SNPs) with P < 0.001 in BRASS in an independent population of 849 RA patients from the North American Rheumatoid Arthritis Consortium (NARAC). BRASS and NARAC samples were genotyped using the Affymetrix 100K and Illumina 550K platforms respectively. Association between SNPs and anti-CCP titer was tested using general linear models. The five most significant SNPs from BRASS all were within the major histocompatibility complex (MHC) region (P ≤ 3.5 × 10−6). After controlling for the human leukocyte antigen shared epitope (HLA-SE), the top SNPs still yielded P values < 0.0002. In NARAC, a single SNP from the MHC region near BTNL2 and HLA-DRA, rs1980493 (r2 = 0.85 with the top five SNPs from BRASS), was associated significantly with CCP titer (P = 6.1 × 10−5) even after adjustment for the HLA-SE (P = 0.0002). The top SNPs found in BRASS and NARAC had r2 = 0.46 and 0.64, respectively, to HLA-DRB1 DR3 alleles. These results confirm that the most significant genome region affecting anti-CCP titers in RA is the MHC region. We identified a SNP in moderate linkage disequilibrium (LD) with HLA-DR3, which may influence anti-CCP titer independently of the HLA-SE.
doi:10.2119/molmed.2009.00008
PMCID: PMC2654848  PMID: 19287509
25.  Multiple Genetic Alterations Cause Frequent and Heterogeneous Human Histocompatibility Leukocyte Antigen Class I Loss in Cervical Cancer 
The nature and frequency of human histocompatibility leukocyte antigen (HLA) class I loss mechanisms in primary cancers are largely unknown. We used flow cytometry and molecular analyses to concurrently assess allele-specific HLA phenotypes and genotypes in subpopulations from 30 freshly isolated cervical tumor cell suspensions.
Tumor-associated HLA class I alterations were present in 90% of the lesions tested, comprising four altered pheno/genotype categories: (a) HLA-A or -B allelic loss (17%), mostly associated with gene mutations; (b) HLA haplotype loss, associated with loss of heterozygosity at 6p (50%). This category included cases with additional loss of a (third) HLA-A or -B allele due to mutation, as well as one case with an HLA class I–negative tumor cell subpopulation, caused by a β2-microglobulin gene mutation; (c) Total HLA class I antigen loss and retention of heterozygosity (ROH) at 6p (10%); and (d) B locus or HLA-A/B downregulation associated with ROH and/or allelic imbalance at 6p (10%). Normal HLA phenotypes and ROH at 6p were observed in 10% of the cases. One case could not be classified (3%).
Altered HLA class I antigen expression occurs in most cervical cancers, is diverse, and is mainly caused by genetic changes. Combined with widespread tumor heterogeneity, these changes have profound implications for natural immunity and T cell–based immunotherapy in cervical cancer.
PMCID: PMC2193119  PMID: 10727458
cervix neoplasms/immunology; genes, MHC class I; DNA, neoplasm/genetics; loss of heterozygosity; mutation

Results 1-25 (733879)