PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (368646)

Clipboard (0)
None

Related Articles

1.  Acute Bladder Inflammation Differentially Affects Rat Spinal Visceral Nociceptive Neurons 
Neuroscience letters  2009;467(2):150-154.
Purpose
The present investigation examined the effect of inflammation produced by intravesical zymosan on spinal dorsal horn neuronal responses to urinary bladder distension (UBD).
Methods
Extracellular single-unit recordings of neurons excited by UBD were obtained in spinalized female Sprague-Dawley rats. Neurons were classified as Type I - inhibited by heterotopic noxious conditioning stimuli (HNCS) or as Type II - not inhibited by a HNCS. In Experiment 1 - following neuronal characterization, 1% zymosan was infused into the bladder and after two hours spinal units were recharacterized. Control rats received intravesical saline or subcutaneous zymosan. In Experiment 2 – rats were pretreated with intravesical zymosan 24 hours prior to surgical preparation. Control rats only received anesthesia.
Results
137 spinal dorsal horn neurons excited by UBD were characterized. In comparison with controls, Type II neurons demonstrated increased spontaneous and UBD-evoked activity following intravesical zymosan treatment (both Experiments 1 & 2) whereas Type I neurons demonstrated either no change (Experiment 1) or decreased activity (Experiment 2) following bladder inflammation. No significant changes were noted in neuronal activity in control experiments.
Conclusions
Inflammation differentially affects subpopulations of spinal dorsal horn neurons excited by UBD that can be differentiated according to the effect of HNCS. This results in an altered pattern of spinal sensory transmission that may serve as the mechanism for the generation of visceral nociception.
doi:10.1016/j.neulet.2009.10.027
PMCID: PMC2783714  PMID: 19822190
visceral; urinary bladder; cystitis; zymosan; spinal
2.  Neonatal Bladder Inflammation Alters Activity of Adult Rat Spinal Visceral Nociceptive Neurons 
Neuroscience letters  2010;472(3):210-214.
Purpose
This investigation examined the effect of inflammation produced by intravesical zymosan during the neonatal period on spinal dorsal horn neuronal responses to urinary bladder distension (UBD) as adults.
Methods
Female rat pups (P14-P16) were treated with intravesical zymosan or with anesthesia-only. These groups of rats were subdivided forming four groups: half received intravesical zymosan as adults and half received anesthesia-only. One day later, rats were anesthetized, the spinal cord transected at a cervical level and extracellular single-unit recordings of L6-S1 dorsal horn neurons obtained. Neurons were classified as Type I - inhibited by heterotopic noxious conditioning stimuli (HNCS) or as Type II - not inhibited by HNCS - and were characterized for spontaneous activity and responses to graded UBD (20–60 mm Hg).
Results
227 spinal dorsal horn neurons excited by UBD were characterized. In rats treated as neonates with anesthesia-only, Type II neurons demonstrated increased spontaneous and UBD-evoked activity following adult intravesical zymosan treatment whereas Type I neurons demonstrated decreased spontaneous and UBD-evoked activity relative to controls. In rats treated as neonates with intravesical zymosan, the spontaneous and UBD-evoked activity of both Type I and Type II neurons increased following adult intravesical zymosan treatment relative to controls.
Conclusions
Neonatal bladder inflammation alters subsequent effects of acute bladder inflammation on spinal dorsal horn neurons excited by UBD such that overall there is greater sensory neuron activation. This may explain the visceral hypersensitivity noted in this model system and suggest that impaired inhibitory systems may be responsible.
doi:10.1016/j.neulet.2010.02.007
PMCID: PMC2842906  PMID: 20149841
visceral; urinary bladder; cystitis; zymosan; spinal
3.  Footshock-Induced Urinary Bladder Hypersensitivity: Role of Spinal Corticotropin-Releasing Factor Receptors 
Stress-induced hyperalgesia (SIH), a common clinical observation associated with multiple painful diseases including functional urinary disorders, presently has no mechanistic explanation. Using a Footshock treatment, a classical stressor, to magnify physiological responses in a model of urinary bladder pain, we examined one potential group of mediators of SIH, the corticotropin-releasing factor (CRF)-related neuropeptides. Exposure to a Footshock treatment produced bladder hypersensitivity in female Sprague Dawley rats, manifested as significantly more vigorous visceromotor responses (VMRs) to urinary bladder distension (UBD) compared to rats that were exposed to a Non-footshock treatment. This bladder hypersensitivity was significantly attenuated by blocking spinal CRF2 receptors but not CRF1 receptors. Furthermore, spinal administration of urocortin 2, a CRF2 receptor agonist, augmented UBD-evoked VMRs in a way similar to what was observed following exposure to Footshock, an effect significantly attenuated by pretreatment with spinal aSVG30, a CRF2 receptor antagonist. Surprisingly, neither spinal administration of CRF nor the CRF1 receptor antagonist, antalarmin, had an effect on bladder nociceptive responses. The results of the present study not only provide further support for a role of stress in the exacerbation of bladder pain, but also implicate spinal urocortins and their endogenous receptor, the CRF2 receptor, as potential mediators of this effect.
Perspective:
This study presents evidence that spinal urocortins and CRF2 receptors are involved in stress-induced hypersensitivity related to the urinary bladder. This provides a basis for investigating how urocortins mediate SIH, ultimately leading to more effective treatment options for patients suffering from painful bladder syndromes as well as stress-exacerbated chronic pain.
doi:10.1016/j.jpain.2008.05.006
PMCID: PMC2579943  PMID: 18632307
Urinary bladder; hypersensitivity; visceral; urocortin; corticotropin-releasing factor
4.  Effects of Oxytocin and Prolactin on Stress-Induced Bladder Hypersensitivity in Female Rats 
Anecdotal evidence suggests that chronic bladder pain improves while breastfeeding. The present study sought to identify potential mechanisms for such a phenomenon by investigating the effects of the lactogenic hormones prolactin (PL) and oxytocin (OXY) in a rat model of bladder nociception. Lactating rats were less sensitive to urinary bladder distension (UBD) than controls. In investigating potential antinociceptive and anxiolytic roles for these hormones, we found exposure to a footshock paradigm (STRESS groups) produced bladder hypersensitivity in saline-treated rats, manifested as significantly higher electromyographical (EMG) responses to UBD, compared to rats exposed to a non-footshock paradigm (SHAM groups). This hypersensitivity was attenuated by the intraperitoneal administration of OXY prior to footshock in the STRESS-OXY group. The administration of PL augmented EMG responses in the SHAM-PL group but had no effect on the responses of the STRESS-PL group. In the absence of behavioral pretreatment, OXY attenuated UBD-evoked responses while PL had no effect. Moreover, OXY-treated rats spent more time in the open arm of an elevated plus maze compared to saline-treated rats suggesting anxiolysis. These studies suggest the potential for systemic OXY, but not PL, as an analgesic and anxiolytic treatment for painful bladder disorders such as interstitial cystitis.
doi:10.1016/j.jpain.2009.04.007
PMCID: PMC2757490  PMID: 19595642
oxytocin; prolactin; nociception; pain; stress; anxiety; bladder
5.  Intrathecal Oxytocin Inhibits Visceromotor Reflex and Spinal Neuronal Responses to Noxious Distention of the Rat Urinary Bladder 
Background and Objectives
Oxytocin (OXY) is a neuropeptide that has recently been recognized as an important component of descending analgesic systems. The present study sought to determine if OXY produces antinociception to noxious visceral stimulation.
Methods
Urethane-anesthetized female rats had intrathecal catheters placed acutely, and the effect of intrathecal OXY on visceromotor reflexes (VMRs; abdominal muscular contractions quantified using electromyograms) to urinary bladder distension (UBD; 10-60 mm Hg, 20 s; transurethral intravesical catheter) was determined. The effect of OXY applied to the surface of exposed spinal cord was determined in lumbosacral dorsal horn neurons excited by UBD using extracellular recordings.
Results
OXY doses of 0.15 μg or 1.5 μg inhibited VMRs to UBD by 37 ± 8% and 68 ± 10%, respectively. Peak inhibition occurred within 30 minutes and was sustained for at least 60 minutes. The effect of OXY was both reversed and prevented by the intrathecal administration of an OXY receptor antagonist. Application of 0.5 mM OXY to the dorsum of the spinal cord inhibited UBD-evoked action potentials by 76 ± 12%. Consistent with the VMR studies, peak inhibition occurred within 30 minutes and was sustained for greater than 60 minutes.
Conclusions
These results argue that intrathecal OXY produces an OXY receptor specific antinociception to noxious UBD, with part of this effect due to inhibition of spinal dorsal horn neurons. To our knowledge, these studies provide the first evidence that intrathecal OXY may be an effective pharmacological treatment for visceral pain.
doi:10.1097/AAP.0b013e318266352d
PMCID: PMC3426637  PMID: 22878524
6.  Isoflurane Suppresses Stress-Enhanced Fear Learning in a Rodent Model of Posttraumatic Stress Disorder 
Anesthesiology  2009;110(3):487-495.
Background
A minority of patients who experience awareness and/or pain during surgery subsequently develop posttraumatic stress disorder. In a rodent model of posttraumatic stress disorder, stress-enhanced fear learning (SEFL), rats are pre-exposed to a stressor of 15 footshocks. Subsequent exposure to a single footshock produces an enhanced fear response. This effect is akin to sensitized reactions shown by some posttraumatic stress disorder patients to cues previously associated with the traumatic event.
Methods
We studied the effect of isoflurane and nitrous oxide on SEFL. Rats were exposed to the inhaled anesthetic during or after a 15-footshock stressor. Then rats were given a single footshock in a different environment. Their fear response was quantified in response to the 15-footshock and single-footshock environments. SEFL longevity was tested by placing a 90-day period between the 15 footshocks and the single footshock. In addition, the intensity of the footshock was increased to evaluate treatment effectiveness.
Results
Increasing isoflurane concentrations decreased SEFL when given during, but not after, the stressor. At 0.40 minimum alveolar concentration, isoflurane given during the stressor blocked SEFL 90 days later. A three-fold increase in the stressor intensity increased the isoflurane concentration required to block SEFL to no more than 0.67 minimum alveolar concentration. As with isoflurane, nitrous oxide suppressed SEFL at a similar minimum alveolar concentration fraction.
Conclusions
These results suggest that sufficient concentrations (perhaps 0.67 minimum alveolar concentration or less) of an inhaled anesthetic may prevent SEFL.
doi:10.1097/ALN.0b013e3181974f3e
PMCID: PMC2803013  PMID: 19212264
7.  Nicotine self-administration differentially modulates glutamate and GABA transmission in hypothalamic paraventricular nucleus to enhance the hypothalamic-pituitary-adrenal response to stress 
Journal of neurochemistry  2010;113(4):919-929.
The Mechanisms by which chronic nicotine self-administration augments hypothalamo-pituitary-adrenal (HPA) responses to stress are only partially understood. Nicotine self-administration alters neuropeptide expression in corticotropin-releasing factor (CRF) neurons within paraventricular nucleus (PVN) and increases PVN responsiveness to norepinephrine during mild footshock stress. Glutamate and GABA also modulate CRF neurons, but their roles in enhanced HPA responsiveness to footshock during chronic self-administration are unknown. We show that nicotine self-administration augmented footshock-induced PVN glutamate release, but further decreased GABA release. In these rats, intra-PVN kynurenic acid, a glutamate receptor antagonist, blocked enhanced adrenocorticotropic hormone and corticosterone responses to footshock. In contrast, peri-PVN kynurenic acid, which decreases activity of GABA afferents to PVN, enhanced footshock-induced corticosterone secretion only in control rats self-administering saline. Additionally, in rats self-administering nicotine, footshock-induced elevation of corticosterone was significantly less than in controls after intra-PVN saclofen (GABA-B receptor antagonist). Therefore, the exaggerated reduction in GABA release by footshock during nicotine self-administration disinhibits CRF neurons. This disinhibition combined with enhanced glutamate input provides a new mechanism for HPA sensitization to stress by chronic nicotine self-administration. This mechanism, which does not preserve homeostatic plasticity, supports the concept that smoking functions as a chronic stressor that sensitizes the HPA to stress.
doi:10.1111/j.1471-4159.2010.06654.x
PMCID: PMC2912162  PMID: 20202080
nicotine self-administration; adrenocorticotropic hormone; corticosterone; footshock stress; homeostatic plasticity; rat
8.  Footshock-induced responses in ventral subiculum neurons are mediated by locus coeruleus noradrenergic afferents 
The ventral subiculum (vSub) of the hippocampus is critically involved in mediating the forebrain’s response to stress, particularly with regard to psychogenic stressors. Stress, in turn, is known to aggravate many psychiatric conditions including schizophrenia, depression, anxiety, and drug abuse. Pathological alterations in hippocampal function have been identified in all these disorders; thus, it is of interest to understand how stress affects this brain region. The vSub receives dense projections from the stress-related locus coeruleus (LC); however, it is not known what role this input plays in signaling stressful stimuli. In this study, the direct LC innervation of the vSub was investigated as a potential mediator of stress responses in this region. To examine responses to an acute stressor, the effect of footshock on single vSub neurons was tested in rats. Footshock inhibited 13%, and activated 48% of neurons in this region. Importantly, responses to footshock were correlated with LC stimulation-evoked responses in single neurons, and LC inactivation blocked these responses. Furthermore, prazosin, an alpha-1 antagonist, reversed footshock-evoked inhibition, revealing an underlying activation. Inactivation of the basolateral amygdala (BLA) did not block phasic footshock-evoked activation; however, it reduced tonic activity in the vSub. These results suggest that the LC NE system plays an important role in mediating stress responses in the vSub. Footshock evokes both inhibition and excitation in the vSub, by activating noradrenergic inputs from the LC. These responses may contribute to stress adaptation; while an imbalance of this system may lead to pathological stress responses in mental disorders.
doi:10.1016/j.euroneuro.2012.10.007
PMCID: PMC3718869  PMID: 23394871
stress; norepinephrine; footshock; ventral subiculum; locus coeruleus; rat
9.  Nicotine self-administration diminishes stress-induced norepinephrine secretion but augments adrenergic-responsiveness in the hypothalamic paraventricular nucleus and enhances adrenocorticotropic hormone and corticosterone release 
Journal of neurochemistry  2009;112(5):1327-1337.
Chronic nicotine self-administration augments the thalamo-pituitary-adrenal (HPA) responses to stress. Altered neuropeptide expression within corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) contributes to this enhanced HPA response to stress. Herein, we determined the role of norepinephrine, a primary regulator of CRF neurons, in the responses to footshock during nicotine self-administration. On day 12-15 of self-administration, microdialysis showed nicotine reduced PVN norepinephrine release by footshock (<50% of saline). Yet, the reduction in footshock-induced adrenocorticotropic hormone (ACTH) and corticosterone secretion due to intra-PVN prazosin (α1 adrenergic antagonist) was significantly greater in rats self-administering nicotine (2-fold) than saline. Additionally, PVN phenylephrine (α1 agonist) stimulated ACTH and corticosterone release to a similar extent in unstressed rats self-administering nicotine or saline. Nicotine self-administration also decreased footshock-induced c-Fos expression in the nucleus of the solitary tract (NTS)-A2/C2 catecholaminergic neurons that project to the PVN. Therefore, footshock-induced NTS activation and PVN norepinephrine input are both attenuated by nicotine self-administration, yet PVN CRF neurons are more responsive to α1 stimulation, but only during stress. This plasticity in noradrenergic regulation of PVN CRF neurons provides a new mechanism contributing to the HPA sensitization to stress by nicotine self-administration and smoking.
doi:10.1111/j.1471-4159.2009.06551.x
PMCID: PMC2819601  PMID: 20028457
nicotine; hypothalamic paraventricular nucleus; corticotrophin-releasing factor; norepinephrine; adrenocorticotropic hormone; stress
10.  Differential effects of intravesical resiniferatoxin on excitability of bladder spinal neurons upon colon–bladder cross-sensitization 
Brain research  2012;1491:213-224.
Cross-sensitization in the pelvis may contribute to etiology of functional pelvic pain disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increasing evidence suggests the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in the development of neurogenic inflammation in the pelvis and pelvic organ cross-sensitization. The objective of this study was to test the hypothesis that desensitization of TRPV1 receptors in the urinary bladder can minimize the effects of cross-sensitization induced by experimental colitis on excitability of bladder spinal neurons. Extracellular activity of bladder neurons was recorded in response to graded urinary bladder distension (UBD) in rats pretreated with intravesical resiniferatoxin (RTX, 10−7 M). Colonic inflammation was induced by intracolonic instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The duration of excitatory responses to noxious UBD during acute colonic inflammation (3 days post-TNBS) was significantly shortened in the group with RTX pretreatment (25.37±.5 s, n=49) when compared to the control group (35.1±4.2 s, n=43, p≤0.05). The duration of long-lasting excitatory responses, but not short-lasting responses of bladder spinal neurons during acute colitis was significantly reduced by RTX from 52.9±6.6 s (n=21, vehicle group) to 34.4±2.1 s (RTX group, n=21, p≤0.05). However, activation of TRPV1 receptors in the urinary bladder prior to acute colitis increased the number of bladder neurons receiving input from large somatic fields from 22.7% to 58.2% (p≤0.01). The results of our study provide evidence that intravesical RTX reduces the effects of viscerovisceral cross-talk induced by colonic inflammation on bladder spinal neurons. However, RTX enhances the responses of bladder neurons to somatic stimulation, thereby limiting its therapeutic potential.
doi:10.1016/j.brainres.2012.11.003
PMCID: PMC3607291  PMID: 23146715
Spinal neurons; Chronic pelvic pain; Intravesical vanilloids; Bladder pain syndrome
11.  The Effects of Aromatic Anesthetics on Dorsal Horn Neuronal Responses to Noxious Stimulation 
Anesthesia and analgesia  2008;106(6):1759-1764.
BACKGROUND:
Gamma-aminobutyric acid type A receptor potentiation and/or N-methyl-d-aspartate (NMDA) receptor inhibition might explain the anesthetic properties of fluorinated aromatic compounds. We hypothesized that depression of dorsal horn neuronal responses to noxious stimulation would correlate with the magnitude of effect of benzene (BNZ), o-difluorobenzene, and hexafluorobenzene (HFB) on NMDA receptors.
METHODS:
Rats were anesthetized with desflurane. A T13-L1 laminectomy allowed extracellular recording of neuronal activity from the lumbar spinal cord. After discontinuing desflurane administration, MAC for each aromatic anesthetic was determined. A 5-s noxious mechanical stimulus was then applied to the hindpaw receptive field of nociceptive dorsal horn neurons, and single-neuron responses were recorded at 0.8 and 1.2 MAC. These responses were also recorded in decerebrate rats receiving BNZ and HFB at 0–1.2 MAC.
RESULTS:
In intact rats, depression of responses of dorsal horn neurons to noxious stimulation by peri-MAC increases in BZN, o-difluorobenzene, and HFB correlated directly with their in vitro capacity to block NMDA receptors. In decerebrate rats, 1.2 MAC BNZ depressed nociceptive responses by 60%, with a further percentage decrease continuing from 0.8 to 1.2 MAC approximately equal to that found in intact rats. In decerebrate rats, HFB caused a progressive dose-related decrease in MAC (maximum 25%), but in intact rats, an increase from 0.8 to 1.2 neuronal response caused an (insignificant) increase in neuronal response.
CONCLUSIONS:
The findings in intact rats suggest that NMDA blockade contributes to the depression of dorsal horn neurons to nociceptive stimulation by fluorinated aromatic anesthetics. These results, combined with the additional findings in decerebrate rats, suggest that supraspinal effects (perhaps on γ-aminobutyric acid type A receptors) may have a supraspinal facilitatory effect on nociception for HFB.
doi:10.1213/ane.0b013e3181732ee3
PMCID: PMC2670468  PMID: 18499606
12.  The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain dopaminergic neurons 
Neuroscience  2010;168(1-6):263-272.
Many dopaminergic neurons exhibit a short-latency response to noxious stimuli, the source of which is unknown. Here we report that the nociceptive-recipient parabrachial nucleus appears to be a critical link in the transmission of pain related information to dopaminergic neurons. Injections of retrograde tracer into the substantia nigra pars compacta of the rat labelled neurons in both the lateral and medial parts of the parabrachial nucleus, and intra-parabrachial injections of anterograde tracers revealed robust projections to the pars compacta and ventral tegmental area. Axonal boutons were seen in close association with tyrosine hydroxylase-positive (presumed dopaminergic) and negative elements in these regions. Simultaneous extracellular recordings were made from parabrachial and dopaminergic neurons in the anaesthetized rat, during the application of noxious footshock. Parabrachial neurons exhibited a short-latency, short duration excitation to footshock while dopaminergic neurons exhibited a short-latency inhibition. Response latencies of dopaminergic neurons were reliably longer than those of parabrachial neurons. Intra-parabrachial injections of the local anasethetic lidocaine or the GABAA receptor antagonist muscimol reduced tonic parabrachial activity and the amplitude (and in the case of lidocaine, duration) of the phasic response to footshock. Suppression of parabrachial activity with lidocaine reduced the baseline firing rate of dopaminergic neurons, while both lidocaine and muscimol reduced the amplitude of the phasic inhibitory response to footshock, in the case of lidocaine sometimes abolishing it altogether. Considered together, these results suggest that the parabrachial nucleus is an important source of short-latency nociceptive input to the dopaminergic neurons.
doi:10.1016/j.neuroscience.2010.03.049
PMCID: PMC3003155  PMID: 20363297
nociception; extracellular recording; tract tracing; rat; ANOVA, analysis of variance; BDA, biotinylated dextran amine; BSA, bovine serum albumin; DA, dopaminergic; DAB, diaminobenzidine; FLI, fos-like immunoreactivity; NHS, normal horse serum; PB, phosphate buffer; PBN, parabrachial nucleus; PBS, phosphate buffered saline; PHA-L, Phaseolus vulgaris leukoagglutinin; PPTg, pedunculoponting tegmental nucleus; PSTH, peri-stimulus time interval histogram; RMTg, rostromedial tegmental nucleus; SD, standard deviation; SNPc, substantia nigra pars compacta; SNPr, substantia nigra pars reticulata; TH, tyrosine hydroxylase; TX, Triton X 100; VTA, ventral tegmental area
13.  Inflammation-Induced Enhancement of the Visceromotor Reflex to Urinary Bladder Distention: Modulation by Endogenous Opioids and the Effects of Early-In-Life Experience with Bladder Inflammation 
Abdominal electromyographic (EMG) responses to noxious intensities of urinary bladder distention (UBD) are significantly enhanced 24 hrs following zymosan-induced bladder inflammation in adult female rats. This inflammation-induced hypersensitivity is concomitantly inhibited by endogenous opioids because intraperitoneal (i.p.) naloxone administration before testing significantly increases EMG response magnitude to UBD. This inhibitory mechanism is not tonically active since naloxone does not alter EMG response magnitude to UBD in rats without inflammation. At the dose tested, naloxone does not affect bladder compliance in rats with or without inflammation. The effects of i.p. naloxone likely result from blockade of a spinal mechanism, because intrathecal (i.t.) naloxone also significantly enhances EMG responses to UBD in rats with inflammation. Rats exposed to bladder inflammation from P90-P92 prior to re-inflammation at P120 show similar hypersensitivity and concomitant opioid inhibition, with response magnitudes being no different from that produced by inflammation at P120 alone. In contrast, rats exposed to bladder inflammation from P14-P16 prior to re-inflammation at P120 show markedly enhanced hypersensitivity and no evidence of concomitant opioid inhibition. These data indicate that bladder inflammation in adult rats induces bladder hypersensitivity that is inhibited by an endogenous opioidergic mechanism. This mechanism can be disrupted by neonatal bladder inflammation.
doi:10.1016/j.jpain.2007.06.011
PMCID: PMC4012257  PMID: 17704007
bladder; opioids; inflammation; neonatal; visceromotor reflex; pain
14.  Changes in Vasoactive Intestinal Peptide and Arginine Vasopressin Expression in the Suprachiasmatic Nucleus of the Rat Brain Following Footshock Stress 
Neuroscience letters  2007;425(2):99-104.
The neuropeptides, arginine vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) are synthesized by neurons of the suprachiasmatic nucleus (SCN) of the hypothalamus and are important regulators of SCN function. Previous studies have demonstrated that acute exposure to stressors can disrupt circadian activity rhythms, suggesting the possibility of stress-related alterations in the expression of these neuropeptides within SCN neurons. In this study, we examined the effect of intermittent footshock stress on AVP mRNA and heterogeneous nuclear RNA (hnRNA) and VIP mRNA expression in neurons of the SCN. Young adult male Sprague/Dawley rats were subjected to 15 seconds of scrambled intermittent footshock (0.50 mA pulses, 1 pulse/second, 300 msec) every 5 minutes for 30 minutes. Animals were sacrificed 75 or 135 min after the onset of stress and brains examined for AVP mRNA and hnRNA, and VIP mRNA using in situ hybridization. Footshock stress increased AVP hnRNA levels at the 75 min timepoint whereas AVP mRNA was elevated at both the 75 and 135 min. timepoints. In contrast, footshock stress decreased the number of cells expressing VIP mRNA in the SCN without changing hybridization level per cell. These data indicate that the disruptive effect of stress on activity rhythms correlate with alterations in the expression of regulatory peptides within the SCN.
doi:10.1016/j.neulet.2007.08.044
PMCID: PMC2048536  PMID: 17826907
15.  Footshock stress potentiates cue-induced cocaine-seeking in an animal model of relapse 
Physiology & behavior  2009;98(5):614-617.
Drug-associated cues and stress increase craving and lead to greater risk of relapse in abstinent drug addicts. This risk may be increased when these factors occur simultaneously. The current study examined whether the presentation of three different levels of intermittent footshock would trigger reinstatement or potentiate reinstatement of cocaine-seeking caused by conditioned cues. Male, Long Evans rats underwent daily i.v. cocaine self-administration, followed by extinction of lever responding in the absence of previously cocaine-paired cues. Reinstatement of cocaine-seeking was measured during presentation of cocaine-paired cues, following pretreatment with three levels of intermittent footshock (0.25, 0.5, and 0.75 mA), or after the combination of footshock and cues. Footshock at the 0.5 and 0.75 mA levels led to significant reinstatement when presented alone, and also potentiated the reinstatement triggered by the presentation of conditioned cues. These results demonstrate that while stress and drug-paired cues reinstate drug-seeking when presented in isolation, their interaction leads to potentiated reinstatement. Dual targeting of stress and cues is thus a critical consideration for treatment intervention in abstinent drug users.
doi:10.1016/j.physbeh.2009.09.013
PMCID: PMC2783731  PMID: 19800355
cocaine; cues; footshock; reinstatement; relapse; stress
16.  Effects of acupuncture on stress-induced relapse to cocaine-seeking in rats 
Psychopharmacology  2012;222(2):303-311.
Rationale
Cocaine addiction is associated with high rates of relapse, and stress has been identified as a major risk factor. We have previously demonstrated that acupuncture reduces drug self-administration and dopamine release in the nucleus accumbens (NAc), a brain structure implicated in stress-induced reinstatement of drug-seeking behavior.
Objective
This study was conducted to investigate the effects of acupuncture on footshock-induced reinstatement of cocaine-seeking and the expression of c-Fos and the transcription factor cAMP response element-binding protein (CREB) in the NAc, used as markers of neuronal activation in conditions of stress-induced reinstatement to cocaine.
Methods
Male Sprague–Dawley rats were trained to self-administer cocaine (1.0 mg/kg) for 14 days, followed by extinction and then footshock stress. Acupuncture was applied at bilateral Shenmen (HT7) points for 1 min after footshock stress.
Results and conclusions
Acute footshock stress reinstated cocaine-seeking behavior and enhanced c-Fos expression and phosphorylated CREB (pCREB) activation in the NAc shell in cocaine pre-exposed rats. On the other hand, acupuncture at HT7, but not at control point (LI5), markedly reduced reinstatement of cocaine-seeking (86.5 % inhibition vs. control value), c-Fos expression (81.7% inhibition), and pCREB activation (79.3% inhibition) in the NAc shell. These results suggest that acupuncture attenuates stress-induced relapse by regulating neuronal activation in the NAc shell.
doi:10.1007/s00213-012-2683-3
PMCID: PMC4056594  PMID: 22453546
Cocaine reinstatement; Footshock; Stress; Acupuncture; Nucleus accumbens; c-Fos; pCREB
17.  Heroin Self-Administration Experience Establishes Control of Ventral Tegmental Glutamate Release by Stress and Environmental Stimuli 
Neuropsychopharmacology  2012;37(13):2863-2869.
Heroin and cocaine have very different unconditioned receptor-mediated actions; however, in the brain circuitry of drug-reward and motivation, the two drugs establish common conditioned consequences. A single experience with either drug can change the sensitivity of ventral tegmental area (VTA) dopamine neurons to glutamatergic input. In the case of cocaine, repeated intravenous self-administration establishes de novo VTA glutamate release and dopaminergic activation in response to conditioned stimuli and mild footshock stress. Here we determined whether repeated self-administration of heroin would establish similar glutamate release and dopaminergic activation. Although self-administration of heroin itself did not cause VTA glutamate release, conditioned glutamate release was seen when rats expecting rewarding heroin were given nonrewarding saline in its place. Mild footshock stress also caused glutamate release in heroin-trained animals. In each case, the VTA glutamate release was accompanied by elevations in VTA dopamine levels, indicative of dopaminergic activation. In each case, infusion of the ionotropic glutamate antagonist kynurenic acid blocked the VTA dopamine release associated with VTA glutamate elevation. Although glutamate levels in the extinction and reinstatement tests were similar to those reported in cocaine studies, the effects of heroin self-administration itself were quite different from what has been seen during cocaine self-administration.
doi:10.1038/npp.2012.167
PMCID: PMC3499717  PMID: 22948979
heroin; self-administration; extinction; reinstatement; ventral tegmental area; glutamate; Addiction & Substance Abuse; Glutamate; Catecholamines; Opioids; VTA; reinstatement; footshock
18.  Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus 
Stress is a physiological, adaptive response to changes in the environment, but can also lead to pathological alterations, such as relapse in psychiatric disorders and drug abuse. Evidence demonstrates that the dopamine system plays a role in stress; however, the nature of the effects of sustained stressors on dopamine neuron physiology has not been adequately addressed. By employing a combined electrophysiological, immunohistochemical and behavioral approach, we examined the response of ventral tegmental area (VTA) dopamine neurons in rats to acute as well as repeated stressful events using noxious (footshock) and psychological (restraint) stress. We found that aversive stimuli induced a pronounced activation of the dopamine system both electrophysiologically (population activity; i.e., number of dopamine neurons firing spontaneously) and behaviorally (response to psychostimulants). Moreover, infusion of TTX into the ventral hippocampus (vHPC) reversed both behavioral and electrophysiological effects of stress, indicating that the hyperdopaminergic condition associated with stress is driven by hyperactivity within the vHPC. Therefore, the stress-induced activation of the dopamine system may underlie the propensity of stress to exacerbate psychotic disorders or predispose an individual to drug-seeking behavior. Furthermore, the vHPC represents a critical link between context-dependent DA sensitization, stress-induced potentiation of amphetamine responsivity, and the increase in DA associated with stressors.
doi:10.1523/JNEUROSCI.5310-10.2011
PMCID: PMC3066094  PMID: 21411669
dopamine; stress; ventral hippocampus; amphetamine sensitization; in vivo electrophysiology
19.  FOS EXPRESSION FOLLOWING REGIMENS OF PREDATOR STRESS VERSUS FOOTSHOCK THAT DIFFERENTIALLY AFFECT PREPULSE INHIBITION IN RATS 
Physiology & behavior  2011;104(5):796-803.
Stress is suggested to exacerbate symptoms and contribute to relapse in patients with schizophrenia and several other psychiatric disorders. A prominent feature of many of these illnesses is an impaired ability to filter information through sensorimotor gating processes. Prepulse inhibition (PPI) is a functional measure of sensorimotor gating, and known to be deficient in schizophrenia and sometimes in post-traumatic stress disorder (PTSD), both of which are also sensitive to stress-induced symptom deterioration. We previously found that a psychological stressor (exposure to a ferret without physical contact), but not footshock, disrupted PPI in rats, suggesting that intense psychological stress/trauma may uniquely model stress-induced sensorimotor gating abnormalities. In the present experiment, we sought to recreate the conditions where we found this behavioral difference, and to explore possible underlying neural substrates. Rats were exposed acutely to ferret stress, footshock, or no stress (control). 90 minutes later, tissue was obtained for Fos immunohistochemistry to assess neuronal activation. Several brain regions (prelimbic, infralimbic, and cingulate cortices, the paraventricular hypothalamic nucleus, the paraventricular thalamic nucleus, and the lateral periaqueductal gray) were equally activated following exposure to either stressor. Interestingly, the medial amygdala and dorsomedial periaqueductal gray had nearly twice as much Fos activation in the ferret-exposed rats as in the footshock-exposed rats, suggesting that higher activation within these structures may contribute to the unique behavioral effects induced by predator stress. These results may have implications for understanding the neural substrates that could participate in sensorimotor gating abnormalities seen in several psychiatric disorders after psychogenic stress.
doi:10.1016/j.physbeh.2011.08.001
PMCID: PMC3183172  PMID: 21843541
c-fos; predator; immediate early gene; trauma; psychogenic
20.  Inactivation of the Medial Prefrontal Cortex Interferes with the Expression But Not the Acquisition of Differential Fear Conditioning in Rats 
Experimental Neurobiology  2012;21(1):23-29.
The medial prefrontal cortex (mPFC) has been implicated in the processing of emotionally significant stimuli, particularly the inhibition of inappropriate responses. We examined the role of the mPFC in regulation of fear responses using a differential fear conditioning procedure in which the excitatory conditioned stimulus (CS+) was paired with an aversive footshock and intermixed with the inhibitory conditioned stimulus (CS-). In the first experiment, using rats as subjects, muscimol, a gamma-amino-butyric acid type A (GABAA) receptor agonist, or artificial cerebrospinal fluid (aCSF) was infused intracranially into the mPFC across three conditioning sessions. Twenty-four hours after the last conditioning session, freezing response of the rats was tested in a drug-free state. Neither the muscimol nor the aCSF infusion had any effect on differential responding. In the second experiment, the same experimental procedure was used except that the infusion was made before the testing session rather than the conditioning sessions. The results showed that muscimol infusion impaired differential responding: the level of freezing to CS- was indiscriminable from that to CS+. Taken together, these results suggest that the mPFC is responsible for the regulation of fear response by inhibiting inappropriate fear expressions.
doi:10.5607/en.2012.21.1.23
PMCID: PMC3294070  PMID: 22438676
medial prefrontal cortex; differential fear conditioning; extinction; inhibitory learning
21.  Neuronal intrinsic properties shape naturally evoked sensory inputs in the dorsal horn of the spinal cord 
Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN). To test this idea, we took advantage of an integrated spinal cord–hindlimbs preparation from turtles allowing the combination of patch-clamp recordings of DHN embedded in an intact network, with accurate control of the extracellular milieu. We found that plateau potentials and low threshold spikes (LTS) -mediated by L- and T-type Ca2+channels, respectively- generated complex dynamics by interacting with naturally evoked synaptic potentials. Inhibitory receptive fields could be changed in sign by activation of the LTS. On the other hand, the plateau potential transformed sensory signals in the time domain by generating persistent activity triggered on and off by brief sensory inputs and windup of the response to repetitive sensory stimulation. Our findings suggest that intrinsic properties dynamically shape sensory inputs and thus represent a major building block for sensory processing by DHN. Intrinsic conductances in DHN appear to provide a mechanism for plastic phenomena such as dynamic receptive fields and sensitization to pain.
doi:10.3389/fncel.2013.00276
PMCID: PMC3872311  PMID: 24399934
spinal cord; plateau potentials; low threshold calcium spikes; intrinsic electrophysiological properties; dorsal horn neurons; sensory information processing
22.  Decreased postnatal neurogenesis in the hippocampus combined with stress experience during adolescence is accompanied by an enhanced incidence of behavioral pathologies in adult mice 
Molecular Brain  2008;1:22.
Background
Adolescence is a vulnerable period in that stress experienced during this time can affect the incidence of psychiatric disorders later, during adulthood. Neurogenesis is known to be involved in the postnatal development of the brain, but its role in determining an individual's biological vulnerability to the onset of psychiatric disorders has not been addressed.
Results
We examined the role of postnatal neurogenesis during adolescence, a period between 3 to 8 weeks of age in rodents. Mice were X-irradiated at 4 weeks of age, to inhibit postnatal neurogenesis in the sub-granule cell layer of the hippocampus. Electrical footshock stress (FSS) was administered at 8 weeks old, the time at which neurons being recruited to granule cell layer were those that had begun their differentiation at 4 weeks of age, during X-irradiation. X-irradiated mice subjected to FSS during adolescence exhibited decreased locomotor activity in the novel open field, and showed prepulse inhibition deficits in adulthood. X-irradiation or FSS alone exerted no effects on these behaviors.
Conclusion
These results suggest that mice with decreased postnatal neurogenesis during adolescence exhibit vulnerability to stress, and that persistence of this condition may result in decreased activity, and cognitive deficits in adulthood.
doi:10.1186/1756-6606-1-22
PMCID: PMC2628657  PMID: 19091092
23.  Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning 
Neuroscience  2007;152(2):299-307.
While Pavlovian conditioning alters stimulus-evoked metabolic activity in the cerebral cortex, less is known about the effects of Pavlovian conditioning on neuronal metabolic capacity. Pavlovian conditioning may increase prefrontal cortical metabolic capacity, as suggested by evidence of changes in cortical synaptic strengths, and evidence for a shift in memory initially processed in subcortical regions to more distributed prefrontal cortical circuits. Quantitative cytochrome oxidase histochemistry was used to measure cumulative changes in brain metabolic capacity associated with both cued and contextual Pavlovian conditioning in rats. The cued conditioned group received tone-footshock pairings to elicit a conditioned freezing response to the tone conditioned stimulus, while the contextually conditioned group received pseudorandom tone-footshock pairings in an excitatory context. Untrained control group was handled daily, but did not receive any tone presentations or footshocks. The cued conditioned group had higher cytochrome oxidase activity in the infralimbic and anterior cingulate cortex, and lower cytochrome oxidase activity in dorsal hippocampus than the other two groups. A significant increase in cytochrome oxidase activity was found in anterior cortical areas (medial, dorsal and lateral frontal cortex; agranular insular cortex; lateral and medial orbital cortex and prelimbic cortex) in both conditioned groups, as compared to the untrained control group. In addition, no differences in cytochrome oxidase activity in the somatosensory regions and the amygdala were detected among all groups. The findings indicate that cued and contextual Pavlovian conditioning induces sustained increases in frontal cortical neuronal metabolic demand resulting in regional enhancement in the metabolic capacity of anterior cortical regions. Enhanced metabolic capacity of these anterior cortical areas after Pavlovian conditioning suggests that the frontal cortex may play a role in the retention and regulation of learned associations.
doi:10.1016/j.neuroscience.2007.08.036
PMCID: PMC2346485  PMID: 18291593
Cytochrome oxidase; hippocampus; amygdala; context
24.  Encoding of emotion-paired spatial stimuli in the rodent hippocampus 
Rats can acquire the cognitive component of CS-US associations between sensory and aversive stimuli without a functional basolateral amygdala (BLA). Thus, other brain regions should support such associations. Some septal/dorsal CA1 (dCA1) neurons respond to both spatial stimuli and footshock, suggesting that dCA1 could be one such region. We report that, in both dorsal and ventral hippocampus, different neuronal ensembles express immediate-early genes (IEGs) when a place is experienced alone vs. when it is associated with foot shock. We assessed changes in the size and overlap of hippocampal neuronal ensembles activated by two behavioral events using a cellular imaging method, Arc/Homer1a catFISH. The control group (A-A) experienced the same place twice, while the experimental group (A-CFC) received the same training plus two foot shocks during the second event. During fear conditioning, A-CFC, compared to A-A, rats had a smaller ensemble size in dCA3, dCA1, and vCA3, but not vCA1. Additionally, A-CFC rats had a lower overlap score in dCA1 and vCA3. Locomotion did not correlate with ensemble size. Importantly, foot shocks delivered in a training paradigm that prevents establishing shock-context associations, did not induce significant Arc expression, rejecting the possibility that the observed changes in ensemble size and composition simply reflect experiencing a foot shock. Combined with data that Arc is necessary for lasting synaptic plasticity and long-term memory, the data suggests that Arc/H1a+ hippocampal neuronal ensembles encode aspects of fear conditioning beyond space and time. Rats, like humans, may use the hippocampus to create integrated episodic-like memory during fear conditioning.
doi:10.3389/fnbeh.2012.00027
PMCID: PMC3374936  PMID: 22712009
Arc; Homer 1a; fear conditioning; emotional memory; ventral CA1; ventral CA3; catFISH; dorsal hippocampus
25.  Neurogenesis and Helplessness are Mediated by Controllability in Males but not in Females 
Biological psychiatry  2007;62(5):487-495.
Background
Numerous studies have implicated neurogenesis in the hippocampus in animal models of depression, especially those related to controllability and learned helplessness. Here, we tested the hypothesis that uncontrollable, but not controllable stress would reduce cell proliferation in the hippocampus of male and female rats, and would relate to the expression of helplessness behavior.
Methods
To manipulate controllability, groups of male and female rats were trained in one session (acute stress) or over seven sessions (repeated stress) to escape a footshock, while yoked controls could not escape, but were exposed to the same amount of stress. Cell proliferation was assessed with immunohistochemistry of BrdU and immunofluorescence of BrdU and NeuN. Separate groups were exposed to either controllable or uncontrollable stress and their ability to learn to escape during training on a more difficult task was used as a behavioral measure of helplessness.
Results
Acute stress reduced cell proliferation in males, but did not affect proliferation in the female hippocampus. When animals were given the opportunity to learn to control the stress over days, males produced more cells than the yoked males without control. Repeated training with controllable stress did not influence proliferation in females. Under all conditions, males were more likely than females to express helplessness behavior, even males that were not previously stressed.
Conclusions
The modulation of neurogenesis by controllability was evident in males but not in females, as was the expression of helplessness behavior, despite the fact that men are less likely than women to experience depression.
doi:10.1016/j.biopsych.2006.10.033
PMCID: PMC2692748  PMID: 17306770
dentate gyrus; depression; sex differences; neurogenesis; controllability; stress; learned helplessness

Results 1-25 (368646)