PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (555569)

Clipboard (0)
None

Related Articles

1.  Role of trabectedin in the treatment of soft tissue sarcoma 
OncoTargets and therapy  2009;2:105-113.
Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various cancer cell lines and soft tissue sarcoma cell lines. In phase I studies tumor responses were observed also in osteosarcomas and different soft tissue sarcoma subtypes. The most common toxicities were myelosuppression and transient elevation of liver function tests, which could be reduced by dexamethasone premedication. The efficacy of trabectedin was established in three phase II studies where it was administered at 1.5 mg/m2 as a 24 h intravenous infusion repeated every three weeks, in previously treated patients. The objective response rate was 3.7%–8.3% and the tumor control rate (which included complete response, partial response and stable disease) was obtained in half of patients for a median overall survival reaching 12 months. In nonpretreated patients the overall response rate was 17%. Twenty-four percent of patients were without progression at six months. The median overall survival was almost 16 months with 72% surviving at one year. Predictive factors of response are being explored to identify patients who are most likely to respond to trabectedin. Combination with other agents are currently studied with promising results. In summary trabectedin is an active new chemotherapeutic agents that has demonstrated its role in the armamentarium of treatments for patients with sarcomas.
PMCID: PMC2886331  PMID: 20616899
soft tissue sarcoma; trabectedin; chemotherapy; DNA-minor groove binder
2.  Ecteinascidin 743 Interferes with the Activity of EWS-FLI1 in Ewing Sarcoma Cells12 
Neoplasia (New York, N.Y.)  2011;13(2):145-153.
ET-743 (trabectedin; Yondelis) is approved in Europe for the treatment of soft tissue sarcomas. Emerging phase 1 and 2 clinical data have shown high response rates in myxoid liposarcoma in part owing to the inhibition of the FUS-CHOP transcription factor. In this report, we show that modulation of specific oncogenic transcription factors by ET-743 may extend to other tumor types. We demonstrate that, among a panel of pediatric sarcomas, Ewing sarcoma family of tumors (ESFTs) cell lines bearing the EWS-FLI1 transcription factor are the most sensitive to treatment with ET-743 compared with osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. We show that ET-743 reverses a gene signature of induced downstream targets of EWS-FLI1 in two different ESFT cell lines (P = .001). In addition, ET-743 directly suppresses the promoter activity of a known EWS-FLI1 downstream target NR0B1 luciferase reporter construct without changing the activity of a constitutively active control in ESFT cells. Furthermore, the effect is specific to EWS-FLI1, as forced expression of EWS-FLI1 in a cell type that normally lacks this fusion protein, HT1080 cells, induces the same NR0B1 promoter, but this activation is completely blocked by ET-743 treatment. Finally, we used gene set enrichment analysis to confirm that other mechanisms of ET-743 are active in ESFT cells. These results suggest a particular role for ET-743 in the treatment of translocation-positive tumors. In addition, the modulation of EWS-FLI1 makes it a novel targeting agent for ESFT and suggests that further development of this compound for the treatment of ESFT is warranted.
PMCID: PMC3033593  PMID: 21403840
3.  New developments in treatment of ovarian carcinoma: focus on trabectedin 
Trabectedin is a new marine-derived compound that binds the DNA minor groove and interacts with proteins of the DNA repair machinery. Trabectedin has shown promising single-agent activity in pretreated patients with soft tissue sarcoma, and ovarian and breast cancer, and combination with various other chemotherapeutic drugs seems feasible. Toxicities are mainly hematologic and hepatic, with Grade 3–4 neutropenia and thrombocytopenia observed in approximately 50% and 20% of patients, respectively, and Grade 3–4 elevation of liver enzymes observed in 35%–50% of patients treated with trabectedin. The recently reported results of a large Phase III trial comparing pegylated liposomal doxorubicin (PLD) alone with a combination of PLD and trabectedin in patients with recurrent ovarian cancer showed improved progression-free survival with the combination of trabectedin and PLD, albeit at the price of increased toxicity. Current research focuses on the identification of predictive factors for patients treated with trabectedin, as well as the development of other combinations.
doi:10.2147/CMR.S9459
PMCID: PMC3004573  PMID: 21188115
chemotherapy; ovarian cancer; combination; drug development; DNA repair
4.  Herbal-drug interaction induced rhabdomyolysis in a liposarcoma patient receiving trabectedin 
Background
Rhabdomyolysis is an uncommon side effect of trabectedin which is used for the second line therapy of metastatic sarcoma after anthracycline and ifosfamide failure. This side effect may be due to pharmacokinetic interactions caused by shared mechanisms of metabolism involving the cytochrome P450 (CYP) system in the liver. Here, for the first time in literature, we describe the unexpected onset of heavy toxicity, including rhabdomyolysis, after the fourth course of trabectedin in a patient with retroperitoneal liposarcoma who at the same time was taking an alternative herbal medicine suspected of triggering this adverse event.
Case presentation
This is the case of a 56 year old Caucasian man affected by a relapsed de-differentiated liposarcoma who, after the fourth cycle of second-line chemotherapy with trabectedin, complained of sudden weakness, difficulty walking and diffuse muscle pain necessitating complete bed rest. Upon admission to our ward the patient showed grade (G) 4 pancytopenia and a marked increase in liver lytic enzymes, serum levels of myoglobin, creatine phosphokinase (CPK) and lactate dehydrogenase. No cardiac or kidney function injuries were present. Based on these clinical and laboratory features, our conclusive diagnosis was of rhabdomyolysis induced by trabectedin.
The patient did not report any trauma or muscular overexertion and no co-morbidities were present. He had not received any drugs during treatment with trabectedin, but upon further questioning the patient informed us he had been taking a folk medicine preparation of chokeberry (Aronia melanocarpa) daily during the last course of trabectedin and in the 2 subsequent weeks.
One week after hospitalization and cessation of intake of chokeberry extract, CPK and other markers of myolysis slowly returned to standard range, and the patient noted a progressive recovery of muscle strength.
The patient was discharged on day 14 when a blood transfusion and parenteral hydration gradually lowered general toxicity. Progressive mobilization of the patient was obtained as well as a complete normalization of the laboratory findings.
Conclusions
The level of evidence of drug interaction leading to the adverse event observed in our patient was 2 (probable). Thus our case underlines the importance of understanding rare treatment-related toxicities such as trabectedin-induced rhabdomyolysis and the possible role of the drug-drug interactions in the pathogenesis of this rare side effect. Furthermore, this report draws attention to a potential problem of particular concern, that of nutritional supplements and complementary and alternative drug interactions. These are not widely recognized and can cause treatment failure.
doi:10.1186/1472-6882-13-199
PMCID: PMC3737021  PMID: 23899130
Trabectedin related rhabdomyolysis; Liposarcomas; Drug-drug interactions; Chokeberry (Aronia melanocarpa)-drugs interaction
5.  Trabectedin for Metastatic Soft Tissue Sarcoma: A Retrospective Single Center Analysis 
Marine Drugs  2010;8(10):2647-2658.
Soft tissue sarcoma (STS) comprises a large variety of rare malignant tumors. Development of distant metastasis is frequent, even in patients undergoing initial curative surgery. Trabectedin, a tetrahydroisoquinoline alkaloid isolated from the Caribbean marine tunicate Ecteinascidia turbinata, was approved in 2007 for patients with advanced STS after failure of anthracyclines and ifosfamide, or for patients unsuited to receive these agents. In this study, we retrospectively analyzed 25 patients who had been treated with trabectedin at our institution between 2007 and 2010. The majority (72%) had been heavily pre-treated with ≥2 previous lines of chemotherapy. Response assessed by conventional RECIST criteria was low, with only one patient achieving a partial remission (PR) and 10 stable disease (SD) after three cycles of treatment. However, median progression-free survival (PFS) and overall survival (OS) were significantly prolonged in this population compared to non-responders, with 7.7 months versus 2.1 months (p < 0.0001; HR 15.37, 95% CI 4.3 to 54.5) and 12.13 months versus 5.54 months (p = 0.0137; HR 3.7, 95% CI 1.3 to 10.5), respectively. PFS for all patients was 58% at three months and 37% at six months. Side effects, including neutropenia, elevation of liver transaminases/liver function tests, and nausea/vomiting, were usually mild and manageable. However, dose reductions due to side effects were necessary in five patients. We conclude that trabectedin is an effective and generally well tolerated treatment for STS even in a heavily pre-treated patient population.
doi:10.3390/md8102647
PMCID: PMC2992998  PMID: 21116412
trabectedin; soft tissue sarcoma; metastatic; advanced; chemotherapy
6.  Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and Casein Kinase II inhibition as a potential treatment option 
Molecular Cancer  2010;9:257.
Background
Myxoid liposarcoma is a relatively common malignant soft tissue tumor, characterized by a (12;16) translocation resulting in a FUS-DDIT3 fusion gene playing a pivotal role in its tumorigenesis. Treatment options in patients with inoperable or metastatic myxoid liposarcoma are relatively poor though being developed and new hope is growing.
Results
Using kinome profiling and subsequent pathway analysis in two cell lines and four primary cultures of myxoid liposarcomas, all of which demonstrated a FUS-DDIT3 fusion gene including one new fusion type, we aimed at identifying new molecular targets for systemic treatment. Protein phosphorylation by activated kinases was verified by Western Blot and cell viability was measured before and after treatment of the myxoid liposarcoma cells with kinase inhibitors. We found kinases associated with the atypical nuclear factor-kappaB and Src pathways to be the most active in myxoid liposarcoma. Inhibition of Src by the small molecule tyrosine kinase inhibitor dasatinib showed only a mild effect on cell viability of myxoid liposarcoma cells. In contrast, inhibition of the nuclear factor-kappaB pathway, which is regulated by the FUS-DDIT3 fusion product, in myxoid liposarcoma cells using casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) showed a significant decrease in cell viability, decreased phosphorylation of nuclear factor-kappaB pathway proteins, and caspase 3 mediated apoptosis. Combination of dasatinib and TBB showed an enhanced effect.
Conclusion
Kinases associated with activation of the atypical nuclear factor-kappaB and the Src pathways are the most active in myxoid liposarcoma in vitro and inhibition of nuclear factor-kappaB pathway activation by inhibiting casein kinase 2 using TBB, of which the effect is enhanced by Src inhibition using dasatinib, offers new potential therapeutic strategies for myxoid liposarcoma patients with advanced disease.
doi:10.1186/1476-4598-9-257
PMCID: PMC2955617  PMID: 20863376
7.  ZNF93 Increases Resistance to ET-743 (Trabectedin; Yondelis®) and PM00104 (Zalypsis®) in Human Cancer Cell Lines 
PLoS ONE  2009;4(9):e6967.
Background
ET-743 (trabectedin, Yondelis®) and PM00104 (Zalypsis®) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood.
Methodology/Principal Findings
Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines. We found that a large number of genes have altered expression levels in CS-1/ER and CS-1/PR when compared to the parental cell line. 595 CS-1/ER and 498 CS-1/PR genes were identified as overexpressing; 856 CS-1/ER and 874 CS-1/PR transcripts were identified as underexpressing. Three zinc finger protein (ZNF) genes were on the top 10 overexpressed genes list. These genes have not been previously associated with drug resistance in tumor cells. Differential expressions of ZNF93 and ZNF43 genes were confirmed in both CS-1/ER and CS-1/PR resistant cell lines by real-time RT-PCR. ZNF93 was overexpressed in two ET-743 resistant Ewing sarcoma cell lines as well as in a cisplatin resistant ovarian cancer cell line, but was not overexpressed in paclitaxel resistant cell lines. ZNF93 knockdown by siRNA in CS-1/ER and CS-1/PR caused increased sensitivity for ET-743, PM00104, and cisplatin. Furthermore, ZNF93 transfected CS-1 cells are relatively resistant to ET-743, PM00104 and cisplatin.
Conclusions/Significance
This study suggests that zinc finger proteins, and ZNF93 in particular, are involved in resistance to ET-743 and PM00104.
doi:10.1371/journal.pone.0006967
PMCID: PMC2734182  PMID: 19742314
8.  Trabectedin in metastatic soft tissue sarcomas: Role of pretreatment and age 
Trabectedin has mostly been studied in metastatic leiomyosarcoma and liposarcomas. Only limited data are available in other sarcoma subtypes, heavily pretreated and elderly patients. We retrospectively analyzed 101 consecutive sarcoma patients treated with trabectedin at our center. We recorded progression-free survival (PFS), clinical benefit rate (CBR, defined as complete or partial response or stable disease for at least 6 weeks) and toxicity. Covariates were sarcoma subtype, age and pretreatment. On average, trabectedin was administered for 2nd relapse/progression (range 1st to 12th line). A median of 2 cycles and a dose of 1.5 mg/m2 (range 1–21 cycles; 1.3–1.5 mg/m2) was administered. The median PFS under treatment with trabectedin was 2.1 months in the overall population. Different clinical outcomes were observed with respect to sarcoma subtypes: in patients with L-sarcoma [defined as leiosarcoma and liposarcoma (n=25)] the CBR was 55%. Notably, long lasting remissions were even observed in 7th-line treatment. In contrast, the majority of patients with non-L-sarcomas quickly progressed (median PFS 1.6 months). Nevertheless, a CBR of 34% was achieved, including long-lasting disease stabilization in subtypes such as rhabdomyosarcoma. Patients treated with trabectedin at 1st or 2nd line (n=16) achieved an improved PFS (median 5.7 months, range) and a CBR of 59%. No differences in terms of toxicity or efficacy were observed between patients older than 65 years (n=23) and younger patients (n=78). In this non-trial setting, port-associated complications were more frequent (14%) with trabectedin compared to other continuous infusion protocols administered at our outpatient therapy center. The majority of patients with relapsing L-sarcomas and a substantial fraction of patients with non-L-sarcomas derive a clinically meaningful benefit from trabectedin. Outpatient treatment is well tolerated also in elderly and heavily pretreated patients. Port-associated complications were observed at an unusually high rate. This suggests a drug-specific local toxicity that merits further investigation.
doi:10.3892/ijo.2013.1928
PMCID: PMC3742158  PMID: 23652821
sarcoma; trabectedin; port complication
9.  Extensive adipocytic maturation can be seen in myxoid liposarcomas treated with neoadjuvant doxorubicin and ifosfamide and pre-operative radiation therapy 
Background
Trabectedin and thioglitazones have been documented to induce adipocytic maturation in myxoid liposarcoma; we have noted this in our experience as well. Intriguingly, we have also encountered this same phenomenon in myxoid liposarcomas exposed to various combinations of neoadjuvant doxorubicin and ifosfamide systemic chemotherapy with preoperative radiation, where the pathological effects have been less characterized. We examined the histological changes, including adipocytic maturation, associated with this treatment in patients with myxoid liposarcoma and evaluated for prognostic significance.
Methods
Twenty-two patients were identified with histologically confirmed myxoid liposarcomas (9 with variable hypercellular areas) who were treated with neoadjuvant doxorubicin (75-90 mg/m2/continous infusion over 72h every 3 week) and ifosfamide (2.5 g/m2 daily x 4 every 3 weeks) for 4-6 cycles. Twenty-one patients received pre-operative radiation including 5 with concurrent gemcitabine. Pre- and post-treatment MRI studies were compared for changes in tumor area, fat content and contrast uptake, with the latter two estimated as: none, <25%, 25-49% and >50%. Post-treatment specimens were evaluated for hyalinization, necrosis and adipocytic maturation. Clinical follow-up was obtained.
Results
Median age was 45 (26-72) years with a median tumor size of 11 (2-18) cm. All occurred in the lower extremities except for one case in the neck. As is common in myxoid liposarcoma, all had extensive treatment changes (>90%) with extensive hyalinization (n = 16; >90%) or prominent adipocytic maturation (n = 6; >50%) including 2 cases composed almost entirely of mature-appearing adipose tissue. Variable necrosis was identified (5-30%). MRI revealed a decrease in tumor area in all but one tumor (median, 65%), an increase in fat content in 7 tumors (n = 2, >50%;n = 2, 25-50%;n = 3,<25%), and a decrease in contrast enhancement in most tumors (n = 5, >50%; n = 9, 25-49%; n = 7, <25%). Median follow-up was 57 (12-96) months with 17 alive with no disease/metastases, 3 alive with disease and 2 dead of disease. Six patients developed metastases with median interval of 26 (22-51) months post resection. Four of 6 tumors with increased adipocytic maturation >50% on histology had increased fat detected by MRI (>25%). All 6 are alive but 2 developed metastases. In the remaining patients, 4 developed metastases with 14 alive and 2 dead of disease.
Conclusion
Myxoid liposarcoma exposed to neoadjuvant doxorubicin and ifosfamide and pre-operative radiation can have prominent adipocytic maturation similar to trabectedin treatment. Myxoid liposarcomas exhibit extensive treatment changes with prominent hyalinization being the most common histological change. Despite this, patients develop metastases regardless of adipocytic maturation. While of unclear significance, no patient with fatty maturation died of disease.
doi:10.1186/2045-3329-2-25
PMCID: PMC3599544  PMID: 23272660
Adipocytic maturation; Myxoid liposarcoma; Treatment
10.  PPARγ agonists enhance ET-743–induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma 
Myxoid round cell liposarcoma (MRCLS) is a common liposarcoma subtype characterized by a translocation that results in the fusion protein TLS:CHOP as well as by mixed adipocytic histopathology. Both the etiology of MRCLS and the mechanism of action of TLS:CHOP remain poorly understood. It was previously shown that ET-743, an antitumor compound with an unclear mechanism of action, is highly effective in patients with MRCLS. To identify the cellular origin of MRCLS, we engineered a mouse model in which TLS:CHOP was expressed under the control of a mesodermally restricted promoter (Prx1) in a p53-depleted background. This model resembled MRCLS histologically as well as functionally in terms of its specific adipocytic differentiation–based response to ET-743. Specifically, endogenous mesenchymal stem cells (MSCs) expressing TLS:CHOP developed into MRCLS in vivo. Gene expression and microRNA analysis of these MSCs showed that they were committed to adipocytic differentiation, but unable to terminally differentiate. We also explored the method of action of ET-743. ET-743 downregulated TLS:CHOP expression, which correlated with CEBPα expression and adipocytic differentiation. Furthermore, PPARγ agonists enhanced the differentiation process initiated by ET-743. Our work highlights how clinical observations can lead to the generation of a mouse model that recapitulates human disease and may be used to develop rational treatment combinations, such as ET-743 plus PPARγ agonists, for the treatment of MRCLS.
doi:10.1172/JCI60015
PMCID: PMC3287226  PMID: 22293175
11.  Complete remission of a reccurrent mesenteric liposarcoma with rare histological features following the administration of trabectedin 
Oncology Letters  2013;7(1):47-49.
The present study describes a rare case of a mesenteric liposarcoma that resulted in a complete remission (CR) following treatment with trabectedin (Yondelis®). The patient presented with abdominal pain and fever. An abdominal mass was identified that corresponded to a mixed-type high-grade mesenteric liposarcoma with wide areas of necrosis, areas of dedifferentiation and features of a leiomyosarcoma. Three months after the removal of the first mass, the patient underwent a second laparotomy, followed by treatment with doxorubicin and ifosfamide. Subsequently, the patient was started on therapy with trabectedin and a CR was noted following only four cycles of therapy. The best responses that are reported in the literature for cases of liposarcoma treated with trabectedin are mostly for liposarcomas of the myxoid/round cell type and are mainly partial responses. In the present study, trabectedin was used for the treatment of a mesenteric liposarcoma of mixed morphological features and a CR was achieved.
doi:10.3892/ol.2013.1646
PMCID: PMC3861568  PMID: 24348818
mesenteric liposarcoma; complete remission; trabectedin; Yondelis®; dedifferentiation; leiomyosarcoma
12.  Trabectedin: Safety and Efficacy in the Treatment of Advanced Sarcoma 
Soft tissue sarcomas (STS) are a rare group of malignancies with multiple different subtypes. Close to half of intermediate or high grade STS develop metastatic disease. Treatment of recurrent/metastatic sarcomas is quite challenging with only a few drugs showing measurable benefits. Trabectedin (ecteinascidin 743, ET-743, Yondelis) is a newly developed alkylating agent that has shown significant broad spectrum potential as a single agent second line drug alone or in combination particularly in the treatment of liposarcomas and leiomyosarcomas. Clinical benefit rates seem to favor its use especially in pretreated patients with recurrent/metastatic disease. The drug is well tolerated in general but hepatotoxicity and hematologic side effects are common. Approved in Europe, the currently ongoing Phase III trials along with the already existing clinical evidence may provide enough data for the Food and Drug Administration for an approval in the US.
doi:10.4137/CMO.S4907
PMCID: PMC3076042  PMID: 21499557
trabectedin; liposarcoma; leiomyosarcoma; metastatic sarcoma; efficacy; side effects
13.  Variation in myxoid liposarcoma: Clinicopathological examination of four cases with detectable TLS-CHOP or EWS-CHOP fusion transcripts whose histopathological diagnosis was other than myxoid liposarcoma 
Oncology Letters  2011;3(2):293-296.
Liposarcomas are separated into clinicopathological entities by a characteristic morphological spectrum and distinctive genetic changes. Myxoid liposarcoma (MLS) represents one such entity with specific chromosomal translocations leading to the generation of fusion genes, the human translocation liposarcoma (TLS)-CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or the Ewing sarcoma (EWS)-CHOP. In the present study, four cases of liposarcoma with detection of TLS-CHOP or EWS-CHOP, whose postoperative diagnosis was other than MLS (one well-differentiated liposarcoma, two de-differentiated liposarcomas and one unclassified) were examined for medical records, imaging data and histopathology. Clinical records demonstrated that three of the four cases were considerably difficult to diagnose definitively, and histopathological re-examination pointed out areas of myxomatous change as a minor component (<10%). Their dominant components (>90%) resembled pleomorphic sarcoma, pleomorphic malignant fibrous histiocytoma and monophasic synovial sarcoma. The current cases may represent an extreme variant of the morphological spectrum within MLS. In cases of difficulty in making definitive diagnosis of soft tissue sarcoma by standard histopathological examination and identification of myxoid stroma even as a minor component, analyzing TLS-CHOP and EWS-CHOP fusion genes may aid the diagnosis of unusual MLS.
doi:10.3892/ol.2011.480
PMCID: PMC3362345  PMID: 22740897
Ewing sarcoma-CCAAT/enhancer binding homologous protein; histopathology; myxoid liposarcoma; reverse transcription-polymerase chain reaction; human translocation liposarcoma-CCAAT/enhancer binding homologous protein; variation
14.  A novel oncogenic pathway by TLS–CHOP involving repression of MDA-7/IL-24 expression 
British Journal of Cancer  2012;106(12):1976-1979.
Background:
Translocated in liposarcoma-CCAAT/enhancer binding protein homologous protein (TLS–CHOP) (also known as FUS-DDIT3) chimeric oncoprotein is found in the majority of human myxoid liposarcoma (MLS), but its molecular function remains unclear.
Methods:
We knockdowned TLS–CHOP expression in MLS-derived cell lines by a specific small interfering RNA, and analysed the gene expression profiles with microarray.
Results:
TLS-CHOP knockdown inhibited growth of MLS cells, and induced an anticancer cytokine, melanoma differentiation-associated gene 7 (MDA-7)/interleukin-24 (IL-24) expression. However, double knockdown of TLS–CHOP and MDA-7/IL-24 did not inhibit MLS cell growth.
Conclusion:
Repression of MDA-7/IL-24 expression by TLS–CHOP is required for MLS tumour growth, and TLS–CHOP may become a promising therapeutic target for MLS treatment.
doi:10.1038/bjc.2012.199
PMCID: PMC3388565  PMID: 22588557
TLS–CHOP; FUS-DDIT3; myxoid liposarcoma; MDA-7/IL-24
15.  Trabectedin and its potential in the treatment of soft tissue sarcoma 
Trabectedin is a new marine-derived compound that binds the DNA minor groove and interacts with proteins of the DNA repair machinery. Phase I trials have established the standard regimen as 1500 μg/m2 24-hour continuous infusion repeated every 3 weeks. Several phase II trials have shown response in 5%–10% of unselected patients with soft tissue sarcoma failing prior chemotherapy and disease stabilisation in 30%–40%. Furthermore, prolonged disease control has been described in 15%–20% of patients. Toxicities are mainly haematological and hepatic with grade 3–4 neutropenia and thrombocytopenia observed in approximately 50% and 20% of patients respectively, and grade 3–4 elevation of liver enzymes observed in 35%–50% of patients treated with trabectedin. Current research focuses on the identification of predictive factors for patients with soft tissue sarcoma treated with trabectedin.
PMCID: PMC2503645  PMID: 18728699
chemotherapy; sarcoma; drug development; DNA repair
16.  Myxoid Liposarcoma-Associated EWSR1-DDIT3 Selectively Represses Osteoblastic and Chondrocytic Transcription in Multipotent Mesenchymal Cells 
PLoS ONE  2012;7(5):e36682.
Background
Liposarcomas are the most common class of soft tissue sarcomas, and myxoid liposarcoma is the second most common liposarcoma. EWSR1-DDIT3 is a chimeric fusion protein generated by the myxoid liposarcoma-specific chromosomal translocation t(12;22)(q13;q12). Current studies indicate that multipotent mesenchymal cells are the origin of sarcomas. The mechanism whereby EWSR1-DDIT3 contributes to the phenotypic selection of target cells during oncogenic transformation remains to be elucidated.
Methodology/Principal Findings
Reporter assays showed that the EWSR1-DDIT3 myxoid liposarcoma fusion protein, but not its wild-type counterparts EWSR1 and DDIT3, selectively repressed the transcriptional activity of cell lineage-specific marker genes in multipotent mesenchymal C3H10T1/2 cells. Specifically, the osteoblastic marker Opn promoter and chondrocytic marker Col11a2 promoter were repressed, while the adipocytic marker Ppar-γ2 promoter was not affected. Mutation analyses, transient ChIP assays, and treatment of cells with trichostatin A (a potent inhibitor of histone deacetylases) or 5-Aza-2′-deoxycytidine (a methylation-resistant cytosine homolog) revealed the possible molecular mechanisms underlying the above-mentioned selective transcriptional repression. The first is a genetic action of the EWSR1-DDIT3 fusion protein, which results in binding to the functional C/EBP site within Opn and Col11a2 promoters through interaction of its DNA-binding domain and subsequent interference with endogenous C/EBPβ function. Another possible mechanism is an epigenetic action of EWSR1-DDIT3, which enhances histone deacetylation, DNA methylation, and histone H3K9 trimethylation at the transcriptional repression site. We hypothesize that EWSR1-DDIT3-mediated transcriptional regulation may modulate the target cell lineage through target gene-specific genetic and epigenetic conversions.
Conclusions/Significance
This study elucidates the molecular mechanisms underlying EWSR1-DDIT3 fusion protein-mediated phenotypic selection of putative target multipotent mesenchymal cells during myxoid liposarcoma development. A better understanding of this process is fundamental to the elucidation of possible direct lineage reprogramming in oncogenic sarcoma transformation mediated by fusion proteins.
doi:10.1371/journal.pone.0036682
PMCID: PMC3343026  PMID: 22570737
17.  Cost Effectiveness of First-Line Treatment with Doxorubicin/Ifosfamide Compared to Trabectedin Monotherapy in the Management of Advanced Soft Tissue Sarcoma in Italy, Spain, and Sweden 
Sarcoma  2013;2013:725305.
Background. Doxorubicin/ifosfamide is a first-line systemic chemotherapy for the majority of advanced soft tissue sarcoma (ASTS) subtypes. Trabectedin is indicated for the treatment of ASTS after failure of anthracyclines and/or ifosfamide; however it is being increasingly used off-label as a first-line treatment. This study estimated the cost effectiveness of these two treatments in the first-line management of ASTS in Italy, Spain, and Sweden. Methods. A Markov model was constructed to estimate the cost effectiveness of doxorubicin/ifosfamide compared to trabectedin monotherapy, defined as the cost per QALY gained, in each country. Results. First-line treatment with doxorubicin/ifosfamide resulted in lower two-year healthcare costs and more QALYs than first-line treatment with trabectedin monotherapy in all three countries. Probabilistic sensitivity analysis showed that at a cost per QALY threshold of €35,000, >90% of a cohort would be cost effectively treated with doxorubicin/ifosfamide compared to trabectedin monotherapy in all three countries. Conclusion. Within the model's limitations, first-line treatment of patients with ASTS with doxorubicin/ifosfamide instead of trabectedin monotherapy affords a cost-effective use of publicly funded healthcare resources in Italy, Spain, and Sweden and is therefore the preferred treatment in all three countries. These findings support the recommendation that trabectedin should remain a second-line treatment.
doi:10.1155/2013/725305
PMCID: PMC3835776  PMID: 24302852
18.  Trabectedin in Advanced High-Grade Uterine Leiomyosarcoma: A Case Report Illustrating the Value of 18FDG-PET-CT in Assessing Treatment Response 
Case Reports in Oncology  2014;7(1):132-138.
We report the case of a 60-year-old woman with metastatic high-grade uterine leiomyosarcoma who achieved a delayed response to second-line therapy with the marine-derived drug trabectedin (Yondelis®, PharmaMar). We used 2-deoxy-2-[18F] fluorodeoxyglucose (FDG)-positron emission tomography (PET-CT) imaging as a tool for response monitoring in parallel with conventional re-staging according to Response Evaluation Criteria in Solid Tumours (RECIST) using computed tomography (CT). We illustrate the role of serial 18FDG-PET-CT imaging in the functional assessment of tumour response. Three cycles after commencement of trabectedin treatment, a reduction of the maximum standardized uptake value (SUVmax) of the solid component of the pelvic mass was observed, indicating a cystic or necrotic response in the tumour to trabectedin. After 7 cycles of treatment, on 18FDG-PET-CT there was clear evidence of ongoing disease improvement: the solid pelvic components were at worst stable, with an unchanged SUVmax, and possibly marginally reduced in size, while the pulmonary metastases had further reduced in size and become FDG negative; the bony metastases were stable. After a total of 13 cycles of treatment, administered over 13 months, the patient showed signs of progression on an 18FDG-PET-CT scan. The safety profile of trabectedin remained manageable, showing no evidence of cumulative toxicity and being associated with a preserved quality of life. This report illustrates potential limitations of RECIST in response assessments and the critical role of serial 18FDG-PET-CT imaging in assessing response to trabectedin treatment. Therefore, we propose that 18FDG-PET-CT may improve the assessment of response to trabectedin in selected patients.
doi:10.1159/000355224
PMCID: PMC3975749
Sarcoma; Trabectedin; Delayed response; 18FDG-PET-CT; Uterine leiomyosarcoma
19.  Cytogenetics and Molecular Genetics of Myxoid Soft-Tissue Sarcomas 
Myxoid soft-tissue sarcomas represent a heterogeneous group of mesenchymal tumors characterized by a predominantly myxoid matrix, including myxoid liposarcoma (MLS), low-grade fibromyxoid sarcoma (LGFMS), extraskeletal myxoid chondrosarcoma (EMC), myxofibrosarcoma, myxoinflammatory fibroblastic sarcoma (MIFS), and myxoid dermatofibrosarcoma protuberans (DFSP). Cytogenetic and molecular genetic analyses have shown that many of these sarcomas are characterized by recurrent chromosomal translocations resulting in highly specific fusion genes (e.g., FUS-DDIT3 in MLS, FUS-CREB3L2 in LGFMS, EWSR1-NR4A3 in EMC, and COL1A1-PDGFB in myxoid DFSP). Moreover, recent molecular analysis has demonstrated a translocation t(1; 10)(p22; q24) resulting in transcriptional upregulation of FGF8 and NPM3 in MIFS. Most recently, the presence of TGFBR3 and MGEA5 rearrangements has been identified in a subset of MIFS. These genetic alterations can be utilized as an adjunct in diagnostically challenging cases. In contrast, most myxofibrosarcomas have complex karyotypes lacking specific genetic alterations. This paper focuses on the cytogenetic and molecular genetic findings of myxoid soft-tissue sarcomas as well as their clinicopathological characteristics.
doi:10.4061/2011/497148
PMCID: PMC3335514  PMID: 22567356
20.  Trabectedin and Plitidepsin: Drugs from the Sea that Strike the Tumor Microenvironment 
Marine Drugs  2014;12(2):719-733.
The prevailing paradigm states that cancer cells acquire multiple genetic mutations in oncogenes or tumor suppressor genes whose respective activation/up-regulation or loss of function serve to impart aberrant properties, such as hyperproliferation or inhibition of cell death. However, a tumor is now considered as an organ-like structure, a complex system composed of multiple cell types (e.g., tumor cells, inflammatory cells, endothelial cells, fibroblasts, etc.) all embedded in an inflammatory stroma. All these components influence each other in a complex and dynamic cross-talk, leading to tumor cell survival and progression. As the microenvironment has such a crucial role in tumor pathophysiology, it represents an attractive target for cancer therapy. In this review, we describe the mechanism of action of trabectedin and plitidepsin as an example of how these specific drugs of marine origin elicit their antitumor activity not only by targeting tumor cells but also the tumor microenvironment.
doi:10.3390/md12020719
PMCID: PMC3944511  PMID: 24473171
trabectedin; plitidepsin; tumor-associated macrophages; tumor microenvironment
21.  Myxoid Liposarcoma with Cartilaginous Differentiation: A Case Study with Cytogenetical Analysis 
Korean Journal of Pathology  2013;47(3):284-288.
Myxoid liposarcoma is a subtype of liposarcoma. This specific subtype can be identified based on its characteristic histological and cytogenetical features. The tumor has a fusion transcript of the CHOP and TLS genes, which is caused by t(12;16)(q13;p11). Most of the fusion transcripts that have been identified fall into three categories, specifically type I (exons 7-2), type II (exons 5-2), and type III (exons 8-2). A total of seven myxoid liposarcomas associated with the rare phenomenon of cartilaginous differentiation have been documented in the literature. Currently, only one of these cases has been cytogenetically analyzed, and the analysis indicated that it was a type II TLS-CHOP fusion transcript in both the typical myxoid liposarcoma and cartilaginous areas. This study presents a second report of myxoid liposarcoma with cartilaginous differentiation, and includes a cytogenetical analysis of both the myxoid and cartilaginous areas.
doi:10.4132/KoreanJPathol.2013.47.3.284
PMCID: PMC3701826  PMID: 23837023
Liposarcoma, myxoid; Cartilaginous differentiation; Cartilage; Heterologous component; TLS/CHOP fusion transcript
22.  Hyperexpression of HOXC13, located in the 12q13 chromosomal region, in well-differentiated and dedifferentiated human liposarcomas 
Oncology Reports  2013;30(6):2579-2586.
Liposarcoma (LPS) is the most common soft tissue neoplasm in adults and is characterized by neoplastic adipocyte proliferation. Some subtypes of LPSs show aberrations involving the chromosome 12. The most frequent are t(12;16) (q13;p11) present in more than 90% of myxoid LPSs and 12q13-15 amplification in well-differentiated and dedifferentiated LPSs. In this region, there are important oncogenes such as CHOP (DDIT3), GLI, MDM2, CDK4, SAS, HMGA2, but also the HOXC locus, involved in development and tumor progression. In this study, we evaluated the expression of HOXC13, included in this chromosomal region, in a series of adipocytic tumors. We included 18 well-differentiated, 4 dedifferentiated, 11 myxoid and 6 pleomorphic LPSs as well as 13 lipomas in a tissue microarray. We evaluated the HOXC13 protein and gene expression by immunohistochemistry and quantitative PCR. Amplification/translocation of the 12q13-15 region was verified by FISH. Immunohistochemical HOXC13 overexpression was observed in all well-differentiated and dedifferentiated LPSs, all characterized by the chromosome 12q13-15 amplification, and confirmed by quantitative PCR analysis. In conclusion, our data show a deregulation of the HOXC13 marker in well-differentiated and dedifferentiated LPSs, possibly related to 12q13-15 chromosomal amplification.
doi:10.3892/or.2013.2760
PMCID: PMC3839951  PMID: 24085196
HOX genes; chromosome 12q13-15; liposarcoma cells
23.  Trabectedin in the treatment of metastatic soft tissue sarcoma: cost-effectiveness, cost-utility and value of information 
Annals of Oncology  2010;22(1):215-223.
Background: To assess the cost-effectiveness of trabectedin compared with end-stage treatment (EST) after failure with anthracycline and/or ifosfamide in metastatic soft tissue sarcoma (mSTS).
Design: Analysis was carried out using a probabilistic Markov model with trabectedin → EST and EST arms, three health states (stable disease, progressive disease and death) and a lifetime perspective (3% annual discount rate). Finnish resources (drugs, mSTS, adverse events and travelling) and costs (year 2008) were used. Efficacy was based on an indirect comparison of the STS-201 and European Organisation for Research and Treatment of Cancer trials. QLQ-C30 scale scores were mapped to 15D, Short Form 6D and EuroQol 5D utilities. The outcome measures were the cost-effectiveness acceptability frontier, incremental cost per life year gained (LYG) and quality-adjusted life year (QALY) gained and the expected value of perfect information (EVPI).
Results: Trabectedin → EST was associated with 14.0 (95% confidence interval 9.1–19.2) months longer survival, €36 778 higher costs (€32 816 using hospital price for trabectedin) and €31 590 (€28 192) incremental cost per LYG with an EVPI of €3008 (€3188) compared with EST. With a threshold of €50 000 per LYG, trabectedin → EST had 98.5% (98.2%) probability of being cost-effective. The incremental cost per QALY gained with trabectedin → EST was €42 633–47 735 (€37 992–42 819) compared with EST. The results were relatively insensitive to changes.
Conclusion: Trabectedin is a potentially cost-effective treatment of mSTS patients.
doi:10.1093/annonc/mdq339
PMCID: PMC3003615  PMID: 20627875
cancer; economic evaluation; leiomyosarcoma; liposarcoma; quality of life; trabectedin
24.  Efficacy of first-line doxorubicin and ifosfamide in myxoid liposarcoma 
Background
Myxoid liposarcoma (MLS) is a soft tissue sarcoma with adipocytic differentiation characterized by a unique chromosome rearrangement, t(12;16)(q13;p11). The exact efficacy of chemotherapy in MLS has not been clearly established.
Patients and methods
We retrospectively analyzed the records of 37 histologically confirmed MLS patients who were treated at the University of Texas MD Anderson Cancer Center from January 2000 to December 2009 with doxorubicin 75-90 mg/m2 over 72 hours combined with ifosfamide 10 gm/m2 in the first-line setting. Response was assessed using RECIST and Choi criteria. The Kaplan-Meier method and log-rank test was used to estimate clinical outcomes.
Results
The median follow-up period was 50.1 months. The overall response rates were 43.2% using RECIST and 86.5% using the Choi criteria. The 5-year disease-free survival rate was 90% for patients with resectable tumors. Median time to progression and overall survival time for the advanced-disease group were 23 and 31.1 months, respectively.
Conclusion
Our study demonstrates that doxorubicin-ifosfamide combination therapy has a role in the treatment of MLS. The Choi criteria may be more sensitive in evaluating response to chemotherapy in MLS.
doi:10.1186/2045-3329-2-2
PMCID: PMC3351704  PMID: 22587772
Choi criteria; doxorubicin; ifosfamide; myxoid liposarcoma
25.  Trabectedin: the evidence for its place in therapy in the treatment of soft tissue sarcoma 
Core evidence  2010;4:191-198.
Introduction:
Soft tissue sarcoma accounts for less than 1% of all malignant neoplasms and is comprised of a very heterogeneous group of tumors with over 50 different subtypes. Due to its diversity and rarity, developing new therapeutics has been difficult, at best. The standard of care in the treatment of advanced and metastatic disease over the last 30 years has been doxorubicin and ifosfamide, either alone or in combination. There has been significant focus on developing new therapeutics to treat primary and metastatic disease. Trabectedin (ecteinascidin-743) is a tetrahydroiso-quinoline alkaloid which has been evaluated in the treatment of metastatic soft tissue sarcoma.
Aims:
To review the current evidence for the therapeutic use of trabectedin in patients with soft tissue sarcoma.
Evidence review:
Five phase I studies in patients with solid tumors, all of which include sarcoma patients, evaluating the dosing and toxicity of trabectedin were performed with efficacy being evaluated as a secondary endpoint. Additionally, there are four phase I trials evaluating trabectedin in combination with frontline therapeutic drugs in soft tissue sarcoma. Four phase II studies were performed in soft-tissue sarcoma patients with objective response rates ranging from 3.7% to 17.1%. Additionally, in two compassionate use trials, objective response rates between 14% and 51% were seen, the largest response resulting from a study specifically focusing on liposarcoma.
Place in therapy:
Trabectedin is a potential therapeutic option for the management of soft-tissue sarcoma. It appears to have specific activity in a select group of histologies, most notably myxoid/round cell liposarcoma. Although it would be helpful to study the use of trabectedin in a randomized, controlled fashion, the relative rarity of soft-tissue sarcoma, and heterogeneity of the histologic subtypes, makes phase III trials a difficult prospect.
PMCID: PMC2899778  PMID: 20694075
soft tissue sarcoma; metastatic; trabectedin; ET-743; Yondelis®

Results 1-25 (555569)