PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (285274)

Clipboard (0)
None

Related Articles

1.  Exploring the Complexity of the HIV-1 Fitness Landscape 
PLoS Genetics  2012;8(3):e1002551.
Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.
Author Summary
Evolutionary adaptation can be understood as populations moving uphill on landscapes, in which height corresponds to evolutionary fitness. Although such fitness landscapes are central to evolutionary theory, there is currently a lack of biologically realistic examples. Here we analyze large-scale fitness landscapes derived from in vitro fitness measurements of HIV-1. We find that these landscapes are very rugged and that, accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. Moreover, the landscapes contain large networks along which fitness changes only minimally. While the relative extent to which mutations affect fitness on their own or in combination with other mutations is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged than expected from the individual and pair-wise effects of mutations. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.
doi:10.1371/journal.pgen.1002551
PMCID: PMC3297571  PMID: 22412384
2.  HIV Patients Developing Primary CNS Lymphoma Lack EBV-Specific CD4+ T Cell Function Irrespective of Absolute CD4+ T Cell Counts 
PLoS Medicine  2007;4(3):e96.
Background
In chronic HIV infection, antiretroviral therapy–induced normalization of CD4+ T cell counts (immune reconstitution [IR]) is associated with a decreased incidence of opportunistic diseases. However, some individuals remain at risk for opportunistic diseases despite prolonged normalization of CD4+ T cell counts. Deficient Epstein-Barr virus (EBV)-specific CD4+ T cell function may explain the occurrence of EBV-associated opportunistic malignancy—such as primary central nervous system (PCNS) lymphoma—despite recovery of absolute CD4+ T cell counts.
Methods and Findings
Absolute CD4+ T cell counts and EBV-specific CD4+ T cell-dependent interferon-γ production were assessed in six HIV-positive individuals prior to development of PCNS lymphoma (“cases”), and these values were compared with those in 16 HIV-infected matched participants with no sign of EBV-associated pathology (“matched controls”) and 11 nonmatched HIV-negative blood donors. Half of the PCNS lymphoma patients fulfilled IR criteria (defined here as CD4+ T cell counts ≥500/μl blood). EBV-specific CD4+ T cells were assessed 0.5–4.7 y prior to diagnosis of lymphoma. In 0/6 cases versus 13/16 matched controls an EBV-specific CD4+ T cell response was detected (p = 0.007; confidence interval for odds ratio [0–0.40]). PCNS lymphoma patients also differed with regards to this response significantly from HIV-negative blood donors (p < 0.001, confidence interval for odds ratio [0–0.14]), but there was no evidence for a difference between HIV-negative participants and the HIV-positive matched controls (p = 0.47).
Conclusions
Irrespective of absolute CD4+ T cell counts, HIV-positive patients who subsequently developed PCNS lymphoma lacked EBV-specific CD4+ T cell function. Larger, ideally prospective studies are needed to confirm these preliminary data, and clarify the impact of pathogen-specific versus surrogate marker-based assessment of IR on clinical outcome.
In a case-control study from the Swiss HIV cohort, Hess and colleagues report that T-helper responses against Epstein-Barr virus are specifically absent in patients developing CNS lymphoma.
Editors' Summary
Background.
AIDS causes disease by inactivating the body's immune responses. Most severely affected are the white blood cells known as T lymphocytes, particularly the CD4+ T cells that recognize infection and enable other cells of the immune system to respond. Advanced HIV infection, marked by very low numbers of CD4+ cells, is associated with a variety of infections and tumors that are rarely seen in people with intact immune systems. People with advanced HIV who receive highly active antiretroviral treatment (HAART) tend to have increases in their CD4+ cell counts and lose their susceptibility to these so-called opportunistic infections and cancers. For several common opportunistic infections, it is considered safe to discontinue preventive antibiotics after a patient's total CD4+ cell count has returned to normal levels on HAART. Some treated individuals, however, will develop these conditions even after their CD4+ cell counts have returned to normal levels. The reason this happens is unclear.
Why Was This Study Done?
For several years, scientists have speculated that susceptibility to a given opportunistic infection might be due not simply to low total CD4+ cells, but to loss of the specific CD4+ cells that recognize the infection in question. If this theory is correct, then those individuals who develop an opportunistic condition after their total CD4+ cell counts return to normal might be missing the specific cells that respond to the microbe causing the condition. The researchers wanted to test this theory in HIV patients with a brain tumor called primary central nervous system lymphoma (PCNS lymphoma). The Epstein-Barr virus (EBV), which causes mononucleosis in the general population, has been shown to be a cause of PCNS lymphoma in people with AIDS.
What Did the Researchers Do and Find?
The researchers studied patients who developed PCNS lymphoma while enrolled in the Swiss HIV Cohort, an ongoing study that has enrolled more than 14,000 people. A large cohort was needed to address this question because PCNS lymphoma is uncommon, and indeed only six patients with a confirmed diagnosis were identified. Because they had been followed as part of the cohort study, these patients had given blood samples that could be tested in retrospect. Three of these patients had low CD4+ cell counts prior to lymphoma diagnosis and three had normal CD4+ cell counts, but CD4 responses specifically against EBV were absent or very low in all six patients before they were diagnosed with PCNS lymphoma. The researchers also studied a comparison group of cohort participants with comparable CD4+ cell counts but no PCNS lymphoma, and found that 13/16 of those participants did have CD4 responses to EBV.
What Do These Findings Mean?
These results support the idea that the action of EBV-specific CD4+ cells, rather than a given level of total CD4+ cells, is needed to prevent PCNS lymphoma. Because only a small number of cases were identified, this must be considered a preliminary result. Given the rarity of PCNS lymphoma, however, especially in people receiving HAART, it seems unlikely that a larger cohort will be available in the near future to provide a more definitive conclusion. Based on this result, it may be useful to perform similar studies of other opportunistic infections. If a “gap” in the CD4+ cell response can be shown to increase the risk of a specific condition, it may become appropriate to test specific CD4 responses before deciding to discontinue preventive treatment as CD4+ cell counts increase on HAART.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040096.
Read the accompanying Perspective by Mark Jacobson, MD
The Swiss Cohort Study Web site contains information on related research projects
The UCSF Center for HIV Information's HIV InSite includes resources on HIV immunology and opportunistic infections
doi:10.1371/journal.pmed.0040096
PMCID: PMC1831733  PMID: 17388662
3.  Differential gene expression in HIV/SIV-associated and spontaneous lymphomas 
Diffuse large B-cell lymphoma (DLBCL) is more prevalent and more often fatal in HIV-infected patients and SIV-infected monkeys compared to immune-competent individuals. Molecular, biological, and immunological data indicate that virus-associated lymphomagenesis is similar in both infected hosts. To find genes specifically overexpressed in HIV/SIV-associated and non-HIV/SIV-associated DLBCL we compared gene expression profiles of HIV/SIV-related and non-HIV-related lymphomas using subtractive hybridization and Northern blot analysis. Our experimental approach allowed us to detect two genes (a-myb and pub) upregulated solely in HIV/SIV-associated DLBCLs potentially involved in virus-specific lymphomagenesis in human and monkey. Downregulation of the pub gene was observed in all non-HIV-associated lymphomas investigated. In addition, we have found genes upregulated in both non-HIV- and HIV-associated lymphomas. Among those were genes both with known (set, ND4, SMG-1) and unknown functions. In summary, we have demonstrated that simultaneous transcriptional upregulation of at least two genes (a-myb and pub) was specific for AIDS-associated lymphomas.
PMCID: PMC1252723  PMID: 16239949
non-Hodgkin's lymphoma; diffuse large B-cell lymphoma; HIV/SIV-associated lymphomas; spontaneous; differentially expressed genes; subtractive hybridization
4.  EBV, HHV8 and HIV in B cell non Hodgkin lymphoma in Kampala, Uganda 
Background
B cell non Hodgkin lymphomas account for the majority of lymphomas in Uganda. The commonest is endemic Burkitt lymphoma, followed by diffuse large-B-cell lymphoma (DLBCL). There has been an increase in incidence of malignant lymphoma since the onset of the HIV/AIDS pandemic. However, the possible linkages of HHV8 and EBV to the condition of impaired immunity present in AIDS are still not yet very clearly understood.
Objectives
1. To describe the prevalence of Epstein-Barr virus, Human Herpes virus 8 and Human Immunodeficiency Virus-1 in B cell non Hodgkin lymphoma biopsy specimens in Kampala, Uganda.
2. To describe the histopathology of non Hodgkin lymphoma by HIV serology test result in Kampala, Uganda
Method
Tumour biopsies specimens from 119 patients with B cell non Hodgkin lymphoma were classified according to the WHO classification. Immunohistochemistry was used for detection of HHV8 and in situ hybridization with Epstein Barr virus encoded RNA (EBER) for EBV. Real time and nested PCR were used for the detection of HIV.
The patients from whom the 1991-2000 NHL biopsies had been taken did not have HIV serology results therefore 145 patients biopsies where serology results were available were used to describe the association of HIV with non Hodgkin lymphoma type during 2008-2009.
Results
In this study, the majority (92%) of the Burkitt lymphomas and only 34.8% of the diffuse large B cell lymphomas were EBV positive. None of the precursor B lymphoblastic lymphomas or the mantle cell lymphomas showed EBV integration in the lymphoma cells.
None of the Burkitt lymphoma biopsies had HIV by PCR. Of the 121 non Hodgkin B cell lymphoma patients with HIV test results, 19% had HIV. However, only 1(0.04%) case of Burkitt lymphoma had HIV. All the tumours were HHV8 negative.
Conclusions
The majority of the Burkitt lymphomas and two fifths of the diffuse large B cell lymphomas had EBV. All the tumours were HHV8 negative. Generally, the relationship of NHL and HIV was weaker than what has been reported from the developed countries. We discuss the role of these viruses in lymphomagenesis in light of current knowledge.
doi:10.1186/1750-9378-5-12
PMCID: PMC2907314  PMID: 20591151
5.  Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae) 
Parasites & Vectors  2014;7(1):388.
Background
Female Culicoides sonorensis midges (Diptera: Ceratopogonidae) are vectors of pathogens that impact livestock and wildlife in the United States. Little is known about their biology on a molecular-genetic level, including components of their immune system. Because the insect immune response is involved with important processes such as gut microbial homeostasis and vector competence, our aims were to identify components of the midge innate immune system and examine their expression profiles in response to diet across time.
Methods
In our previous work, we de novo sequenced and analyzed the transcriptional landscape of female midges under several feeding states including teneral (unfed) and early and late time points after blood and sucrose. Here, those transcriptomes were further analyzed to identify insect innate immune orthologs, particularly humoral immune response elements. Additionally, we examined immune gene expression profiles in response to diet over time, on both a transcriptome-wide, whole-midge level and more specifically via qRTPCR analysis of antimicrobial peptide (AMP) expression in the alimentary canal.
Results
We identified functional units comprising the immune deficiency (Imd), Toll and JAK/STAT pathways, including humoral factors, transmembrane receptors, signaling components, transcription factors/regulators and effectors such as AMPs. Feeding altered the expression of receptors, regulators, AMPs, prophenoloxidase and thioester-containing proteins, where blood had a greater effect than sucrose on the expression profiles of most innate immune components. qRTPCR of AMP genes showed that all five were significantly upregulated in the alimentary canal after blood feeding, possibly in response to proliferating populations of gut bacteria.
Conclusions
Identification and functional insight of humoral/innate immune components in female C. sonorensis updates our knowledge of the molecular biology of this important vector. Because diet alone influenced the expression of immune pathway components, including their effectors, subsequent study of the role of innate immunity in biological processes such as gut homeostasis and life history are being pursued. Furthermore, since the humoral response is a key contributor in gut immunity, manipulating immune gene expression will help in uncovering genetic components of vector competence, including midgut barriers to infection. The results of such studies will serve as a platform for designing novel transmission-blocking strategies.
Electronic supplementary material
The online version of this article (doi:10.1186/1756-3305-7-388) contains supplementary material, which is available to authorized users.
doi:10.1186/1756-3305-7-388
PMCID: PMC4158122  PMID: 25145345
Innate immunity; Biting midge; Toll; Imd; JAK/STAT; RNAseq; Attacin; Cecropin; Defensin
6.  HIV-1 Transmission during Early Infection in Men Who Have Sex with Men: A Phylodynamic Analysis 
PLoS Medicine  2013;10(12):e1001568.
Erik Volz and colleagues use HIV genetic information from a cohort of men who have sex with men in Detroit, USA to dissect the timing of onward transmission during HIV infection.
Please see later in the article for the Editors' Summary
Background
Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of drug resistance mutations. We conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from a US population of men who have sex with men (MSM) and estimated incidence and transmission rates by stage of infection.
Methods and Findings
We analyzed 662 HIV-1 subtype B sequences collected between October 14, 2004, and February 24, 2012, from MSM in the Detroit metropolitan area, Michigan. These sequences were cross-referenced with a database of 30,200 patients diagnosed with HIV infection in the state of Michigan, which includes clinical information that is informative about the recency of infection at the time of diagnosis. These data were analyzed using recently developed population genetic methods that have enabled the estimation of transmission rates from the population-level genetic diversity of the virus. We found that genetic data are highly informative about HIV donors in ways that standard surveillance data are not. Genetic data are especially informative about the stage of infection of donors at the point of transmission. We estimate that 44.7% (95% CI, 42.2%–46.4%) of transmissions occur during the first year of infection.
Conclusions
In this study, almost half of transmissions occurred within the first year of HIV infection in MSM. Our conclusions may be sensitive to un-modeled intra-host evolutionary dynamics, un-modeled sexual risk behavior, and uncertainty in the stage of infected hosts at the time of sampling. The intensity of transmission during early infection may have significance for public health interventions based on early treatment of newly diagnosed individuals.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Since the first recorded case of AIDS in 1981, the number of people infected with HIV, the virus that causes AIDS, has risen steadily. About 34 million people are currently HIV-positive, and about 2.5 million people become newly infected with HIV every year. Because HIV is usually transmitted through unprotected sex with an infected partner, individuals can reduce their risk of infection by abstaining from sex, by having only one or a few partners, and by always using condoms. Most people do not become ill immediately after infection with HIV, although some develop a short flu-like illness. The next stage of HIV infection, which may last more than ten years, also has no major symptoms, but during this stage, HIV slowly destroys immune system cells. Eventually, the immune system can no longer fight off infections by other disease-causing organisms, and HIV-positive people then develop one or more life-threatening AIDS-defining conditions, including unusual infections and specific types of cancer. HIV infection can be controlled, but not cured, by taking a daily cocktail of antiretroviral drugs.
Why Was This Study Done?
The design of effective programs to prevent the spread of HIV/AIDS depends on knowing how HIV transmissibility varies over the course of HIV infection. Consider, for example, a prevention strategy that focuses on increasing treatment rates: antiretroviral drugs, in addition to reducing illness and death among HIV-positive people, reduce HIV transmission from HIV-positive individuals. “Treatment as prevention” can only block transmissions that occur after diagnosis and entry into care. However, the transmissibility of HIV per sexual contact depends on a person's viral load, which peaks during early HIV infection, when people are often unaware of their HIV status and may still be following the high-risk patterns of sexual behavior that caused their own infection. Epidemiological surveillance data (information on HIV infections within populations) can be used to estimate how many new HIV infections occur within a population annually (HIV incidence) and the proportion of the population that is HIV-positive (HIV prevalence), but cannot be used to estimate the timing of transmission events. In this study, the researchers use “phylodynamic analysis” to estimate HIV incidence and prevalence and the timing of HIV transmission during infection. HIV, like many other viruses, rapidly accumulates genetic changes. The timing of transmission influences the pattern of these changes. Viral phylodynamic analysis—the quantitative study of how epidemiological, immunological, and evolutionary processes shape viral phylogenies (evolutionary trees)—can therefore provide estimates of transmission dynamics.
What Did the Researchers Do and Find?
The researchers obtained HIV sequence data (collected for routine surveillance of antiretroviral resistance mutations) and epidemiological surveillance data (including information on the stage of infection at diagnosis) for 662 HIV-positive men who have sex with men living in the Detroit metropolitan area of Michigan. They constructed a phylogenetic tree from the sequences using a “relaxed clock” approach and then fitted an epidemiological model (a mathematical model that represents the progress of individual patients through various stages of HIV infection) to the sequence data. Their approach, which integrates surveillance data and genetic data, yielded estimates of HIV incidence and prevalence among the study population similar to those obtained from surveillance data alone. However, it also provided information about HIV transmission that could not be obtained from surveillance data alone. In particular, it allowed the researchers to estimate that, in the current HIV epidemic among men who have sex with men in Detroit, 44.7% of HIV transmissions occur during the first year of infection.
What Do These Findings Mean?
The robustness of these findings depends on the validity of the assumptions included in the researchers' population genetic model and on the accuracy of the data fed into the model, and may not be generalizable to other cities or to other risk groups. Nevertheless, the findings of this analysis, which can be repeated in any setting where HIV sequence data for individual patients can be linked to patient-specific clinical and behavioral information, have important implications for HIV control strategies based on the early treatment of newly diagnosed individuals. Because relatively few infected individuals are diagnosed during early HIV infection, when the HIV transmission rate is high, it is unlikely, suggest the researchers, that the “treatment as prevention” strategy will effectively control the spread of HIV unless there are very high rates of HIV testing and treatment.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001568.
This study is further discussed in a PLOS Medicine Perspective by Timothy Hallett
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
NAM/aidsmap provides basic information about HIV/AIDS and summaries of recent research findings on HIV care and treatment
Information is available from Avert, an international AIDS charity, on many aspects of HIV/AIDS, including information on HIV treatment as prevention (in English and Spanish)
The PLOS Medicine Collection Investigating the Impact of Treatment on New HIV Infections provides more information about HIV treatment as prevention
A PLOS Computational Biology Topic Page (a review article that is a published copy of record of a dynamic version of the article as found in Wikipedia) about viral phylodynamics is available
The US National Institute of Health–funded HIV Sequence Database contains HIV sequences and tools to analyze these sequences
Patient stories about living with HIV/AIDS are available through Avert; the charity website Healthtalkonline also provides personal stories about living with HIV
doi:10.1371/journal.pmed.1001568
PMCID: PMC3858227  PMID: 24339751
7.  Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing 
PLoS Pathogens  2014;10(4):e1004071.
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.
Author Summary
Combination antiretroviral therapy has greatly improved the clinical outcome of HIV infection treatment. However, latent viral reservoirs established primarily in memory CD4 T cells persist even after long periods of suppressive antiretroviral therapy, which hinders the ability to achieve a prolonged drug-free remission or a cure of the HIV infection. Activation of HIV expression from latent reservoirs is a part of proposed strategies that may potentially lead to virus elimination and ultimately cure of the infection. In this study, we show that romidepsin, a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, is a potent activator of HIV expression in an in vitro model of viral latency as well as ex vivo in resting and memory CD4 T cells isolated from HIV-infected patients with suppressed viremia. Importantly, the ex vivo activation of latent HIV occurred at romidepsin concentrations lower than those achieved in drug-treated lymphoma patients. In addition, romidepsin exhibited a more potent effect than other drugs in the same class that have already been shown to activate HIV expression in vivo. Together, these results support the clinical assessment of romidepsin in HIV-infected patients on suppressive antiretroviral therapy.
doi:10.1371/journal.ppat.1004071
PMCID: PMC3983056  PMID: 24722454
8.  The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing 
PLoS Computational Biology  2014;10(8):e1003776.
Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion, and harnessing this knowledge for immunogen design.
Author Summary
At least 70 million people have been infected with HIV since the beginning of the epidemic and an effective vaccine remains elusive. The high mutation rate and diversity of HIV strains enables the virus to effectively evade host immune responses, presenting a significant challenge for HIV vaccine design. We have developed an approach to translate clinical databases of HIV sequences into mathematical models quantifying the capacity of the virus to replicate as a function of mutations within its genome. We have previously shown how such “fitness landscapes” can be used to guide the design of vaccines to attack vulnerable regions from which it is difficult for the virus to escape by mutation. Here, using new modeling approaches, we have improved on our previous models of HIV fitness landscape by accounting for undersampling of HIV sequences and the specific identity of mutant amino acids. We experimentally tested the accuracy of the improved models to predict the fitness of HIV with multiple mutations in the Gag protein. The experimental data are in strong agreement with model predictions, supporting the value of these models as a novel approach for determining mutational vulnerabilities of HIV-1, which, in turn, can inform vaccine design.
doi:10.1371/journal.pcbi.1003776
PMCID: PMC4125067  PMID: 25102049
9.  Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study 
AIDS (London, England)  2014;28(15):2313-2318.
Objective
HIV-infected people have greatly elevated risk of non-Hodgkin lymphoma (NHL), particularly the AIDS-defining NHL subtypes: diffuse large B-cell lymphoma, Burkitt lymphoma and primary lymphomas arising in the central nervous system. The goals of this analysis were to comprehensively describe risks of NHL subtypes, especially those not well studied, among HIV/AIDS patients; examine risks specifically in the HAART era; and distinguish risks in HIV-infected individuals prior to diagnosis with AIDS.
Design
Population-based registry linkage study.
Methods
We used data from the US HIV/AIDS Cancer Match Study from 1996 to 2010 (N = 273 705) to calculate standardized incidence ratios (SIRs) comparing subtype specific NHL risks in HIV-infected people to those in the general population, and used Poisson regression to test for differences in SIRs between the HIV-only and AIDS periods.
Results
NHL risk was elevated 11-fold compared to the general population, but varied substantially by subtype. AIDS-defining NHL subtypes comprised the majority, and risks were high (SIRs ≥ 17), but risks were also increased for some T-cell lymphomas (SIRs = 3.6–14.2), marginal zone lymphoma (SIR = 2.4), lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (SIR = 3.6), and acute lymphoblastic leuke mia/lymphoma (SIR = 2.4).
Conclusion
HIV-infected people in the HAART era continue to have elevated risk of AIDS-defining NHL subtypes, highlighting the contribution of moderate and severe immunosuppression to their cause. Whereas non-AIDS-defining subtypes are much less common, immunosuppression or other dysregulated immune states likely play a role in the cause of some T-cell lymphomas, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia, and acute lymphoblastic leukemia/lym phoma.
doi:10.1097/QAD.0000000000000428
PMCID: PMC4260326  PMID: 25111081
AIDS; AIDS-related; epidemiology; HIV; lymphoma; non-Hodgkin lymphoma
10.  Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies 
PLoS Genetics  2013;9(1):e1003220.
The genetics of lymphoma susceptibility reflect the marked heterogeneity of diseases that comprise this broad phenotype. However, multiple subtypes of lymphoma are observed in some families, suggesting shared pathways of genetic predisposition to these pathologically distinct entities. Using a two-stage GWAS, we tested 530,583 SNPs in 944 cases of lymphoma, including 282 familial cases, and 4,044 public shared controls, followed by genotyping of 50 SNPs in 1,245 cases and 2,596 controls. A novel region on 11q12.1 showed association with combined lymphoma (LYM) subtypes. SNPs in this region included rs12289961 near LPXN, (PLYM = 3.89×10−8, OR = 1.29) and rs948562 (PLYM = 5.85×10−7, OR = 1.29). A SNP in a novel non-HLA region on 6p23 (rs707824, PNHL = 5.72×10−7) was suggestive of an association conferring susceptibility to lymphoma. Four SNPs, all in a previously reported HLA region, 6p21.32, showed genome-wide significant associations with follicular lymphoma. The most significant association with follicular lymphoma was for rs4530903 (PFL = 2.69×10−12, OR = 1.93). Three novel SNPs near the HLA locus, rs9268853, rs2647046, and rs2621416, demonstrated additional variation contributing toward genetic susceptibility to FL associated with this region. Genes implicated by GWAS were also found to be cis-eQTLs in lymphoblastoid cell lines; candidate genes in these regions have been implicated in hematopoiesis and immune function. These results, showing novel susceptibility regions and allelic heterogeneity, point to the existence of pathways of susceptibility to both shared as well as specific subtypes of lymphoid malignancy.
Author Summary
B-cell lymphomas comprise several diseases representing aberrant proliferations of immune cells at various stages of maturation. It might be expected that dissimilar subtypes of lymphoma will have different etiologic and pathogenic mechanisms, reflecting the distinct histologic and clinical characteristics of these diseases. This study aims to define both shared as well as specific genetic risk factors for lymphoma. Utilizing a genome-wide approach, we discovered novel locations in the genome associated with risk for lymphoid malignancies. Common variants in these regions, on chromosome 11q12.1 and 6p23, were each associated with a modest modification of risk for lymphoma. These regions harbor several genes of biological importance in lymphoid maturation and function. We also further characterized the HLA region at 6p21.32, previously associated with lymphoma risk and thought to be important in immune function. Some of the associated SNP markers were specific for one common subtype of lymphoma, e.g. follicular lymphoma. However, others were associated with combined subsets of disease, suggesting that there are both shared and subtype-specific associations between common genetic variants and human lymphoid cancer. Secondary analyses showed that the two novel regions harbor candidates that are biologically relevant and that regulate cell development and hematopoiesis.
doi:10.1371/journal.pgen.1003220
PMCID: PMC3547842  PMID: 23349640
11.  T-helper 1 versus T-helper 2 lymphocyte immunodysregulation is the central factor in genesis of Burkitt lymphoma: hypothesis 
Background
The HIV epidemic has challenged our previous understanding of endemic Burkitt's lymphoma. Despite the strong association of Burkitt's lymphoma and HIV infection in the Developed world, and against previous postulations that the cancer is due to immunosupression among African children, the HIV epidemic in the Malaria belt has not been associated with a corresponding increase in incidence of childhood Burkitt's lymphoma. Even outside the context of HIV infection, there is substantial evidence for a strong but skewed immune response towards a TH2 response in genesis of Burkitt lymphoma.
Presentation of the hypothesis
Rather than a global and/or profound immunosupression, the final common pathway in genesis of Burkitt's lymphoma is the dysregulation of the immune response towards a TH2 response dominated by B-lymphocytes, and the concomitant suppression of the TH1 cell-mediated immune surveillance, driven by various viral/parasitic/bacterial infections.
Testing the hypothesis
Case control studies comparing TH2 and TH1 immune responses in Burkitt lymphoma of different etiological types (sporadic, HIV-related, endemic and post-transplant) to demonstrate significant dominance of TH2 immune response in presence of poor CMI response as a common factor. Immunological profiling to evaluate differences between immune states that are associated (such as recurrent Malaria infection) and those that are not associated (such as severe protein-energy malnutrition) with Burkitt lymphoma. Prospective cohorts profiling chronology of immunological events leading to Burkitt lymphoma in children with EBV infection.
Implications of the hypothesis
The dysregulation of the immune response may be the missing link in our understanding of Burkitt lymphomagenesis. This will provide possibilities for determination of risk and for control of development of malignancy in individuals/populations exposed to the relevant infections.
doi:10.1186/1750-9378-2-10
PMCID: PMC1884132  PMID: 17509139
12.  Impact of highly effective antiretroviral therapy on the risk for Hodgkin lymphoma among people with human immunodeficiency virus infection 
Current opinion in oncology  2012;24(5):531-536.
Purpose of review
To estimate the impact of highly effective antiretroviral therapy (ART) on the incidence and prognosis of Hodgkin lymphoma among people with human immunodeficiency virus infection or AIDS (PWHA).
Recent findings
Age-adjusted incidence of Hodgkin lymphoma in PWHA is unchanged and is still five-fold to fifteen-fold higher than in the general population. Aging of the PWHA population with ART may account for increasing numbers of Hodgkin lymphoma cases. CD4 cell count has a complex relationship to Hodgkin lymphoma risk in PWHA. Depending on the time of measurement, Hodgkin lymphoma risk is highest with 50–249 CD4cells/µl, and falling CD4 count on ART may be a harbinger of Hodgkin lymphoma onset. HIV load appears irrelevant to Hodgkin lymphoma. For obscure reasons, Hodgkin lymphoma risk may be elevated soon after starting ART, but the risk is probably modestly reduced with 6 or more months on ART. For PWHA who develop Hodgkin lymphoma, ART and ABVD chemotherapy can be administered safely, with one recent study demonstrating equivalent outcomes for HIV-positive and HIV-negative Hodgkin lymphoma patients.
Summary
Vigilance for Hodgkin lymphoma is needed for immune-deficient PWHA, including those on ART. ART with opportunistic infection prophylaxis enables the delivery of effective chemotherapy for Hodgkin lymphoma, leading to a good prognosis.
doi:10.1097/CCO.0b013e3283560697
PMCID: PMC3604881  PMID: 22729154
acquired immunodeficiency syndrome; antiretroviral therapy; cancer chemotherapy; CD4 count; Hodgkin lymphoma; human immunodeficiency virus
13.  The B Cell Antigen Receptor and Overexpression of MYC Can Cooperate in the Genesis of B Cell Lymphomas 
PLoS Biology  2008;6(6):e152.
A variety of circumstantial evidence from humans has implicated the B cell antigen receptor (BCR) in the genesis of B cell lymphomas. We generated mouse models designed to test this possibility directly, and we found that both the constitutive and antigen-stimulated state of a clonal BCR affected the rate and outcome of lymphomagenesis initiated by the proto-oncogene MYC. The tumors that arose in the presence of constitutive BCR differed from those initiated by MYC alone and resembled chronic B cell lymphocytic leukemia/lymphoma (B-CLL), whereas those that arose in response to antigen stimulation resembled large B-cell lymphomas, particularly Burkitt lymphoma (BL). We linked the genesis of the BL-like tumors to antigen stimulus in three ways. First, in reconstruction experiments, stimulation of B cells by an autoantigen in the presence of overexpressed MYC gave rise to BL-like tumors that were, in turn, dependent on both MYC and the antigen for survival and proliferation. Second, genetic disruption of the pathway that mediates signaling from the BCR promptly killed cells of the BL-like tumors as well as the tumors resembling B-CLL. And third, growth of the murine BL could be inhibited by any of three distinctive immunosuppressants, in accord with the dependence of the tumors on antigen-induced signaling. Together, our results provide direct evidence that antigenic stimulation can participate in lymphomagenesis, point to a potential role for the constitutive BCR as well, and sustain the view that the constitutive BCR gives rise to signals different from those elicited by antigen. The mouse models described here should be useful in exploring further the pathogenesis of lymphomas, and in preclinical testing of new therapeutics.
Author Summary
It has long been suspected that the malignant proliferation of B lymphocytes known as lymphomas might represent a perversion of how the cells normally respond to antigen. In particular, the molecular receptor on the surface of the cells that signals the presence of antigen might be abnormally active in lymphomas. We have tested this hypothesis by engineering the genome of mice so that virtually all of the B cells are commandeered by a single version of the surface receptor, then stimulated that receptor with the molecule it is designed to recognize. Our results indicate that both the unstimulated and stimulated states of the receptor can cooperate with an oncogene known as MYC in the genesis of lymphomas. But the two states of the receptor give rise to different forms of lymphoma. In particular, the stimulated form cooperates with MYC to produce a disease that closely resembles Burkitt lymphoma. These results illuminate the mechanisms that are responsible for lymphomas and could inform the development of new strategies to treat the disease.
A series of genetically engineered mice were used to substantiate a long-standing speculation that chronic immune-stimulus may be involved in the genesis of certain lymphomas, illuminating the pathogenesis of B cell lymphomas and suggesting new strategies to treat several forms of this malignancy, including Burkitt lymphoma.
doi:10.1371/journal.pbio.0060152
PMCID: PMC2435152  PMID: 18578569
14.  Antigen Load and Viral Sequence Diversification Determine the Functional Profile of HIV-1–Specific CD8+ T Cells 
PLoS Medicine  2008;5(5):e100.
Background
Virus-specific CD8+ T lymphocytes play a key role in the initial reduction of peak viremia during acute viral infections, but display signs of increasing dysfunction and exhaustion under conditions of chronic antigen persistence. It has been suggested that virus-specific CD8+ T cells with a “polyfunctional” profile, defined by the capacity to secrete multiple cytokines or chemokines, are most competent in controlling viral replication in chronic HIV-1 infection. We used HIV-1 infection as a model of chronic persistent viral infection to investigate the process of exhaustion and dysfunction of virus-specific CD8+ T cell responses on the single-epitope level over time, starting in primary HIV-1 infection.
Methods and Findings
We longitudinally analyzed the polyfunctional epitope-specific CD8+ T cell responses of 18 patients during primary HIV-1 infection before and after therapy initiation or sequence variation in the targeted epitope. Epitope-specific CD8+ T cells responded with multiple effector functions to antigenic stimulation during primary HIV-1 infection, but lost their polyfunctional capacity in response to antigen and up-regulated programmed death 1 (PD-1) expression with persistent viremic infection. This exhausted phenotype significantly decreased upon removal of stimulation by antigen, either in response to antiretroviral therapy or by reduction of epitope-specific antigen load in the presence of ongoing viral replication, as a consequence of in vivo selection of cytotoxic T lymphocyte escape mutations in the respective epitopes. Monofunctionality increased in CD8+ T cell responses directed against conserved epitopes from 49% (95% confidence interval 27%–72%) to 76% (56%–95%) (standard deviation [SD] of the effect size 0.71), while monofunctionality remained stable or slightly decreased for responses directed against escaped epitopes from 61% (47%–75%) to 56% (42%–70%) (SD of the effect size 0.18) (p < 0.05).
Conclusion
These data suggest that persistence of antigen can be the cause, rather than the consequence, of the functional impairment of virus-specific T cell responses observed during chronic HIV-1 infection, and underscore the importance of evaluating autologous viral sequences in studies aimed at investigating the relationship between virus-specific immunity and associated pathogenesis.
Marcus Altfeld and colleagues suggest that the exhaustion of virus-specific CD8+ T cells during chronic HIV infection likely results from the persistence of antigen.
Editors' Summary
Background.
Viruses are small infectious agents responsible for many human diseases, including acquired immunodeficiency syndrome (AIDS). Like other viruses, the human immunodeficiency virus 1 (HIV-1; the cause of AIDS) enters human cells and uses the cellular machinery to replicate before bursting out of its temporary home. During the initial stage of HIV infection, a particular group of cells in the human immune system, CD8+ T cells, are thought to be important in controlling the level of the virus. These immune system cells recognize pieces of viral protein called antigens displayed on the surface of infected cells; different subsets of CD8+ T cells recognize different antigens. When a CD8+ T cell recognizes its specific antigen (or more accurately, a small part of the antigen called an “epitope”), it releases cytotoxins (which kill the infected cells) and cytokines, proteins that stimulate CD8+ T cell proliferation and activate other parts of the immune system. With many viruses, when a person first becomes infected (an acute viral infection), antigen-specific CD8+ T cells completely clear the infection. But with HIV-1 and some other viruses, these cells do not manage to remove all the viruses from the body and a chronic (long-term) infection develops, during which the immune system is constantly exposed to viral antigen.
Why Was This Study Done?
In HIV-1 infections (and other chronic viral infections), virus-specific CD8+ T cells lose their ability to proliferate, to make cytokines, and to kill infected cells as patients progress to the long-term stages of infection. That is, the virus-specific CD8+ T cells gradually lose their “effector” functions and become functionally impaired or “exhausted.” “Polyfunctional” CD8+ T cells (those that release multiple cytokines in response to antigen) are believed to be essential for an effective CD8+ T cell response, so scientists trying to develop HIV-1 vaccines would like to stimulate the production of this type of cell. To do this they need to understand why these polyfunctional cells are lost during chronic infections. Is their loss the cause or the result of viral persistence? In other words, does the constant presence of viral antigen lead to the exhaustion of CD8+ T cells during chronic HIV infection? In this study, the researchers investigate this question by looking at the polyfunctionality of CD8+ cells responding to several different viral epitopes at various times during HIV-1 infection, starting very early after infection with HIV-1 had occurred.
What Did the Researchers Do and Find?
The researchers enrolled 18 patients recently infected with HIV-1 and analyzed their CD8+ T cell responses to specific epitopes at various times after enrollment using a technique called flow cytometry. They found that the epitope-specific CD8+ cells produced several effector proteins after antigen stimulation during the initial stage of HIV-1 infection, but lost their polyfunctionality in the face of persistent viral infection. The CD8+ T cells also increased their production of programmed death 1 (PD-1), a protein that has been shown to be associated with the functional impairment of CD8+ T cells. Some of the patients began antiretroviral therapy during the study, and the researchers found that this treatment, which reduced the viral load, reversed CD8+ T cell exhaustion. Finally, the appearance in the patients' blood of viruses that had made changes in the specific epitopes recognized by the CD8+ T cells to avoid being killed by these cells, also reversed the exhaustion of the T cells recognizing these particular epitopes.
What Do These Findings Mean?
These findings suggest that the constant presence of HIV-1 antigen causes the functional impairment of virus-specific CD8+ T cell responses during chronic HIV-1 infections. Treatment with antiretroviral drugs reversed this functional impairment by reducing the amount of antigen in the patients. Similarly, the appearance of viruses with altered epitopes, which effectively reduced the amount of antigen recognized by those epitope-specific CD8+ T cells without reducing the viral load, also reversed T cell exhaustion. These results would not have been seen if the functional impairment of CD8+ cells were the cause rather than the result of antigen persistence. By providing new insights into how the T cell response to viruses evolves during persistent viral infections, these findings should help in the design of vaccines against HIV and other viruses that cause chronic viral infections.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050100.
Read a related PLoS Medicine Research in Translation article
Learn more from the researchers' Web site, the Partners AIDS Research Center
Wikipedia has a page on cytotoxic T cells (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIV InSite has comprehensive information on all aspects of HIV/AIDS, including a detailed article on the immunopathogenesis of HIV infection
NAM, a UK registered charity, provides information about all aspects of HIV and AIDS, including a fact sheet on the stages of HIV infection and on the immune response to HIV
Information is available from Avert, an international AIDS charity, on all aspects of HIV/AIDS, including information on the stages of HIV infection
doi:10.1371/journal.pmed.0050100
PMCID: PMC2365971  PMID: 18462013
15.  Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole 
The authors screen for compounds that show synergistic antifungal activity when combined with the widely-used fungistatic drug fluconazole. Chemogenomic profiling explains the mode of action of synergistic drugs and allows the prediction of additional drug synergies.
The authors screen for compounds that show synergistic antifungal activity when combined with the widely-used fungistatic drug fluconazole. Chemogenomic profiling explains the mode of action of synergistic drugs and allows the prediction of additional drug synergies.
Chemical screens with a library enriched for known drugs identified a diverse set of 148 compounds that potentiated the action of the antifungal drug fluconazole against the fungal pathogens Cryptococcus neoformans, Cryptococcus gattii and Candida albicans, and the model yeast Saccharomyces cerevisiae, often in a species-specific manner.Chemogenomic profiles of six confirmed hits in S. cerevisiae revealed different modes of action and enabled the prediction of additional synergistic combinations; three-way synergistic interactions exhibited even stronger synergies at low doses of fluconazole.The synergistic combination of fluconazole and the antidepressant sertraline was active against fluconazole-resistant clinical fungal isolates and in an in vivo model of Cryptococcal infection.
Rising fungal infection rates, especially among immune-suppressed individuals, represent a serious clinical challenge (Gullo, 2009). Cancer, organ transplant and HIV patients, for example, often succumb to opportunistic fungal pathogens. The limited repertoire of approved antifungal agents and emerging drug resistance in the clinic further complicate the effective treatment of systemic fungal infections. At the molecular level, the paucity of fungal-specific essential targets arises from the conserved nature of cellular functions from yeast to humans, as well as from the fact that many essential yeast genes can confer viability at a fraction of wild-type dosage (Yan et al, 2009). Although only ∼1100 of the ∼6000 genes in yeast are essential, almost all genes become essential in specific genetic backgrounds in which another non-essential gene has been deleted or otherwise attenuated, an effect termed synthetic lethality (Tong et al, 2001). Genome-scale surveys suggest that over 200 000 binary synthetic lethal gene combinations dominate the yeast genetic landscape (Costanzo et al, 2010). The genetic buffering phenomenon is also manifest as a plethora of differential chemical–genetic interactions in the presence of sublethal doses of bioactive compounds (Hillenmeyer et al, 2008). These observations frame the difficulty of interdicting network functions in eukaryotic pathogens with single agent therapeutics. At the same time, however, this genetic network organization suggests that judicious combinations of small molecule inhibitors of both essential and non-essential targets may elicit additive or synergistic effects on cell growth (Sharom et al, 2004; Lehar et al, 2008). Unbiased screens for drugs that synergistically enhance a specific bioactive effect, but which are not themselves individually active—termed a syncretic combination—are one means to substantially elaborate chemical space (Keith et al, 2005). Indeed, compounds that enhance the activity of known agents in model yeast and cancer cell line systems have been identified both by focused small molecule library screens and by computational methods (Borisy et al, 2003; Lehar et al, 2007; Nelander et al, 2008; Jansen et al, 2009; Zinner et al, 2009).
To extend the stratagem of chemical synthetic lethality to clinically relevant fungal pathogens, we screened a bioactive library of known drugs for synergistic enhancers of the widely used fungistatic drug fluconazole against the clinically relevant pathogens C. albicans, C. neoformans and C. gattii, as well as the genetically tractable budding yeast S. cerevisiae. Fluconazole is an azole drug that inhibits lanosterol 14α-demethylase, the gene product of ERG11, an essential cytochrome P450 enzyme in the ergosterol biosynthetic pathway (Groll et al, 1998). We identified 148 drugs that potentiate the antifungal action of fluconazole against the four species. These syncretic compounds had not been previously recognized in the clinic as antifungal agents, and many acted in a species-specific manner, often in a potent fungicidal manner.
To understand the mechanisms of synergism, we interrogated six syncretic drugs—trifluoperazine, tamoxifen, clomiphene, sertraline, suloctidil and L-cycloserine—in genome-wide chemogenomic profiles of the S. cerevisiae deletion strain collection (Giaever et al, 1999). These profiles revealed that membrane, vesicle trafficking and lipid biosynthesis pathways are targeted by five of the synergizers, whereas the sphingolipid biosynthesis pathway is targeted by L-cycloserine. Cell biological assays confirmed the predicted membrane disruption effects of the former group of compounds, which may perturb ergosterol metabolism, impair fluconazole export by drug efflux pumps and/or affect active import of fluconazole (Kuo et al, 2010; Mansfield et al, 2010). Based on the integration of chemical–genetic and genetic interaction space, a signature set of deletion strains that are sensitive to the membrane active synergizers correctly predicted additional drug synergies with fluconazole. Similarly, the L-cycloserine chemogenomic profile correctly predicted a synergistic interaction between fluconazole and myriocin, another inhibitor of sphingolipid biosynthesis. The structure of genetic networks suggests that it should be possible to devise higher order drug combinations with even greater selectivity and potency (Sharom et al, 2004). In an initial test of this concept, we found that the combination of a non-synergistic pair drawn from the membrane active and sphingolipid target classes exhibited potent three-way synergism with a low dose of fluconazole. Finally, the combination of sertraline and fluconazole was active in a G. mellonella model of Cryptococcal infection, and was also efficacious against fluconazole-resistant clinical isolates of C. albicans and C. glabrata.
Collectively, these results demonstrate that the combinatorial redeployment of known drugs defines a powerful antifungal strategy and establish a number of potential lead combinations for future clinical assessment.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off-patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species- or genus-specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole-resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.
doi:10.1038/msb.2011.31
PMCID: PMC3159983  PMID: 21694716
antifungal; combination; pathogen; resistance; synergism
16.  Oral Immunization with a Live Coxsackievirus/HIV Recombinant Induces Gag p24-Specific T Cell Responses 
PLoS ONE  2010;5(9):e12499.
Background
The development of an HIV/AIDS vaccine has proven to be elusive. Because human vaccine trials have not yet demonstrated efficacy, new vaccine strategies are needed for the HIV vaccine pipeline. We have been developing a new HIV vaccine platform using a live enterovirus, coxsackievirus B4 (CVB4) vector. Enteroviruses are ideal candidates for development as a vaccine vector for oral delivery, because these viruses normally enter the body via the oral route and survive the acidic environment of the stomach.
Methodology/Principal Findings
We constructed a live coxsackievirus B4 recombinant, CVB4/p24(733), that expresses seventy-three amino acids of the gag p24 sequence (HXB2) and assessed T cell responses after immunization of mice. The CVB4 recombinant was physically stable, replication-competent, and genetically stable. Oral or intraperitoneal immunization with the recombinant resulted in strong systemic gag p24-specific T cell responses as determined by the IFN-γ ELISPOT assay and by multiparameter flow cytometry. Oral immunization with CVB4/p24(733) resulted in a short-lived, localized infection of the gut without systemic spread. Because coxsackieviruses are ubiquitous in the human population, we also evaluated whether the recombinant was able to induce gag p24-specific T cell responses in mice pre-immunized with the CVB4 vector. We showed that oral immunization with CVB4/p24(733) induced gag p24-specific immune responses in vector-immune mice.
Conclusions/Significance
The CVB4/p24(733) recombinant retained the physical and biological characteristics of the parental CVB4 vector. Oral immunization with the CVB4 recombinant was safe and resulted in the induction of systemic HIV-specific T cell responses. Furthermore, pre-existing vector immunity did not preclude the development of gag p24-specific T cell responses. As the search continues for new vaccine strategies, the present study suggests that live CVB4/HIV recombinants are potential new vaccine candidates for HIV.
doi:10.1371/journal.pone.0012499
PMCID: PMC2932689  PMID: 20824074
17.  Murine Gamma-herpesvirus Immortalization of Fetal Liver-Derived B Cells Requires both the Viral Cyclin D Homolog and Latency-Associated Nuclear Antigen 
PLoS Pathogens  2011;7(9):e1002220.
Human gammaherpesviruses are associated with the development of lymphoproliferative diseases and B cell lymphomas, particularly in immunosuppressed hosts. Understanding the molecular mechanisms by which human gammaherpesviruses cause disease is hampered by the lack of convenient small animal models to study them. However, infection of laboratory strains of mice with the rodent virus murine gammaherpesvirus 68 (MHV68) has been useful in gaining insights into how gammaherpesviruses contribute to the genesis and progression of lymphoproliferative lesions. In this report we make the novel observation that MHV68 infection of murine day 15 fetal liver cells results in their immortalization and differentiation into B plasmablasts that can be propagated indefinitely in vitro, and can establish metastasizing lymphomas in mice lacking normal immune competence. The phenotype of the MHV68 immortalized B cell lines is similar to that observed in lymphomas caused by KSHV and resembles the favored phenotype observed during MHV68 infection in vivo. All established cell lines maintained the MHV68 genome, with limited viral gene expression and little or no detectable virus production - although virus reactivation could be induced upon crosslinking surface Ig. Notably, transcription of the genes encoding the MHV68 viral cyclin D homolog (v-cyclin) and the homolog of the KSHV latency-associated nuclear antigen (LANA), both of which are conserved among characterized γ2-herpesviruses, could consistently be detected in the established B cell lines. Furthermore, we show that the v-cyclin and LANA homologs are required for MHV68 immortalization of murine B cells. In contrast the M2 gene, which is unique to MHV68 and plays a role in latency and virus reactivation in vivo, was dispensable for B cell immortalization. This new model of gammaherpesvirus-driven B cell immortalization and differentiation in a small animal model establishes an experimental system for detailed investigation of the role of gammaherpesvirus gene products and host responses in the genesis and progression of gammaherpesvirus-associated lymphomas, and presents a convenient system to evaluate therapeutic modalities.
Author Summary
Herpesviruses are ubiquitous viruses, members of which infect all known mammalian species. A notable feature of all herpesvirus infections is that these infections cannot be cleared and persist for the lifetime of the host. In most cases these infections are benign and often without notable symptoms. However, for a subgroup of herpesviruses – the gammaherpesviruses – some infected individuals develop lymphomas, as well as several other types of cancer. There are two known gammaherpesviruses that infected humans, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), both of which have been the subject of intensive investigation. However, a major shortcoming of research on these viruses is the absence of an appropriate small animal model since these viruses only infect humans. To circumvent this limitation, infection of mice with a rodent gammaherpesvirus, murine gammaherpesvirus 68 (MHV68), is being characterized. Like EBV and KSHV, MHV68 infection of mice is also associated with the development of lymphoma under some experimental conditions. Here we show for the first time that a hallmark of EBV infection of human B lymphocytes – growth transformation of infected B cells in tissue culture – can be recapitulated by MHV68 infection of murine fetal liver-derived B cells. Furthermore, we identify two MHV68 genes that are required for B cell growth transformation. Finally, we show that MHV68 growth transformed B cell lines cause aggressive lymphomas in mice lacking an intact immune system, but not in immune competent mice. The latter result opens the door for studies on the role of viral genes in driving B cell growth, as well as host immune responses that control outgrowth of MHV68 infected B cells.
doi:10.1371/journal.ppat.1002220
PMCID: PMC3169539  PMID: 21931547
18.  Episodic Sexual Transmission of HIV Revealed by Molecular Phylodynamics 
PLoS Medicine  2008;5(3):e50.
Background
The structure of sexual contact networks plays a key role in the epidemiology of sexually transmitted infections, and their reconstruction from interview data has provided valuable insights into the spread of infection. For HIV, the long period of infectivity has made the interpretation of contact networks more difficult, and major discrepancies have been observed between the contact network and the transmission network revealed by viral phylogenetics. The high rate of HIV evolution in principle allows for detailed reconstruction of links between virus from different individuals, but often sampling has been too sparse to describe the structure of the transmission network. The aim of this study was to analyze a high-density sample of an HIV-infected population using recently developed techniques in phylogenetics to infer the short-term dynamics of the epidemic among men who have sex with men (MSM).
Methods and Findings
Sequences of the protease and reverse transcriptase coding regions from 2,126 patients, predominantly MSM, from London were compared: 402 of these showed a close match to at least one other subtype B sequence. Nine large clusters were identified on the basis of genetic distance; all were confirmed by Bayesian Monte Carlo Markov chain (MCMC) phylogenetic analysis. Overall, 25% of individuals with a close match with one sequence are linked to 10 or more others. Dated phylogenies of the clusters using a relaxed clock indicated that 65% of the transmissions within clusters took place between 1995 and 2000, and 25% occurred within 6 mo after infection. The likelihood that not all members of the clusters have been identified renders the latter observation conservative.
Conclusions
Reconstruction of the HIV transmission network using a dated phylogeny approach has revealed the HIV epidemic among MSM in London to have been episodic, with evidence of multiple clusters of transmissions dating to the late 1990s, a period when HIV prevalence is known to have doubled in this population. The quantitative description of the transmission dynamics among MSM will be important for parameterization of epidemiological models and in designing intervention strategies.
Using viral genotype data from HIV drug resistance testing at a London clinic, Andrew Leigh Brown and colleagues derive the structure of the transmission network through phylogenetic analysis.
Editors' Summary
Background.
Human immunodeficiency virus (HIV), the cause of acquired immunodeficiency syndrome (AIDS), is mainly spread through unprotected sex with an infected partner. Like other sexually transmitted diseases, HIV/AIDS spreads through networks of sexual contacts. The characteristics of these complex networks (which include people who have serial sexual relationships with single partners and people who have concurrent sexual relationships with several partners) affect how quickly diseases spread in the short term and how common the disease is in the long term. For many sexually transmitted diseases, sexual contact networks can be reconstructed from interview data. The information gained in this way can be used for partner notification so that transmitters of the disease and people who may have been unknowingly infected can be identified, treated, and advised about disease prevention. It can also be used to develop effective community-based prevention strategies.
Why Was This Study Done?
Although sexual contact networks have provided valuable information about the spread of many sexually transmitted diseases, they cannot easily be used to understand HIV transmission patterns. This is because the period of infectivity with HIV is long and the risk of infection from a single sexual contact with an infected person is low. Another way to understand the spread of HIV is through phylogenetics, which examines the genetic relatedness of viruses obtained from different individuals. Frequent small changes in the genetic blueprint of HIV allow the virus to avoid the human immune response and to become resistant to antiretroviral drugs. In this study, the researchers use recently developed analytical methods, viral sequences from a large proportion of a specific HIV-infected population, and information on when each sample was taken, to learn about transmission of HIV/AIDS in London among men who have sex with men (MSM; a term that encompasses gay, bisexual, and transgendered men and heterosexual men who sometimes have sex with men). This new approach, which combines information on viral genetic variation and viral population dynamics, is called “molecular phylodynamics.”
What Did the Researchers Do and Find?
The researchers compared the sequences of the genes encoding the HIV-1 protease and reverse transcriptase from more than 2,000 patients, mainly MSM, attending a large London HIV clinic between 1997 and 2003. 402 of these sequences closely matched at least one other subtype B sequence (the HIV/AIDS epidemic among MSM in the UK primarily involves HIV subtype B). Further analysis showed that the patients from whom this subset of sequences came formed six clusters of ten or more individuals, as well as many smaller clusters, based on the genetic relatedness of their HIV viruses. The researchers then used information on the date when each sample was collected and a “relaxed clock” approach (which accounts for the possibility that different sequences evolve at different rates) to determine dated phylogenies (patterns of genetic relatedness that indicate when gene sequences change) for the clusters. These phylogenies indicated that at least in one in four transmissions between the individuals in the large clusters occurred within 6 months of infection, and that most of the transmissions within each cluster occurred over periods of 3–4 years during the late 1990s.
What Do These Findings Mean?
This phylodynamic reconstruction of the HIV transmission network among MSM in a London clinic indicates that the HIV epidemic in this population has been episodic with multiple clusters of transmission occurring during the late 1990s, a time when the number of HIV infections in this population doubled. It also suggests that transmission of the virus during the early stages of HIV infection is likely to be an important driver of the epidemic. Whether these results apply more generally to the MSM population at risk for transmitting or acquiring HIV depends on whether the patients in this study are representative of that group. Additional studies are needed to determine this, but if the patterns revealed here are generalizable, then this quantitative description of HIV transmission dynamics should help in the design of strategies to strengthen HIV prevention among MSM.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050050.
Read a related PLoS Medicine Perspective article
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIV InSite has comprehensive information on all aspects of HIV/AIDS, including a list of organizations that provide information for gay men and MSM
The US Centers for Disease Control and Prevention provides information on HIV/AIDS and on HIV/AIDS among MSM (in English and Spanish)
Information is available from Avert, an international AIDS charity, on HIV, AIDS, and men who have sex with men
The Center for AIDS Prevention Studies (University of California, San Francisco) provides information on sexual networks and HIV prevention
The US National Center for Biotechnology Information provides a science primer on molecular phylogenetics
UK Collaborative Group on HIV Drug Resistance maintains a database of resistance tests
HIV i-Base offers HIV treatment information for health-care professionals and HIV-positive people
The NIH-funded HIV Sequence Database contains data on genetic sequences, resistance, immunology, and vaccine trials
doi:10.1371/journal.pmed.0050050
PMCID: PMC2267814  PMID: 18351795
19.  157 Pathogenesis of Epstein-Barr Virus-driven lymphomas of HIV+ patients: new insights of potential clinical relevance 
Human Immunodeficiency Virus (HIV)+ patients have an increased risk to develop lymphomas, including a significant fraction of histotypes associated with Epstein-Barr Virus (EBV) infection. Although restoration of EBV-specific T-cell function induced by HAART has led to a decreased incidence of the more immunogenic EBV-associated lymphomas, such as immunoblastic and primary central nervous system lymphomas, other EBV+ histotypes are still prevalent in the HAART era, particularly Hodgkin’s lymphoma. Therefore, factors other than HIV-induced immune suppression are probably required for the development of EBV-related lymphomas in this setting. Particular attention is being given to the identification of microenvironmental stimuli able to up-regulate critical EBV latency proteins or to induce/enhance EBV replication. In fact, recent evidence indicates that, although latency programs predominate in EBV-driven tumors, lytic EBV replication may also be of pathogenic relevance, at least in the early phases of cell transformation. This is particularly relevant for HIV-related lymphomagenesis since the underlying impairment of immune responses may favour uncontrolled activation of EBV lytic replication in latently-infected B lymphocytes. Available data indicate that local expression of distinct cytokines, including IL-4 and IL-13, may up-regulate the expression of the LMP-1 oncoprotein in B cells, thus favoring lymphomagenesis. In the search of microenvironmental factors that may promote the development of EBV-driven lymphomas in HIV+ patients, we obtained evidence supporting a pathogenic role for HIV matrix protein p17, which accumulates in lymphoid tissues of HIV+ individuals, even during HAART. Our findings support a direct contribution of HIV p17 to the development of EBV-driven lymphomagenesis and may provide the rationale for new strategies of clinical intervention in this setting.
doi:10.1097/01.qai.0000446741.08719.ff
PMCID: PMC4149620
20.  Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. Implications for lymphomagenesis 
The Journal of Experimental Medicine  1986;164(6):2049-2060.
AIDS (acquired immune deficiency syndrome) and ARC (AIDS-related complex) are associated with a spectrum of lymphoproliferative disorders ranging from lymphadenopathy syndrome (LAS), an apparently benign polyclonal lymphoid hyperplasia, to B cell non-Hodgkin's lymphoma (B-NHL), i.e., malignant, presumably monoclonal B cell proliferations. To gain insight into the process of lymphomagenesis in AIDS and to investigate a possible pathogenetic relationship between LAS and NHL, we investigated the clonality of the B or T lymphoid populations by Ig or T beta gene rearrangement analysis, the presence of rearrangements involving the c-myc oncogene locus, and the presence of human immunodeficiency virus (HIV) sequences in both LAS and B-NHL biopsies. Our data indicate that multiple clonal B cell expansions are present in a significant percentage of LAS (approximately 20%) and B- NHL (60%) biopsies. c-myc rearrangements/translocations are detectable in 9 of our 10 NHLs, but not in any of the LAS cases. However, only one of the B cell clones, identified by Ig gene rearrangements carries a c- myc gene rearrangement, suggesting that only one clone carries the genetic abnormality associated with malignant B cell lymphoma. Furthermore, the frequency of detection of c-myc rearrangements in AIDS- associated NHLs of both Burkitt and non-Burkitt type suggest that the biological alterations present in AIDS favor the development of lymphomas carrying activated c-myc oncogenes. Finally, our data show that HIV DNA sequences are not detectable in LAS nor in NHL B cell clones, suggesting that HIV does not play a direct role in NHL development. Taken together, these observations suggest a model of multistep lymphomagenesis in AIDS in which LAS would represent a predisposing condition to NHL. Immunosuppression and EBV infection present in LAS can favor the expansion of B cell clones, which in turn may increase the probability of occurrence of c-myc rearrangements leading to malignant transformation.
PMCID: PMC2188476  PMID: 3491176
21.  Influence of Urban Landscapes on Population Dynamics in a Short-Distance Migrant Mosquito: Evidence for the Dengue Vector Aedes aegypti 
Background
Dengue viruses are endemic across most tropical and subtropical regions. Because no proven vaccines are available, dengue prevention is primarily accomplished through controlling the mosquito vector Aedes aegypti. While dispersal distance is generally believed to be ∼100 m, patterns of dispersion may vary in urban areas due to landscape features acting as barriers or corridors to dispersal. Anthropogenic features ultimately affect the flow of genes affecting vector competence and insecticide resistance. Therefore, a thorough understanding of what parameters impact dispersal is essential for efficient implementation of any mosquito population suppression program. Population replacement and genetic control strategies currently under consideration are also dependent upon a thorough understanding of mosquito dispersal in urban settings.
Methodology and Principal Findings
We examined the effect of a major highway on dispersal patterns over a 2 year period. A. aegypti larvae were collected on the east and west sides of Uriah Butler Highway (UBH) to examine any effect UBH may have on the observed population structure in the Charlieville neighborhood in Trinidad, West Indies. A panel of nine microsatellites, two SNPs and a 710 bp sequence of mtDNA cytochrome oxidase subunit 1 (CO1) were used for the molecular analyses of the samples. Three CO1 haplotypes were identified, one of which was only found on the east side of the road in 2006 and 2007. AMOVA using mtCO1 and nuclear markers revealed significant differentiation between the east- and west-side collections.
Conclusion and Significance
Our results indicate that anthropogenic barriers to A. aegypti dispersal exist in urban environments and should be considered when implementing control programs during dengue outbreaks and population suppression or replacement programs.
Author Summary
Worldwide, 2.5 billion people are at risk for dengue infection, with no vaccine or treatment available. Thus dengue prevention is largely focused on controlling its mosquito vector, Aedes aegypti. Traditional mosquito control approaches typically include insecticide applications and breeding site source reduction. Presently, novel dengue control measures including the sterile insect technique and population replacement with dengue-incompetent transgenic mosquitoes are also being considered. Success of all population control programs is in part dependent upon understanding mosquito population ecology, including how anthropogenic effects on the urban landscape influence dispersal and expansion. We conducted a two year population genetic study examining how a major metropolitan highway impacts mosquito dispersal in Trinidad, West Indies. As evidenced by significant differentiation using both nuclear and mitochondrial DNA sequences, the highway acted as a significant barrier to dispersal. Our results suggest that anthropogenic landscape features can be used effectively to enhance population suppression/replacement measures by defining mosquito control zones along recognized landscape barriers that limit population dispersal.
doi:10.1371/journal.pntd.0000634
PMCID: PMC2838782  PMID: 20300516
22.  Patients with Epstein Barr virus positive lymphomas have decreased CD4+ T cell responses to the viral nuclear antigen 1 
Epstein Barr virus (EBV) causes lymphomas in immune competent and, at increased frequencies, in immune compromised patients. In the presence of an intact immune system, EBV associated lymphomas express in most cases only three or fewer EBV antigens at the protein level, always including the nuclear antigen 1 of EBV (EBNA1). EBNA1 is a prominent target for EBV specific CD4+ T cell and humoral immune responses in healthy EBV carriers. Here we demonstrate that patients with EBV associated lymphomas, primarily Hodgkin's lymphoma, lack detectable EBNA1 specific CD4+ T cell responses and have slightly altered EBNA1 specific antibody titers at diagnosis. In contrast, the majority of EBV negative lymphoma patients had detectable IFNγ expression and proliferation by CD4+ T cells in response to EBNA1, and carry EBNA1 specific immunoglobulins at levels similar to healthy virus carriers. Other EBV antigens, which were not present in the tumors, were recognized in less EBV positive, than negative lymphoma patients, but detectable responses reached similar CD8+ T cell frequencies in both cohorts. Patients with EBV positive and negative lymphomas did not differ in T cell responses in influenza specific CD4+ T cell proliferation and in antibody titers against tetanus toxoid. These data suggest a selective loss of EBNA1 specific immune control in EBV associated lymphoma patients, which should be targeted for immunotherapy of these malignancies.
doi:10.1002/ijc.23845
PMCID: PMC2605183  PMID: 18781564
EBNA1; CD4+ T cells; Hodgkin's lymphoma
23.  Transcriptome Analysis Reveals Signature of Adaptation to Landscape Fragmentation 
PLoS ONE  2014;9(7):e101467.
We characterize allelic and gene expression variation between populations of the Glanville fritillary butterfly (Melitaea cinxia) from two fragmented and two continuous landscapes in northern Europe. The populations exhibit significant differences in their life history traits, e.g. butterflies from fragmented landscapes have higher flight metabolic rate and dispersal rate in the field, and higher larval growth rate, than butterflies from continuous landscapes. In fragmented landscapes, local populations are small and have a high risk of local extinction, and hence the long-term persistence at the landscape level is based on frequent re-colonization of vacant habitat patches, which is predicted to select for increased dispersal rate. Using RNA-seq data and a common garden experiment, we found that a large number of genes (1,841) were differentially expressed between the landscape types. Hexamerin genes, the expression of which has previously been shown to have high heritability and which correlate strongly with larval development time in the Glanville fritillary, had higher expression in fragmented than continuous landscapes. Genes that were more highly expressed in butterflies from newly-established than old local populations within a fragmented landscape were also more highly expressed, at the landscape level, in fragmented than continuous landscapes. This result suggests that recurrent extinctions and re-colonizations in fragmented landscapes select a for specific expression profile. Genes that were significantly up-regulated following an experimental flight treatment had higher basal expression in fragmented landscapes, indicating that these butterflies are genetically primed for frequent flight. Active flight causes oxidative stress, but butterflies from fragmented landscapes were more tolerant of hypoxia. We conclude that differences in gene expression between the landscape types reflect genomic adaptations to landscape fragmentation.
doi:10.1371/journal.pone.0101467
PMCID: PMC4079591  PMID: 24988207
24.  Immune surveillance and lymphoid malignancy in immunocompromised host 
Immune surveillance is a dynamic process that involves an intact immune system to identify and protect the host against tumor development. The increased understanding of the genetics, infections and hematological malignancies in congenital immune deficiency states supports the concept that impaired T cells and Natural-killer/T cells leads to B-cell lymphoma. Furthermore, severe combined immunodeficient mice are prone to spontaneous tumor development and therefore serve as experimental models. Here we discuss the acquired conditions and mechanisms involved in dysregulation of the immune system that lead to lymphoma. Preemptive strategies to improve immune regulation and response and restore a competent immune system may lead to a decrease in lymphoid malignancies.
PMCID: PMC3649811  PMID: 23675561
Lymphoma; immune surveillance; immune deficiency
25.  The Role of Viral Introductions in Sustaining Community-Based HIV Epidemics in Rural Uganda: Evidence from Spatial Clustering, Phylogenetics, and Egocentric Transmission Models 
PLoS Medicine  2014;11(3):e1001610.
Using different approaches to investigate HIV transmission patterns, Justin Lessler and colleagues find that extra-community HIV introductions are frequent and likely play a role in sustaining the epidemic in the Rakai community.
Please see later in the article for the Editors' Summary
Background
It is often assumed that local sexual networks play a dominant role in HIV spread in sub-Saharan Africa. The aim of this study was to determine the extent to which continued HIV transmission in rural communities—home to two-thirds of the African population—is driven by intra-community sexual networks versus viral introductions from outside of communities.
Methods and Findings
We analyzed the spatial dynamics of HIV transmission in rural Rakai District, Uganda, using data from a cohort of 14,594 individuals within 46 communities. We applied spatial clustering statistics, viral phylogenetics, and probabilistic transmission models to quantify the relative contribution of viral introductions into communities versus community- and household-based transmission to HIV incidence. Individuals living in households with HIV-incident (n = 189) or HIV-prevalent (n = 1,597) persons were 3.2 (95% CI: 2.7–3.7) times more likely to be HIV infected themselves compared to the population in general, but spatial clustering outside of households was relatively weak and was confined to distances <500 m. Phylogenetic analyses of gag and env genes suggest that chains of transmission frequently cross community boundaries. A total of 95 phylogenetic clusters were identified, of which 44% (42/95) were two individuals sharing a household. Among the remaining clusters, 72% (38/53) crossed community boundaries. Using the locations of self-reported sexual partners, we estimate that 39% (95% CI: 34%–42%) of new viral transmissions occur within stable household partnerships, and that among those infected by extra-household sexual partners, 62% (95% CI: 55%–70%) are infected by sexual partners from outside their community. These results rely on the representativeness of the sample and the quality of self-reported partnership data and may not reflect HIV transmission patterns outside of Rakai.
Conclusions
Our findings suggest that HIV introductions into communities are common and account for a significant proportion of new HIV infections acquired outside of households in rural Uganda, though the extent to which this is true elsewhere in Africa remains unknown. Our results also suggest that HIV prevention efforts should be implemented at spatial scales broader than the community and should target key populations likely responsible for introductions into communities.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
About 35 million people (25 million of whom live in sub-Saharan Africa) are currently infected with HIV, the virus that causes AIDS, and about 2.3 million people become newly infected every year. HIV destroys immune system cells, leaving infected individuals susceptible to other infections. HIV infection can be controlled by taking antiretroviral drugs (antiretroviral therapy, or ART) daily throughout life. Although originally available only to people living in wealthy countries, recent political efforts mean that 9.7 million people in low- and middle-income countries now have access to ART. However, ART does not cure HIV infection, so prevention of viral transmission remains extremely important. Because HIV is usually transmitted through unprotected sex with an infected partner, individuals can reduce their risk of infection by abstaining from sex, by having one or a few partners, and by using condoms. Male circumcision also reduces HIV transmission. In addition to reducing illness and death among HIV-positive people, ART also reduces HIV transmission.
Why Was This Study Done?
Effective HIV control requires an understanding of how HIV spreads through sexual networks. These networks include sexual partnerships between individuals in households, between community members in different households, and between individuals from different communities. Local sexual networks (household and intra-community sexual partnerships) are sometimes assumed to be the dominant driving force in HIV spread in sub-Saharan Africa, but are viral introductions from sexual partnerships with individuals outside the community also important? This question needs answering because the effectiveness of interventions such as ART as prevention partly depends on how many new infections in an intervention area are attributable to infection from partners residing in that area and how many are attributable to infection from partners living elsewhere. Here, the researchers use three analytical methods—spatial clustering statistics, viral phylogenetics, and egocentric transmission modeling—to ask whether HIV transmission in rural Uganda is driven predominantly by intra-community sexual networks. Spatial clustering analysis uses the geographical coordinates of households to measure the tendency of HIV-infected people to cluster spatially at scales consistent with community transmission. Viral phylogenetic analysis examines the genetic relatedness of viruses; if transmission is through local networks, viruses in newly infected individuals should more closely resemble viruses in other community members than those in people outside the community. Egocentric transmission modelling uses information on the locations of recent sexual partners to estimate the proportions of new transmissions from household, intra-community, and extra-community partners.
What Did the Researchers Do and Find?
The researchers applied their three analytical methods to data collected from 14,594 individuals living in 46 communities (governmental administrative units) in Rakai District, Uganda. Spatial clustering analysis indicated that individuals who lived in households with individuals with incident HIV (newly diagnosed) or prevalent HIV (previously diagnosed) were 3.2 times more likely than the general population to be HIV-positive themselves. Spatial clustering outside households was relatively weak, however, and was confined to distances of less than half a kilometer. Viral phylogenetic analysis indicated that 44% of phylogenetic clusters (viruses with related genetic sequences found in more than one individual) were within households, but that 40% of clusters crossed community borders. Finally, analysis of the locations of self-reported sexual partners indicated that 39% of new viral transmissions occurred within stable household partnerships, but that among people newly infected by extra-household partners, nearly two-thirds were infected by partners from outside their community.
What Do These Findings Mean?
The results of all three analyses suggest that HIV introductions into communities are frequent and are likely to play an important role in sustaining HIV transmission in the Rakai District. Specifically, within this rural HIV-endemic region (a region where HIV infection is always present), viral introductions combined with intra-household transmission account for the majority of new infections, although community-based sexual networks also play a critical role in HIV transmission. These findings may not be generalizable to the broader Ugandan population or to other regions of Africa, and their accuracy is likely to be limited by the use of self-reported sexual partner data. Nevertheless, these findings indicate that the dynamics of HIV transmission in rural Uganda (and probably elsewhere) are complex. Consequently, to halt the spread of HIV, prevention efforts will need to be implemented at spatial scales broader than individual communities, and key populations that are likely to introduce HIV into communities will need to be targeted.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001610.
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
NAM/aidsmap provides basic information about HIV/AIDS, and summaries of recent research findings on HIV care and treatment
Information is available from Avert, an international AIDS charity, on many aspects of HIV/AIDS, including information on HIV and AIDS in Uganda and on HIV prevention strategies (in English and Spanish)
The UNAIDS Report on the Global AIDS Epidemic 2013 provides up-to-date information about the AIDS epidemic and efforts to halt it
The Center for AIDS Prevention Studies (University of California, San Francisco) has a fact sheet about sexual networks and HIV prevention
Wikipedia provides information on spatial clustering analysis (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
A PLOS Computational Biology Topic Page (a review article that is a published copy of record of a dynamic version of the article as found in Wikipedia) about viral phylodynamics is available
Personal stories about living with HIV/AIDS are available through Avert, NAM/aidsmap, and Healthtalkonline
doi:10.1371/journal.pmed.1001610
PMCID: PMC3942316  PMID: 24595023

Results 1-25 (285274)