PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1288556)

Clipboard (0)
None

Related Articles

1.  Bat rabies surveillance in Finland 
Background
In 1985, a bat researcher in Finland died of rabies encephalitis caused by European bat lyssavirus type 2 (EBLV-2), but an epidemiological study in 1986 did not reveal EBLV-infected bats. In 2009, an EBLV-2-positive Daubenton’s bat was detected. The EBLV-2 isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related. In order to assess the prevalence of EBLVs in Finnish bat populations and to gain a better understanding of the public health risk that EBLV-infected bats pose, a targeted active surveillance project was initiated.
Results
Altogether, 1156 bats of seven species were examined for lyssaviruses in Finland during a 28–year period (1985–2012), 898 in active surveillance and 258 in passive surveillance, with only one positive finding of EBLV-2 in a Daubenton’s bat in 2009. In 2010–2011, saliva samples from 774 bats of seven species were analyzed for EBLV viral RNA, and sera from 423 bats were analyzed for the presence of bat lyssavirus antibodies. Antibodies were detected in Daubenton’s bats in samples collected from two locations in 2010 and from one location in 2011. All seropositive locations are in close proximity to the place where the EBLV-2 positive Daubenton’s bat was found in 2009. In active surveillance, no EBLV viral RNA was detected.
Conclusions
These data suggest that EBLV-2 may circulate in Finland, even though the seroprevalence is low. Our results indicate that passive surveillance of dead or sick bats is a relevant means examine the occurrence of lyssavirus infection, but the number of bats submitted for laboratory analysis should be higher in order to obtain reliable information on the lyssavirus situation in the country.
doi:10.1186/1746-6148-9-174
PMCID: PMC3846527  PMID: 24011337
EBLV; Lyssavirus; Rabies; Seroprevalence
2.  Enhanced Passive Bat Rabies Surveillance in Indigenous Bat Species from Germany - A Retrospective Study 
In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.
Author Summary
According to the World Health Organization rabies is considered both a neglected zoonotic and a tropical disease. The causative agents are lyssaviruses which have their primary reservoir in bats. Although bat rabies is notifiable in Germany, the number of submitted bats during routine surveillance is rarely representative of the natural bat population. Therefore, the aim of this study was to include dead bats from various sources for enhanced bat rabies surveillance. The results show that a considerable number of additional bat rabies cases can be detected, thus improving the knowledge on the frequency, geographical distribution and reservoir-association of bat lyssavirus infections in Germany. The overall proportion of positives was lower than during routine surveillance in Germany. While the majority of cases were found in the Serotine bat and characterized as European bat lyssavirus type 1 (EBLV-1), three of the four EBLV-2 infections detected in Germany were found in Myotis daubentonii during this study.
doi:10.1371/journal.pntd.0002835
PMCID: PMC4006713  PMID: 24784117
3.  Ecological Factors Associated with European Bat Lyssavirus Seroprevalence in Spanish Bats 
PLoS ONE  2013;8(5):e64467.
Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)–neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1–prevalence patterns in bat colonies and also provide useful information for public health officials.
doi:10.1371/journal.pone.0064467
PMCID: PMC3659107  PMID: 23700480
4.  Seroprevalence Dynamics of European Bat Lyssavirus Type 1 in a Multispecies Bat Colony 
Viruses  2014;6(9):3386-3399.
We report an active surveillance study of the occurrence of specific antibodies to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. Blood samples were subjected to a modified fluorescent antibody virus neutralization test to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female seroprevalence (20.21%, 95% CI: 14.78%–26.57%) was not significantly higher than the seroprevalence in males (15.02%, 95% CI: 10.51%–20.54%). The results showed that the inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and P. austriacus. The behavioral ecology of these species involved could explain the different annual fluctuations in EBLV-1 seroprevalence.
doi:10.3390/v6093386
PMCID: PMC4189026  PMID: 25192547
bats; EBLV-1; Iberian Peninsula; Lyssavirus; prevalence; serology; temporal variation
5.  European Bat Lyssaviruses, the Netherlands 
Emerging Infectious Diseases  2005;11(12):1854-1859.
Genotype 5 lyssaviruses are endemic in the Netherlands, and can cause fatal infections in humans.
To study European bat lyssavirus (EBLV) in bat reservoirs in the Netherlands, native bats have been tested for rabies since 1984. For all collected bats, data including species, age, sex, and date and location found were recorded. A total of 1,219 serotine bats, Eptesicus serotinus, were tested, and 251 (21%) were positive for lyssavirus antigen. Five (4%) of 129 specimens from the pond bat, Myotis dasycneme, were positive. Recently detected EBLV RNA segments encoding the nucleoprotein were sequenced and analyzed phylogenetically (45 specimens). All recent serotine bat specimens clustered with genotype 5 (EBLV1) sequences, and homologies within subgenotypes EBLV1a and EBLV1b were 99.0%–100% and 99.2%–100%, respectively. Our findings indicate that EBLVs of genotype 5 are endemic in the serotine bat in the Netherlands. Since EBLVs can cause fatal infections in humans, all serotine and pond bats involved in contact incidents should be tested to determine whether the victim was exposed to EBLVs.
doi:10.3201/eid1112.041200
PMCID: PMC3367619  PMID: 16485470
EBLV; lyssavirus; the Netherlands; bat; Eptesicus serotinus; Myotis dasycneme; Europe; research
6.  A Step Forward in Molecular Diagnostics of Lyssaviruses – Results of a Ring Trial among European Laboratories 
PLoS ONE  2013;8(3):e58372.
Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory.
The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result.
Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing.
doi:10.1371/journal.pone.0058372
PMCID: PMC3592807  PMID: 23520505
7.  Bat Rabies in France: A 24-Year Retrospective Epidemiological Study 
PLoS ONE  2014;9(6):e98622.
Since bat rabies surveillance was first implemented in France in 1989, 48 autochthonous rabies cases without human contamination have been reported using routine diagnosis methods. In this retrospective study, data on bats submitted for rabies testing were analysed in order to better understand the epidemiology of EBLV-1 in bats in France and to investigate some epidemiological trends. Of the 3176 bats submitted for rabies diagnosis from 1989 to 2013, 1.96% (48/2447 analysed) were diagnosed positive. Among the twelve recognised virus species within the Lyssavirus genus, two species were isolated in France. 47 positive bats were morphologically identified as Eptesicus serotinus and were shown to be infected by both the EBLV-1a and the EBLV-1b lineages. Isolation of BBLV in Myotis nattereri was reported once in the north-east of France in 2012. The phylogenetic characterisation of all 47 French EBLV-1 isolates sampled between 1989 and 2013 and the French BBLV sample against 21 referenced partial nucleoprotein sequences confirmed the low genetic diversity of EBLV-1 despite its extensive geographical range. Statistical analysis performed on the serotine bat data collected from 1989 to 2013 showed seasonal variation of rabies occurrence with a significantly higher proportion of positive samples detected during the autumn compared to the spring and the summer period (34% of positive bats detected in autumn, 15% in summer, 13% in spring and 12% in winter). In this study, we have provided the details of the geographical distribution of EBLV-1a in the south-west of France and the north-south division of EBLV-1b with its subdivisions into three phylogenetic groups: group B1 in the north-west, group B2 in the centre and group B3 in the north-east of France.
doi:10.1371/journal.pone.0098622
PMCID: PMC4044004  PMID: 24892287
8.  Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies 
PLoS ONE  2007;2(6):e566.
Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern.
doi:10.1371/journal.pone.0000566
PMCID: PMC1892799  PMID: 17593965
9.  A universal real-time assay for the detection of Lyssaviruses 
Journal of Virological Methods  2011;177(1-24):87-93.
Highlights
► Universal real-time PCR primer pair demonstrated to hybridize to and detect each of the known Lyssaviruses (including Rabies virus) with greater sensitivity than a standard pan-Lyssavirus hemi-nested RT-PCR typically used. ► Target sequences of bat derived virus species unavailable for analysis (Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus) were synthesized to produce oligonucleotides and the synthetic DNA was used as a target for primer hybridization.
Rabies virus (RABV) is enzootic throughout most of the world. It is now widely accepted that RABV had its origins in bats. Ten of the 11 Lyssavirus species recognised, including RABV, have been isolated from bats. There is, however, a lack of understanding regarding both the ecology and host reservoirs of Lyssaviruses. A real-time PCR assay for the detection of all Lyssaviruses using universal primers would be beneficial for Lyssavirus surveillance. It was shown that using SYBR® Green, a universal real-time PCR primer pair previously demonstrated to detect European bat Lyssaviruses 1 and 2, and RABV, was able to detect reverse transcribed RNA for each of the seven virus species available to us. Target sequences of bat derived virus species unavailable for analysis were synthesized to produce oligonucleotides. Lagos Bat-, Duvenhage- and Mokola virus full nucleoprotein gene clones enabled a limit of 5–50 plasmid copies to be detected. Five copies of each of the synthetic DNA oligonucleotides of Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus were detected. The single universal primer pair was therefore able to detect each of the most divergent known Lyssaviruses with great sensitivity.
doi:10.1016/j.jviromet.2011.07.002
PMCID: PMC3191275  PMID: 21777619
Lyssavirus; Rabies; Bat; SYBR Green; Real-time PCR; Synthetic DNA
10.  Bat Rabies in Guatemala 
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.
Author Summary
In this study we provide results of the first active and extensive surveillance effort for rabies virus (RABV) circulation among bats in Guatemala. The survey included multiple geographic areas and multiple species of bats, to assess the broader public and veterinary health risks associated with rabies in bats in Guatemala. RABV was isolated from vampire bats (Desmodus rotundus) collected in two different locations in Guatemala. Sequencing of the isolates revealed a closer relationship to Mexican and Central American vampire bat isolates than to South American isolates. The detection of RABV neutralizing antibodies in 11 species, including insectivorous, frugivorous, and sanguivorous bats, demonstrates viral circulation in both hematophagous and non-hematophagous bat species in Guatemala. The presence of bat RABV in rural communities requires new strategies for public health education regarding contact with bats, improved laboratory-based surveillance of animals associated with human exposures, and novel techniques for modern rabies prevention and control. Additionally, healthcare practitioners should emphasize the collection of a detailed medical history, including questions regarding bat exposure, for patients presenting with clinical syndromes compatible with rabies or any clinically diagnosed progressive encephalitis.
doi:10.1371/journal.pntd.0003070
PMCID: PMC4117473  PMID: 25080103
11.  Screening of Active Lyssavirus Infection in Wild Bat Populations by Viral RNA Detection on Oropharyngeal Swabs 
Journal of Clinical Microbiology  2001;39(10):3678-3683.
Brain analysis cannot be used for the investigation of active lyssavirus infection in healthy bats because most bat species are protected by conservation directives. Consequently, serology remains the only tool for performing virological studies on natural bat populations; however, the presence of antibodies merely reflects past exposure to the virus and is not a valid marker of active infection. This work describes a new nested reverse transcription (RT)-PCR technique specifically designed for the detection of the European bat virus 1 on oropharyngeal swabs obtained from bats but also able to amplify RNA from the remaining rabies-related lyssaviruses in brain samples. The technique was successfully used for surveillance of a serotine bat (Eptesicus serotinus) colony involved in a case of human exposure, in which 15 out of 71 oropharyngeal swabs were positive. Lyssavirus infection was detected on 13 oropharyngeal swabs but in only 5 brains out of the 34 animals from which simultaneous brain and oropharyngeal samples had been taken. The lyssavirus involved could be rapidly identified by automatic sequencing of the RT-PCR products obtained from 14 brains and three bat oropharyngeal swabs. In conclusion, RT-PCR using oropharyngeal swabs will permit screening of wild bat populations for active lyssavirus infection, for research or epidemiological purposes, in line not only with conservation policies but also in a more efficient manner than classical detection techniques used on the brain.
doi:10.1128/JCM.39.10.3678-3683.2001
PMCID: PMC88406  PMID: 11574590
12.  Coexistence of Different Genotypes in the Same Bat and Serological Characterization of Rousettus Bat Coronavirus HKU9 Belonging to a Novel Betacoronavirus Subgroup▿  
Journal of Virology  2010;84(21):11385-11394.
Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), a recently identified coronavirus of novel Betacoronavirus subgroup D, from Leschenault's rousette, was previously found to display marked sequence polymorphism among genomes of four strains. Among 10 bats with complete RNA-dependent RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes sequenced, three and two sequence clades for all three genes were codetected in two and five bats, respectively, suggesting the coexistence of two or three distinct genotypes of Ro-BatCoV HKU9 in the same bat. Complete genome sequencing of the distinct genotypes from two bats, using degenerate/genome-specific primers with overlapping sequences confirmed by specific PCR, supported the coexistence of at least two distinct genomes in each bat. Recombination analysis using eight Ro-BatCoV HKU9 genomes showed possible recombination events between strains from different bat individuals, which may have allowed for the generation of different genotypes. Western blot assays using recombinant N proteins of Ro-BatCoV HKU9, Betacoronavirus subgroup A (HCoV-HKU1), subgroup B (SARSr-Rh-BatCoV), and subgroup C (Ty-BatCoV HKU4 and Pi-BatCoV HKU5) coronaviruses were subgroup specific, supporting their classification as separate subgroups under Betacoronavirus. Antibodies were detected in 75 (43%) of 175 and 224 (64%) of 350 tested serum samples from Leschenault's rousette bats by Ro-BatCoV HKU9 N-protein-based Western blot and enzyme immunoassays, respectively. This is the first report describing coinfection of different coronavirus genotypes in bats and coronavirus genotypes of diverse nucleotide variation in the same host. Such unique phenomena, and the unusual instability of ORF7a, are likely due to recombination which may have been facilitated by the dense roosting behavior and long foraging range of Leschenault's rousette.
doi:10.1128/JVI.01121-10
PMCID: PMC2953156  PMID: 20702646
13.  Experimental infection of Foxes with European bat Lyssaviruses type-1 and 2 
Background
Since 1954, there have been in excess of 800 cases of rabies as a result of European Bat Lyssaviruses types 1 and 2 (EBLV-1, EBLV-2) infection, mainly in Serotine and Myotis bats respectively. These viruses have rarely been reported to infect humans and terrestrial mammals, as the only exceptions are sheep in Denmark, a stone marten in Germany and a cat in France. The purpose of this study was to investigate the susceptibility of foxes to EBLVs using silver foxes (Vulpes vulpes) as a model.
Results
Our experimental studies have shown that the susceptibility of foxes to EBLVs is low by the intramuscular (IM) route, however, animals were sensitive to intracranial (IC) inoculation. Mortality was 100% for both EBLV-1 (~4.5 logs) and EBLV-2 (~3.0 logs) delivered by the IC route. Virus dissemination and inflammatory infiltrate in the brain were demonstrated but virus specific neutralising antibody (VNA) was limited (log(ED50) = 0.24–2.23 and 0.95–2.39 respectively for specific EBLV-1 and EBLV-2). Foxes were also susceptible, at a low level, to peripheral (IM) infection (~3.0 logs) with EBLV-1 but not EBLV-2. Three out of 21 (14.3%) foxes developed clinical signs between 14 and 24 days post-EBLV-1 infection. None of the animals given EBLV-2 developed clinical disease.
Conclusion
These data suggest that the chance of a EBLV spill-over from bat to fox is low, but with a greater probability for EBLV-1 than for EBLV-2 and that foxes seem to be able to clear the virus before it reaches the brain and cause a lethal infection.
doi:10.1186/1746-6148-5-19
PMCID: PMC2694770  PMID: 19454020
14.  Lagos Bat Virus in Kenya▿  
Journal of Clinical Microbiology  2008;46(4):1451-1461.
During lyssavirus surveillance, 1,221 bats of at least 30 species were collected from 25 locations in Kenya. One isolate of Lagos bat virus (LBV) was obtained from a dead Eidolon helvum fruit bat. The virus was most similar phylogenetically to LBV isolates from Senegal (1985) and from France (imported from Togo or Egypt; 1999), sharing with these viruses 100% nucleoprotein identity and 99.8 to 100% glycoprotein identity. This genome conservancy across space and time suggests that LBV is well adapted to its natural host species and that populations of reservoir hosts in eastern and western Africa have sufficient interactions to share pathogens. High virus concentrations, in addition to being detected in the brain, were detected in the salivary glands and tongue and in an oral swab, suggesting that LBV is transmitted in the saliva. In other extraneural organs, the virus was generally associated with innervations and ganglia. The presence of infectious virus in the reproductive tract and in a vaginal swab implies an alternative opportunity for transmission. The isolate was pathogenic for laboratory mice by the intracerebral and intramuscular routes. Serologic screening demonstrated the presence of LBV-neutralizing antibodies in E. helvum and Rousettus aegyptiacus fruit bats. In different colonies the seroprevalence ranged from 40 to 67% and 29 to 46% for E. helvum and R. aegyptiacus, respectively. Nested reverse transcription-PCR did not reveal the presence of viral RNA in oral swabs of bats in the absence of brain infection. Several large bat roosts were identified in areas of dense human populations, raising public health concerns for the potential of lyssavirus infection.
doi:10.1128/JCM.00016-08
PMCID: PMC2292963  PMID: 18305130
15.  Insights into Persistence Mechanisms of a Zoonotic Virus in Bat Colonies Using a Multispecies Metapopulation Model 
PLoS ONE  2014;9(4):e95610.
Rabies is a worldwide zoonosis resulting from Lyssavirus infection. In Europe, Eptesicus serotinus is the most frequently reported bat species infected with Lyssavirus, and thus considered to be the reservoir of European bat Lyssavirus type 1 (EBLV-1). To date, the role of other bat species in EBLV-1 epidemiology and persistence remains unknown. Here, we built an EBLV-1−transmission model based on local observations of a three-cave and four-bat species (Myotis capaccinii, Myotis myotis, Miniopterus schreibersii, Rhinolophus ferrumequinum) system in the Balearic Islands, for which a 1995–2011 serological dataset indicated the continuous presence of EBLV-1. Eptesicus serotinus was never observed in the system during the 16-year follow-up and therefore was not included in the model. We used the model to explore virus persistence mechanisms and to assess the importance of each bat species in the transmission dynamics. We found that EBLV-1 could not be sustained if transmission between M. schreibersii and other bat species was eliminated, suggesting that this species serves as a regional reservoir. Global sensitivity analysis using Sobol's method revealed that following the rate of autumn−winter infectious contacts, M. schreibersii's incubation- and immune-period durations, but not the infectious period length, were the most relevant factors driving virus persistence.
doi:10.1371/journal.pone.0095610
PMCID: PMC3995755  PMID: 24755619
16.  Phylogeography, Population Dynamics, and Molecular Evolution of European Bat Lyssaviruses 
Journal of Virology  2005;79(16):10487-10497.
European bat lyssaviruses types 1 and 2 (EBLV-1 and EBLV-2) are widespread in Europe, although little is known of their evolutionary history. We undertook a comprehensive sequence analysis to infer the selection pressures, rates of nucleotide substitution, age of genetic diversity, geographical origin, and population growth rates of EBLV-1. Our study encompassed data from 12 countries collected over a time span of 35 years and focused on the glycoprotein (G) and nucleoprotein (N) genes. We show that although the two subtypes of EBLV-1—EBLV-1a and EBLV-1b—have both grown at a low exponential rate since their introduction into Europe, they have differing population structures and dispersal patterns. Furthermore, there were strong constraints against amino acid change in both EBLV-1 and EBLV-2, as reflected in a low ratio of nonsynonymous to synonymous substitutions per site, particularly in EBLV-1b. Our inferred rate of nucleotide substitution in EBLV-1, approximately 5 × 10−5 substitutions per site per year, was also one of the lowest recorded for RNA viruses and implied that the current genetic diversity in the virus arose 500 to 750 years ago. We propose that the slow evolution of EBLVs reflects their distinctive epidemiology in bats, where they occupy a relatively stable fitness peak.
doi:10.1128/JVI.79.16.10487-10497.2005
PMCID: PMC1182613  PMID: 16051841
17.  Isolation of Irkut Virus from a Murina leucogaster Bat in China 
Background and objectives
Bats are recognized as a major reservoir of lyssaviruses; however, no bat lyssavirus has been isolated in Asia except for Aravan and Khujand virus in Central Asia. All Chinese lyssavirus isolates in previous reports have been of species rabies virus, mainly from dogs. Following at least two recent bat-associated human rabies-like cases in northeast China, we have initiated a study of the prevalence of lyssaviruses in bats in Jilin province and their public health implications. A bat lyssavirus has been isolated and its pathogenicity in mice and genomic alignment have been determined.
Results
We report the first isolation of a bat lyssavirus in China, from the brain of a northeastern bat, Murina leucogaster. Its nucleoprotein gene shared 92.4%/98.9% (nucleotide) and 92.2%/98.8% (amino acid) identity with the two known Irkut virus isolates from Russia, and was designated IRKV-THChina12. Following intracranial and intramuscular injection, IRKV-THChina12 produced rabies-like symptoms in adult mice with a short inoculation period and high mortality. Nucleotide sequence analysis showed that IRKV-THChina12 has the same genomic organization as other lyssaviruses and its isolation provides an independent origin for the species IRKV.
Conclusions
We have identified the existence of a bat lyssavirus in a common Chinese bat species. Its high pathogenicity in adult mice suggests that public warnings and medical education regarding bat bites in China should be increased, and that surveillance be extended to provide a better understanding of Irkut virus ecology and its significance for public health.
Author Summary
The Lyssavirus genus presently comprises 12 species and two unapproved species with different antigenic characteristics. Rabies virus is detectable worldwide; Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus, and Ikoma lyssavirus circulate in Africa; European bat lyssavirus types 1 and 2, Irkut virus, West Caucasian bat virus, and Bokeloh bat lyssavirus are found in Europe; and Australian bat lyssavirus has been isolated in Australia. Only Aravan and Khujand viruses have been identified in central Asia. Bats are recognized as the most important reservoirs of lyssaviruses. In China, all lyssavirus isolates in previous reports have been rabies virus, mainly from dogs; none has been from bats. Recently, however, at least two bat-associated human rabies or rabies-like cases have been reported in northeast China. Therefore, we conducted a search for bat lyssaviruses in Jilin province, close to where the first bat-associated human rabies case was recorded. We isolated a bat lyssavirus, identified as an Irkut virus isolate with high pathogenicity in experimental mice. Our findings suggest that public warnings and medical education regarding bat bites in China should be increased, and that surveillance should be extended to provide a better understanding of Irkut virus ecology and its significance for public health.
doi:10.1371/journal.pntd.0002097
PMCID: PMC3591329  PMID: 23505588
18.  Rabies-Related Knowledge and Practices Among Persons At Risk of Bat Exposures in Thailand 
Background
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. A cross-sectional study was conducted in Thailand to assess rabies-related knowledge and practices among persons regularly exposed to bats and bat habitats. The objectives were to identify deficiencies in rabies awareness, describe the occurrence of bat exposures, and explore factors associated with transdermal bat exposures.
Methods
A survey was administered to a convenience sample of adult guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. The questionnaire elicited information on demographics, experience with bat exposures, and rabies knowledge. Participants were also asked to describe actions they would take in response to a bat bite as well as actions for a bite from a potentially rabid animal. Bivariate analysis was used to compare responses between groups and multivariable logistic regression was used to explore factors independently associated with being bitten or scratched by a bat.
Findings
Of 106 people interviewed, 11 (10%) identified bats as a potential source of rabies. A history of a bat bite or scratch was reported by 29 (27%), and 38 (36%) stated either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of rabies transmission (68% vs. 90%, p = 0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p = 0.003). Guano mining, bat hunting, and being in a bat cave or roost area more than 5 times a year were associated with history of a bat bite or scratch.
Conclusions
These findings indicate the need for educational outreach to raise awareness of bat rabies, promote exposure prevention, and ensure appropriate health-seeking behaviors for bat-inflicted wounds, particularly among at-risk groups in Thailand.
Author Summary
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. We surveyed persons regularly exposed to bats and bat habitats in Thailand to assess rabies‐related knowledge and practices. Targeted groups included guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. Of the 106 people interviewed, 11 (10%) identified bats as a source of rabies. History of a bat bite/scratch was reported by 29 (27%), and 38 (36%) expressed either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of transmission (68% vs. 90%, p=0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p=0.003). These findings indicate a need for educational outreach in Thailand to raise awareness of bat rabies, promote exposure prevention, and ensure health‐seeking behaviors for bat‐inflicted wounds, particularly among at‐risk groups.
doi:10.1371/journal.pntd.0001054
PMCID: PMC3125144  PMID: 21738801
19.  Genetic Characterization of Betacoronavirus Lineage C Viruses in Bats Reveals Marked Sequence Divergence in the Spike Protein of Pipistrellus Bat Coronavirus HKU5 in Japanese Pipistrelle: Implications for the Origin of the Novel Middle East Respiratory Syndrome Coronavirus 
Journal of Virology  2013;87(15):8638-8650.
While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap.
doi:10.1128/JVI.01055-13
PMCID: PMC3719811  PMID: 23720729
20.  A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test 
BioMed Research International  2014;2014:256175.
A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.
doi:10.1155/2014/256175
PMCID: PMC4009295  PMID: 24822188
21.  Alphacoronaviruses in New World Bats: Prevalence, Persistence, Phylogeny, and Potential for Interaction with Humans 
PLoS ONE  2011;6(5):e19156.
Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.
doi:10.1371/journal.pone.0019156
PMCID: PMC3093381  PMID: 21589915
22.  Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus 
The Journal of General Virology  2014;95(Pt 8):1647-1653.
Bokeloh bat lyssavirus (BBLV), a novel lyssavirus, was isolated from a Natterer’s bat (Myotis nattererii), a chiropteran species with a widespread and abundant distribution across Europe. As a novel lyssavirus, the risks of BBLV to animal and human health are unknown and as such characterization both in vitro and in vivo was required to assess pathogenicity and vaccine protection. Full genome sequence analysis and antigenic cartography demonstrated that the German BBLV isolates are most closely related to European bat lyssavirus type 2 (EBLV-2) and Khujand virus and can be characterized within phylogroup I. In vivo characterization demonstrated that BBLV was pathogenic in mice when inoculated peripherally causing clinical signs typical for rabies encephalitis, with higher pathogenicity observed in juvenile mice. A limited vaccination-challenge experiment in mice was conducted and suggested that current vaccines would afford some protection against BBLV although further studies are warranted to determine a serological cut-off for protection.
doi:10.1099/vir.0.065953-0
PMCID: PMC4103065  PMID: 24828330
23.  Henipavirus Neutralising Antibodies in an Isolated Island Population of African Fruit Bats 
PLoS ONE  2012;7(1):e30346.
Isolated islands provide valuable opportunities to study the persistence of viruses in wildlife populations, including population size thresholds such as the critical community size. The straw-coloured fruit bat, Eidolon helvum, has been identified as a reservoir for henipaviruses (serological evidence) and Lagos bat virus (LBV; virus isolation and serological evidence) in continental Africa. Here, we sampled from a remote population of E. helvum annobonensis fruit bats on Annobón island in the Gulf of Guinea to investigate whether antibodies to these viruses also exist in this isolated subspecies. Henipavirus serological analyses (Luminex multiplexed binding and inhibition assays, virus neutralisation tests and western blots) and lyssavirus serological analyses (LBV: modified Fluorescent Antibody Virus Neutralisation test, LBV and Mokola virus: lentivirus pseudovirus neutralisation assay) were undertaken on 73 and 70 samples respectively. Given the isolation of fruit bats on Annobón and their lack of connectivity with other populations, it was expected that the population size on the island would be too small to allow persistence of viruses that are thought to cause acute and immunising infections. However, the presence of antibodies against henipaviruses was detected using the Luminex binding assay and confirmed using alternative assays. Neutralising antibodies to LBV were detected in one bat using both assays. We demonstrate clear evidence for exposure of multiple individuals to henipaviruses in this remote population of E. helvum annobonensis fruit bats on Annobón island. The situation is less clear for LBV. Seroprevalences to henipaviruses and LBV in Annobón are notably different to those in E. helvum in continental locations studied using the same sampling techniques and assays. Whilst cross-sectional serological studies in wildlife populations cannot provide details on viral dynamics within populations, valuable information on the presence or absence of viruses may be obtained and utilised for informing future studies.
doi:10.1371/journal.pone.0030346
PMCID: PMC3257271  PMID: 22253928
24.  Variability in Seroprevalence of Rabies Virus Neutralizing Antibodies and Associated Factors in a Colorado Population of Big Brown Bats (Eptesicus fuscus) 
PLoS ONE  2014;9(1):e86261.
In 2001–2005 we sampled permanently marked big brown bats (Eptesicus fuscus) at summer roosts in buildings at Fort Collins, Colorado, for rabies virus neutralizing antibodies (RVNA). Seroprevalence was higher in adult females (17.9%, n = 2,332) than males (9.4%, n = 128; P = 0.007) or volant juveniles (10.2%, n = 738; P<0.0001). Seroprevalence was lowest in a drought year with local insecticide use and highest in the year with normal conditions, suggesting that environmental stress may suppress RVNA production in big brown bats. Seroprevalence also increased with age of bat, and varied from 6.2 to 26.7% among adult females at five roosts sampled each year for five years. Seroprevalence of adult females at 17 other roosts sampled for 1 to 4 years ranged from 0.0 to 47.1%. Using logistic regression, the only ranking model in our candidate set of explanatory variables for serological status at first sampling included year, day of season, and a year by day of season interaction that varied with relative drought conditions. The presence or absence of antibodies in individual bats showed temporal variability. Year alone provided the best model to explain the likelihood of adult female bats showing a transition to seronegative from a previously seropositive state. Day of the season was the only competitive model to explain the likelihood of a transition from seronegative to seropositive, which increased as the season progressed. We found no rabies viral RNA in oropharyngeal secretions of 261 seropositive bats or in organs of 13 euthanized seropositive bats. Survival of seropositive and seronegative bats did not differ. The presence of RVNA in serum of bats should not be interpreted as evidence for ongoing rabies infection.
doi:10.1371/journal.pone.0086261
PMCID: PMC3899234  PMID: 24465996
25.  Intergenotypic Replacement of Lyssavirus Matrix Proteins Demonstrates the Role of Lyssavirus M Proteins in Intracellular Virus Accumulation ▿  
Journal of Virology  2009;84(4):1816-1827.
Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.
doi:10.1128/JVI.01665-09
PMCID: PMC2812392  PMID: 19955305

Results 1-25 (1288556)