PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (782238)

Clipboard (0)
None

Related Articles

1.  Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases 
Genome Biology  2008;9(11):R163.
The McrBC methyl-specific deoxyribonuclease from Escherichia coli can respond to genome methylation by host killing.
Background
Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage.
Results
McrBC inhibited the establishment of a plasmid carrying a PvuII methyltransferase gene but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage. Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation. RecA/RecBCD functions affect chromosome processing and, together with the SOS response, reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type II restriction-modification systems, which behave as selfish mobile elements, maintaining their frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog, which suggests a functional association.
Conclusions
Our experiments indicate McrBC can respond to genome methylation systems by host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that McrBCs have evolved as mobile elements competing with specific genome methylation systems through host killing. To our knowledge, this represents the first report of a defense system against epigenetic systems through cell death.
doi:10.1186/gb-2008-9-11-r163
PMCID: PMC2614495  PMID: 19025584
2.  DNA Methylation Pyrosequencing Assay Is Applicable for the Assessment of Epigenetic Active Environmental or Clinical Relevant Chemicals 
BioMed Research International  2013;2013:486072.
Exposure of cells and organisms to stressors might result in epigenetic changes. Here it is shown that investigation of DNA methylation using pyrosequencing is an alternative for in vitro and in vivo toxicological testing of epigenetic effects induced by chemicals and drugs. An in vitro evaluation of global and CpG site specific DNA methylation upon treatment of cells with chemicals/drugs is shown. Bisulfite genomic sequencing of methylation controls showed high methylation of LINE1 in methylation positive control and low methylation in the negative controls. The CpG sites within the LINE1 element are methylated at different levels. In vitro cell cultures show a methylation level ranging from 56% to 49%. Cultures of drug resistant tumor cells show significant hypomethylation as compared with the originating nonresistant tumor cells. The in vitro testing of epigenetically active chemicals (5-methyl-2'-deoxycytidine and trichostatin A) revealed a significant change of LINE1 methylation status upon treatment, while specific CpG sites were more prone to demethylation than others (focal methylation). In conclusion, DNA methylation using pyrosequencing might be used not only for testing epigenetic toxins/drugs but also in risk assessment of drugs, food, and environmental relevant pollutants.
doi:10.1155/2013/486072
PMCID: PMC3777179  PMID: 24093099
3.  Conflicts Targeting Epigenetic Systems and Their Resolution by Cell Death: Novel Concepts for Methyl-Specific and Other Restriction Systems 
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
doi:10.1093/dnares/dsq027
PMCID: PMC2993543  PMID: 21059708
intragenomic conflict; programmed cell death; epigenetic DNA methylation; restriction–modification system; McrBC
4.  Epigenetics 
Journal of Dental Research  2009;88(5):400-408.
Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These “epigenetic marks” alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.
doi:10.1177/0022034509335868
PMCID: PMC3317936  PMID: 19493882
epigenetics; DNA methylation; gene regulation; infection; inflammation; field effect
5.  An improved method for genome wide DNA methylation profiling correlated to transcription and genomic instability in two breast cancer cell lines 
BMC Genomics  2009;10:223.
Background
DNA methylation is a widely studied epigenetic mechanism known to correlate with gene repression and genomic stability. Development of sensitive methods for global detection of DNA methylation events is of particular importance.
Results
We here describe a technique, called modified methylation-specific digital karyotyping (MMSDK) based on methylation-specific digital karyotyping (MSDK) with a novel sequencing approach. Briefly, after a tandem digestion of genomic DNA with a methylation-sensitive mapping enzyme and a fragmenting enzyme, short sequence tags are obtained. These tags are amplified, followed by direct, massively parallel sequencing (Solexa 1G Genome Analyzer). This method allows high-throughput and low-cost genome-wide DNA methylation mapping. We applied this method to investigate global DNA methylation profiles for widely used breast cancer cell lines, MCF-7 and MDA-MB-231, which are representatives for luminal-like and mesenchymal-like cancer types, respectively. By comparison, a highly similar overall DNA methylation pattern was revealed for the two cell lines. However a cohort of individual genomic loci with significantly different DNA methylation status between two cell lines was identified. Furthermore, we revealed a genome-wide significant correlation between gene expression and the methylation status of gene promoters with CpG islands (CGIs) in the two cancer cell lines, and a correlation of gene expression and the methylation status of promoters without CGIs in MCF-7 cells.
Conclusion
The MMSDK method will be a valuable tool to increase the current knowledge of genome wide DNA methylation profiles.
doi:10.1186/1471-2164-10-223
PMCID: PMC2696471  PMID: 19439076
6.  Epigenetics and Colorectal Cancer 
Colorectal cancer is a leading cause of cancer deaths in the world. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells that transforms them into adenocarcinomas. There have been major advances in our understanding of cancer epigenetics over the last decade, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all colorectal cancers have aberrantly methylated genes and the average colorectal cancer methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to play a functional role in colorectal cancer. The assessment of methylated genes in colorectal cancers has also revealed a unique molecular subgroup of colorectal cancers called CpG Island Methylator Phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. The advances in our understanding of aberrant methylation in colorectal cancer has led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in the assessment of epigenetic alterations in colorectal cancer and their clinical applications has shown that these alterations will be commonly used in the near future as molecular markers to direct the prevention and treatment of colorectal cancer.
doi:10.1038/nrgastro.2011.173
PMCID: PMC3391545  PMID: 22009203
Colon cancer; DNA methylation; epigenetics; biomarkers
7.  Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC) 
BMC Cancer  2011;11:147.
Background
Lung cancer is the leading cause of cancer-related death worldwide. Genetic and epigenetic alterations have been identified frequently in lung cancer, such as promoter methylation, gene mutations and genomic amplification. However, the interaction between genetic and epigenetic events and their significance in lung tumorigenesis remains poorly understood.
Methods
We determined the promoter methylation of 6 genes and PIK3CA amplification using quantitative methylation-specific PCR (Q-MSP) and real-time quantitative PCR, respectively, and explore the association of promoter methylation with PIK3CA amplification in a large cohort of clinically well-characterized non-small cell lung cancer (NSCLC).
Results
Highly frequent promoter methylation was observed in NSCLC. With 100% diagnostic specificity, excellent sensitivity, ranging from 45.8 to 84.1%, was found for each of the 6 genes. The promoter methylation was associated with histologic type. Methylation of CALCA, CDH1, DAPK1, and EVX2 was more common in squamous cell carcinomas (SCC) compared to adenocarcinomas (ADC). Conversely, there was a trend toward a higher frequency of RASSF1A methylation in ADC than SCC. In addition, PIK3CA amplification was frequently found in NSCLC, and was associated with certain clinicopathologic features, such as smoking history, histologic type and pleural indentation. Importantly, aberrant promoter methylation of certain genes was significantly associated with PIK3CA amplification.
Conclusions
Our data showed highly frequent promoter methylation and PIK3CA amplification in Chinese NSCLC population, and first demonstrated the associations of gene methylation with PIK3CA amplification, suggesting that these epigenetic events may be a consequence of overactivation of PI3K/Akt pathway.
doi:10.1186/1471-2407-11-147
PMCID: PMC3098185  PMID: 21507233
Promoter methylation; PI3K/Akt pathway; PIK3CA amplification; non-small cell lung cancer (NSCLC); clinicopathologic characteristics
8.  Prophage induction in a permeabilized cell system: induction by deoxyribonucleases and the role of recBC-deoxyribonuclease. 
Journal of Bacteriology  1980;144(3):1061-1067.
Permeabilized cells able to induce prophage were obtained by plasmolysis and preincubation of the cells in a reaction mixture which allows protein synthesis. These cells became permeable to low-molecular-weight proteins and oligonucleotides. We found that deoxyribonucleases (pancreatic deoxyribonuclease and micrococcal nuclease) triggered prophage (phi 80) induction. This deoxyribonuclease-triggered induction was completely dependent upon the presence of functional recBC genes in the lysogen, regardless of the recombination proficiency determined by recBC and sbcB genes. The possible role of recBC-deoxyribonuclease in prophage induction and recombination is discussed.
PMCID: PMC294771  PMID: 7002903
9.  DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients 
The EMBO Journal  2012;31(6):1405-1426.
DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients
The first genome-scale DNA methylation study on pancreatic islets from type 2 diabetic patients identifies disease-associated DNA methylation pattern that translate into aberrant gene expression in novel factors relevant for β-cell function and survival.
In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non-diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non-diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β-cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.
doi:10.1038/emboj.2011.503
PMCID: PMC3321176  PMID: 22293752
DNA methylation; pancreatic islets; type 2 diabetes
10.  DNA methylation and methyl-CpG binding proteins: developmental requirements and function 
Chromosoma  2009;118(5):549-565.
DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function.
doi:10.1007/s00412-009-0221-9
PMCID: PMC2729420  PMID: 19506892
11.  Histone Code Modifications on Pluripotential Nuclei of Reprogrammed Somatic Cells 
Molecular and Cellular Biology  2004;24(13):5710-5720.
Following hybridization with embryonic stem (ES) cells, somatic genomes are epigenetically reprogrammed and acquire pluripotency. This results in the transcription of somatic genome-derived tissue-specific genes upon differentiation. During nuclear reprogramming, it is expected that DNA and chromatin modifications, believed to function in cell-type-specific epigenotype memory, should be significantly modified. Indeed, current evidence indicates that acetylation and methylation of histone H3 and H4 amino termini play a major role in the regulation of gene activity through the modulation of chromatin conformation. Here, we show that the reprogrammed somatic genome of ES hybrid cells becomes hyperacetylated at H3 and H4, while lysine 4 (K4) of H3 becomes globally hyper-di- and -tri-methylated. In the Oct4 promoter region, histones H3 and H4 are acetylated and H3-K4 is highly tri-methylated on both the ES and reprogrammed somatic genomes, which correlates with gene activation and DNA demethylation. However, H3-K4 is also di- and tri-methylated in the promoter regions of Neurofilament-M (Nfm), Nfl, and Thy-1, which are all silent in both ES and hybrid cells. Thus, H3-K4 di- and tri-methylation of reprogrammed somatic genomes is independent of gene activity and represents one of the major events that occurs during somatic genome reprogramming towards a transcriptional activation-permissive state.
doi:10.1128/MCB.24.13.5710-5720.2004
PMCID: PMC480906  PMID: 15216876
12.  DNA methylome in human CD4+ T cells identifies transcriptionally repressive and non-repressive methylation peaks 
Genes and immunity  2010;11(7):554-560.
DNA methylation is an epigenetic mark that is critical in determining chromatin accessibility and regulating gene expression. This epigenetic mechanism has an important role in T-cell function. We used genome-wide methylation profiling to characterize the DNA methylome in primary human CD4+ T cells. We found that only 5% of CpG islands are methylated in CD4+ T cells, and that DNA methylation peak density is increased in subtelomeric chromosomal regions. We also found an inverse relationship between methylation peak density and chromosomal length. Our data indicate that DNA methylation in gene promoter regions is not always a repressive epigenetic mark. Indeed, about 27% of methylated genes are actively expressed in CD4+ T cells. We demonstrate that repressive methylation peaks are located closer to the transcription start site (TSS) compared with functionally non-repressive peaks (−893±110 bp versus −1342±218 bp (mean±s.e.m.), P-value <0.05). We also show that both a larger number and an increased CpG island density in promoter sequences predict transcriptional permissiveness of DNA methylation. TSS in the majority of genes with permissive DNA methylation peaks is in DNase I hypersensitive sites, indicating a failure of DNA methylation to induce chromatin inaccessibility in these loci.
doi:10.1038/gene.2010.24
PMCID: PMC2948060  PMID: 20463746
CD4+ T cell; DNA methylation; CpG islands; promoter methylation; methylome
13.  Passive and active DNA methylation and the interplay with genetic variation in gene regulation 
eLife  2013;2:e00523.
DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression.
DOI: http://dx.doi.org/10.7554/eLife.00523.001
eLife digest
Variations occur throughout our genome. These variations can cause genes to be expressed (switched on) in slightly different ways among individuals. Moreover, the same gene can also be expressed in different ways in different cells within an individual. A third level of variation is supplied by epigenetic markers: these are molecules that bind to the DNA at specific points and can have profound effects on the expression of nearby genes. One such epigenetic marker is the addition of a methyl group to a cytosine base, a process that is known as DNA methylation.
DNA methylation usually happens when a cytosine base is next to a guanine base, forming a CpG site. In mammals, most CpG sites have methyl groups attached, although regions with a lot of CpG sites (called CpG islands) are mostly unmethylated. Initial studies suggested that methylation prevented particular genes from being expressed, but more recent work has indicated that methylation can be associated with both reduced and increased expression of genes. Moreover, it is not clear if this association is active (i.e., changes in methylation drive changes in gene expression) or passive (DNA methylation is the result of gene regulation).
Now, Gutierrez-Arcelus et al. have carried out a large-scale study to clarify the relationships between three different types of gene-related variations among individuals. They extracted fibroblasts, T-cells and lymphoblastoid cells from the umbilical cords of 204 babies, and analysed them for variations in DNA sequence, gene expression and DNA methylation. Their results show that the associations between the three are more complex than was previously thought.
Gutierrez-Arcelus et al. show that the mechanisms that control the association between the variations in DNA methylation and gene expression in individuals are likely to be different to those that are responsible for the establishment of methylation patterns during the process of cell differentiation. They also find that the association between DNA methylation and gene expression can be either active or passive, and can depend on the context in which they occur in our genome. Finally, where the two copies or alleles of a gene are not equally expressed in a given cell, the difference in expression is primarily regulated by DNA sequence variation, with DNA methylation having little or no role on its own. Equally complex interactions and effects are expected in further studies of genetic and epigenetic variation.
DOI: http://dx.doi.org/10.7554/eLife.00523.002
doi:10.7554/eLife.00523
PMCID: PMC3673336  PMID: 23755361
methylation; gene regulation; epigenetics; genome variation; Human
14.  Epigenomic Analysis of Multi-lineage Differentiation of Human Embryonic Stem Cells 
Epigenetic mechanisms have been proposed as crucial for regulating mammalian development, but their precise function is only partially understood. To investigate the epigenetic control of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. Strikingly, we found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in non-expressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, as we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.
PMCID: PMC3635352
15.  MetMap Enables Genome-Scale Methyltyping for Determining Methylation States in Populations 
PLoS Computational Biology  2010;6(8):e1000888.
The ability to assay genome-scale methylation patterns using high-throughput sequencing makes it possible to carry out association studies to determine the relationship between epigenetic variation and phenotype. While bisulfite sequencing can determine a methylome at high resolution, cost inhibits its use in comparative and population studies. MethylSeq, based on sequencing of fragment ends produced by a methylation-sensitive restriction enzyme, is a method for methyltyping (survey of methylation states) and is a site-specific and cost-effective alternative to whole-genome bisulfite sequencing. Despite its advantages, the use of MethylSeq has been restricted by biases in MethylSeq data that complicate the determination of methyltypes. Here we introduce a statistical method, MetMap, that produces corrected site-specific methylation states from MethylSeq experiments and annotates unmethylated islands across the genome. MetMap integrates genome sequence information with experimental data, in a statistically sound and cohesive Bayesian Network. It infers the extent of methylation at individual CGs and across regions, and serves as a framework for comparative methylation analysis within and among species. We validated MetMap's inferences with direct bisulfite sequencing, showing that the methylation status of sites and islands is accurately inferred. We used MetMap to analyze MethylSeq data from four human neutrophil samples, identifying novel, highly unmethylated islands that are invisible to sequence-based annotation strategies. The combination of MethylSeq and MetMap is a powerful and cost-effective tool for determining genome-scale methyltypes suitable for comparative and association studies.
Author Summary
In the vertebrates, methylation of cytosine residues in DNA regulates gene activity in concert with proteins that associate with DNA. Large-scale genomewide comparative studies that seek to link specific methylation patterns to disease will require hundreds or thousands of samples, and thus economical methods that assay genomewide methylation. One such method is MethylSeq, which samples cytosine methylation at site-specific resolution by high-throughput sequencing of the ends of DNA fragments generated by methylation-sensitive restriction enzymes. MethylSeq's low cost and simplicity of implementation enable its use in large-scale comparative studies, but biases inherent to the method inhibit interpretation of the data it produces. Here we present MetMap, a statistical framework that first accounts for the biases in MethylSeq data and then generates an analysis of the data that is suitable for use in comparative studies. We show that MethylSeq and MetMap can be used together to determine methylation profiles across the genome, and to identify novel unmethylated regions that are likely to be involved in gene regulation. The ability to conduct comparative studies of sufficient scale at a reasonable cost promises to reveal new insights into the relationship between cytosine methylation and phenotype.
doi:10.1371/journal.pcbi.1000888
PMCID: PMC2924245  PMID: 20856582
16.  Dynamic Patterns of Histone Lysine Methylation in the Developing Retina 
Histone lysine methylation (HKM) is a crucial epigenetic mechanism that establishes cell-specific gene expression and functions in development but is poorly understood in the retina. The authors examine the dynamic changes of specific HKM modifications and enzymes that control these marks in the developing retina and demonstrate a novel role for HKM in retinal neuron survival.
Purpose.
Histone lysine methylation (HKM) is an important epigenetic mechanism that establishes cell-specific gene expression and functions in development. However, epigenetic control of retinal development is poorly understood. To study the roles of HKM in retinogenesis, the authors examined the dynamic changes of three HKM modifications and of two of their regulators, the histone methyltransferases (HMTases) Ezh2 and G9a, in the mouse retina.
Methods.
Retinal sections and lysates from embryonic day 16 through adult were processed for immunohistochemistry and immunoblotting using antibodies against various marks and HMTases. To further analyze the biological functions of HKM, the effects of small molecule inhibitors of HMTases were examined in vitro.
Results.
Methylation marks of trimethyl lysine 4 and 27 on histone H3 (H3K4me3 and H3K27me3) were detected primarily in differentiated retinal neurons in the embryonic and adult retina. In contrast, dimethyl lysine 9 on histone H3 (H3K9me2) was noted in early differentiating retinal ganglion cells but was lost after birth. The HMTases controlling H3K27me3, H3K9me2, Ezh2, and G9a were enriched in the inner embryonic retina during the period of active retinogenesis. Using the chemical inhibitors of Ezh2 and G9a, the authors reveal a role for HKM in regulating retinal neuron survival.
Conclusions.
HKM is a dynamic and spatiotemporally regulated process in the developing retina. Epigenetic regulation of gene transcription by Ezh2- and G9a-mediated HKM plays crucial roles in retinal neuron survival and may represent novel epigenetic targets to enhance viability in retinal neurodegenerative diseases such as glaucoma.
doi:10.1167/iovs.09-4730
PMCID: PMC3055777  PMID: 20671280
17.  Crosstalk Between DNA and Histones: Tet’s New Role in Embryonic Stem Cells 
Current Genomics  2012;13(8):603-608.
Embryonic stem (ES) cells are characterized by the expression of an extensive and interconnected network of pluripotency factors which are downregulated in specialized cells. Epigenetic mechanisms, including DNA methylation and histone modifications, are also important in maintaining this pluripotency program in ES cells and in guiding correct differentiation of the developing embryo. Methylation of the cytosine base of DNA blocks gene expression in all cell types and further modifications of methylated cytosine have recently been discovered. These new modifications, putative intermediates in a pathway to erase DNA methylation marks, are catalyzed by the ten-eleven translocation (Tet) proteins, specifically by Tet1 and Tet2 in ES cells. Surprisingly, Tet1 shows repressive along with active effects on gene expression depending on its distribution throughout the genome and co-localization with Polycomb Repressive Complex 2 (PRC2). PRC2 di- and tri-methylates lysine 27 of histone 3 (H3K27me2/3 activity), marking genes for repression. In ES cells, almost all gene loci containing the repressive H3K27me3 modification also bear the active H3K4me3 modification, creating “bivalent domains” which mark important developmental regulators for timely activation. Incorporation of Tet1 into the bivalent domain paradigm is a new and exciting development in the epigenetics field, and the ramifications of this novel crosstalk between DNA and histone modifications need to be further investigated. This knowledge would aid reprogramming of specialized cells back into pluripotent stem cells and advance understanding of epigenetic perturbations in cancer.
doi:10.2174/138920212803759730
PMCID: PMC3492800  PMID: 23730200
Tet; ES cells; Polycomb repressive complex; DNA modification; Histone modification; Epigenetics; 5mC; 5hmC.
18.  DNA methylation dynamics during in vivo differentiation of blood and skin stem cells 
Molecular cell  2012;47(4):633-647.
DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus-specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genomic data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation.
doi:10.1016/j.molcel.2012.06.019
PMCID: PMC3428428  PMID: 22841485
Epigenomics; bioinformatics; stem cells; blood lineage; skin lineage; hematopoietic stem cells; hair follicle stem cells; computational epigenetics
19.  A panel of genes methylated with high frequency in colorectal cancer 
BMC Cancer  2014;14:54.
Background
The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests.
Methods
Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP).
Results
Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas.
Conclusions
This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers.
doi:10.1186/1471-2407-14-54
PMCID: PMC3924905  PMID: 24485021
Colorectal cancer; DNA methylation; Biomarker
20.  DNA Methylation and Its Basic Function 
Neuropsychopharmacology  2012;38(1):23-38.
In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA. During development, the pattern of DNA methylation in the genome changes as a result of a dynamic process involving both de novo DNA methylation and demethylation. As a consequence, differentiated cells develop a stable and unique DNA methylation pattern that regulates tissue-specific gene transcription. In this chapter, we will review the process of DNA methylation and demethylation in the nervous system. We will describe the DNA (de)methylation machinery and its association with other epigenetic mechanisms such as histone modifications and noncoding RNAs. Intriguingly, postmitotic neurons still express DNA methyltransferases and components involved in DNA demethylation. Moreover, neuronal activity can modulate their pattern of DNA methylation in response to physiological and environmental stimuli. The precise regulation of DNA methylation is essential for normal cognitive function. Indeed, when DNA methylation is altered as a result of developmental mutations or environmental risk factors, such as drug exposure and neural injury, mental impairment is a common side effect. The investigation into DNA methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and provides possible therapeutic targets for the treatment of neuropsychiatric disorders.
doi:10.1038/npp.2012.112
PMCID: PMC3521964  PMID: 22781841
epigenetics; gene regulation; neuron; synaptic plasticity; demethylation; animal models; brain development; development/developmental disorders; DNA modification; epigenetics; gene reguation; histone modification; molecular & cellular neurobiology; psychiatry & behavioral sciences
21.  Identification and analysis of an early diagnostic marker for malignant melanoma: ZAR1 intra-genic differential methylation 
Background
Epigenetic changes such as aberrant DNA methylation and histone modification have been shown to play an important role in the tumorigenesis of malignant melanoma.
Objective
To identify novel tumor-specific differentially methylated regions (DMRs) in human malignant melanoma.
Methods
The aberrant methylation at 14 candidate human genomic regions identified through a mouse model study with quantitative DNA methylation analysis using the Sequenom MassARRAY system was performed.
Results
The CpG island Exon 1 region of the Zygote arrest 1 (ZAR1) gene, which is responsible for oocyte-to-embryo transition, showed frequent aberrant methylation of 28 out of 30 (93%) melanoma surgical specimens, 16 of 17 (94%) melanoma cell lines, 0% of 4 normal human epidermal melanocyte (NHEM) cell lines, 0% of 10 melanocytic nevi and 100% of 51 various cancer cell lines. According to the real-time RT-PCR, the ZAR1 gene was overexpressed in part of the hypermethylated cell lines, while its low expression with bivalent histone methylation status was seen in unmethylated cell lines.
Conclusion
Our findings suggest that the ZAR1 intra-genic differentially methylated region would be a useful tumor marker for malignant melanoma and may be other type of cancers. The involvement of ZAR1 in the carcinogenesis of melanoma, still remains unclear, although we have examined tumorigenic capacities by exogenous full-length ZAR1 over-expression and siRNA knock-down experiments.
doi:10.1016/j.jdermsci.2010.04.016
PMCID: PMC2911436  PMID: 20654783
22.  Genome-wide DNA methylation profiling of non-small cell lung carcinomas 
Background
Non-small cell lung carcinoma (NSCLC) is a complex malignancy that owing to its heterogeneity and poor prognosis poses many challenges to diagnosis, prognosis and patient treatment. DNA methylation is an important mechanism of epigenetic regulation involved in normal development and cancer. It is a very stable and specific modification and therefore in principle a very suitable marker for epigenetic phenotyping of tumors. Here we present a genome-wide DNA methylation analysis of NSCLC samples and paired lung tissues, where we combine MethylCap and next generation sequencing (MethylCap-seq) to provide comprehensive DNA methylation maps of the tumor and paired lung samples. The MethylCap-seq data were validated by bisulfite sequencing and methyl-specific polymerase chain reaction of selected regions.
Results
Analysis of the MethylCap-seq data revealed a strong positive correlation between replicate experiments and between paired tumor/lung samples. We identified 57 differentially methylated regions (DMRs) present in all NSCLC tumors analyzed by MethylCap-seq. While hypomethylated DMRs did not correlate to any particular functional category of genes, the hypermethylated DMRs were strongly associated with genes encoding transcriptional regulators. Furthermore, subtelomeric regions and satellite repeats were hypomethylated in the NSCLC samples. We also identified DMRs that were specific to two of the major subtypes of NSCLC, adenocarcinomas and squamous cell carcinomas.
Conclusions
Collectively, we provide a resource containing genome-wide DNA methylation maps of NSCLC and their paired lung tissues, and comprehensive lists of known and novel DMRs and associated genes in NSCLC.
doi:10.1186/1756-8935-5-9
PMCID: PMC3407794  PMID: 22726460
DNA Methylation; Epigenetics; MethylCap; Next generation sequencing; Non-small cell lung Cancer
23.  CpG content affects gene silencing in mice: evidence from novel transgenes 
Genome Biology  2003;4(9):R53.
It has been demonstrated that the density of CpG sequences in the transcribed regions of transgenes can have a causal role in repression of transcription. These results show that the mechanism by which CpG islands escape de novo methylation is sensitive to CpG density of adjacent sequences.
Background
Transgenes are often engineered using regulatory elements from distantly related genomes. Although correct expression patterns are frequently achieved even in transgenic mice, inappropriate expression, especially with promoters of widely expressed genes, has been reported. DNA methylation has been implicated in the aberrant expression, but the mechanism by which the methylation of a CpG-rich sequence can perturb the functioning of a promoter is unknown.
Results
We describe a novel method for analyzing epigenetic controls that allows direct testing of CpGs involvement by using LacZ reporter genes with a CpG content varying from high to zero that are combined with a CpG island-containing promoter of a widely expressed gene - the α-subunit of the translation elongation factor 1. Our data revealed that a LacZ transgene with null CpG content abolished the strong transgene repression observed in the somatic tissues of transgenic lines with higher CpG content. Investigation of transgene expression and methylation patterns suggests that during de novo methylation of the genome the CpG island-containing promoter escapes methylation only when combined with the CpG-null transgene. In the other transgenic lines, methylation of the promoter may have led to transcriptional silencing.
Conclusions
We demonstrate that the density of CpG sequences in the transcribed regions of transgenes can have a causal role in repression of transcription. These results show that the mechanism by which CpG islands escape de novo methylation is sensitive to CpG density of adjacent sequences. These findings are of importance for the design of transgenes for controlled expression.
PMCID: PMC193653  PMID: 12952532
24.  Epigenetic regulation of adipocyte differentiation and adipogenesis*  
It is generally agreed that adipocytes originate from mesenchymal stem cells in what can be divided into two processes: determination and differentiation. In the past decade, many factors associated with epigenetic signals have been proved to be pivotal for the appropriate timing of adipogenesis progression. A large number of coregulators at critical gene promoters set up specific patterns of DNA methylation, histone acetylation and methylation, and nucleosome rearrangement, that act as an epigenetic code to modulate the correct progress of adipocyte differentiation and adipogenesis during adipogenesis. In this review, we focus on the functions and roles of epigenetic processes in preadipocyte differentiation and adipogenesis.
doi:10.1631/jzus.B0900401
PMCID: PMC2950241  PMID: 20872986
Epigenetic regulation; Histone modification; DNA methylation; Differentiation; Adipogenesis
25.  Aberrant DNA Methylation and Prostate Cancer 
Current Genomics  2011;12(7):486-505.
Prostate cancer (PCa) is the most prevalent cancer, a significant contributor to morbidity and a leading cause of cancer-related death in men in Western industrialized countries. In contrast to genetic changes that vary among individual cases, somatic epigenetic alterations are early and highly consistent events. Epigenetics encompasses several different phenomena, such as DNA methylation, histone modifications, RNA interference, and genomic imprinting. Epigenetic processes regulate gene expression and can change malignancy-associated phenotypes such as growth, migration, invasion, or angiogenesis. Methylations of certain genes are associated with PCa progression. Compared to normal prostate tissues, several hypermethylated genes have also been identified in benign prostate hyperplasia, which suggests a role for aberrant methylation in this growth dysfunction. Global and gene-specific DNA methylation could be affected by environmental and dietary factors. Among other epigenetic changes, aberrant DNA methylation might have a great potential as diagnostic or prognostic marker for PCa and could be tested in tumor tissues and various body fluids (e.g., serum, urine). The DNA methylation markers are simple in nature, have high sensitivity, and could be detected either quantitatively or qualitatively. Availability of genome-wide screening methodologies also allows the identification of epigenetic signatures in high throughput population studies. Unlike irreversible genetic changes, epigenetic alterations are reversible and could be used for PCa targeted therapies.
doi:10.2174/138920211797904061
PMCID: PMC3219844  PMID: 22547956
Epigenetics; Genome; Methylation; Prostate cancer.

Results 1-25 (782238)