PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (994960)

Clipboard (0)
None

Related Articles

1.  HIV-1 Nef Selectively Activates Src Family Kinases Hck, Lyn, and c-Src through Direct SH3 Domain Interaction* 
The Journal of biological chemistry  2006;281(37):27029-27038.
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intra-molecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
doi:10.1074/jbc.M601128200
PMCID: PMC2892265  PMID: 16849330
2.  Allosteric Loss-of-function Mutations in HIV-1 Nef from a Long-Term Non-Progressor 
Journal of molecular biology  2007;374(1):121-129.
Activation of Src family kinases by HIV-1 Nef may play an important role in the pathogenesis of HIV/AIDS. Here we investigated whether diverse Nef sequences universally activate Hck, a Src family member expressed in macrophages and other HIV-1 target cells. In general, we observed that Hck activation is a highly conserved Nef function. However, we identified an unusual Nef variant from an HIV-positive individual that did not develop AIDS which failed to activate Hck despite the presence of conserved residues linked to Hck SH3 domain binding and kinase activation. Amino acid sequence alignment with active Nef proteins revealed differences in regions not previously implicated in Hck activation, including a large internal flexible loop absent from available Nef structures. Substitution of these residues in active Nef compromised Hck activation without affecting SH3 domain binding. These findings show that residues at a distance from the SH3 domain binding site allosterically influence Nef interactions with a key effector protein linked to AIDS progression.
doi:10.1016/j.jmb.2007.09.009
PMCID: PMC2117379  PMID: 17920628
3.  HIV-1 Infection of T Cells and Macrophages Are Differentially Modulated by Virion-Associated Hck: A Nef-Dependent Phenomenon 
Viruses  2013;5(9):2235-2252.
The proline repeat motif (PxxP) of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.
doi:10.3390/v5092235
PMCID: PMC3798898  PMID: 24051604
HIV-1; Nef; Hck; macrophage; T lymphocyte; virion; infectivity
4.  Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen 
Retrovirology  2013;10:135.
Background
HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex.
Results
Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades.
Conclusions
Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I.
doi:10.1186/1742-4690-10-135
PMCID: PMC3874621  PMID: 24229420
HIV-1; Nef; Src-family kinases; Hck; Zap-70; MHC-I downregulation; Small molecule Nef antagonists
5.  Anti-CD45RO Suppresses Human Immunodeficiency Virus Type 1 Replication in Microglia: Role of Hck Tyrosine Kinase and Implications for AIDS Dementia 
Journal of Virology  2006;80(1):62-72.
Macrophages and microglia are productively infected by HIV-1 and play a pivotal role in the pathogenesis of AIDS dementia. Although macrophages and microglia express CD45, a transmembrane protein tyrosine phosphatase, whether modulation of its activity affects human immunodeficiency virus type 1 (HIV-1) replication is unknown. Here, we report that of the five human CD45 isoforms, microglia express CD45RB and CD45RO (RB > RO) and treatment of microglia with a CD45 agonist antibody αCD45RO (UCHL-1) inhibits HIV-1 replication. αCD45RO prevented HIV-1 negative factor (Nef)-induced autophosphorylation of hematopoietic cell kinase (Hck), a myeloid lineage-specific Src kinase. Recombinant CD45 protein also inhibited HIV-1-induced Hck phosphorylation in microglia. Antennapedia-mediated delivery of Hck Src homology domain 3 (SH3), a domain that binds to the Nef PxxP motif with high affinity, reduced HIV-1-induced Hck phosphorylation and HIV-1 production in microglia. HIV-1-induced LTR transactivation was observed in U38 cells stably overexpressing wild-type Hck but not kinase-inactive Hck. In microglia, αCD45RO reduced activation of transcription factors (NF-κB and CCAAT enhancer binding protein) necessary for LTR transactivation in macrophages. These results establish that in myeloid lineage cells, Nef interacts with the Hck SH3 domain, resulting in autophosphorylation of Hck and an increase in HIV-1 transcription. αCD45RO-mediated inhibition of HIV-1 replication in microglia identifies the CD45 protein tyrosine phosphatase as a potential therapeutic target for HIV-1 infection/AIDS dementia.
doi:10.1128/JVI.80.1.62-72.2006
PMCID: PMC1317521  PMID: 16352531
6.  Nef Alleles from All Major HIV-1 Clades Activate Src-Family Kinases and Enhance HIV-1 Replication in an Inhibitor-Sensitive Manner 
PLoS ONE  2012;7(2):e32561.
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.
doi:10.1371/journal.pone.0032561
PMCID: PMC3290594  PMID: 22393415
7.  Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation 
Journal of Virology  1999;73(7):6152-6158.
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases.
PMCID: PMC112684  PMID: 10364375
8.  Chemical Library Screens Targeting an HIV-1 Accessory Factor/Host Cell Kinase Complex Identify Novel Anti-retroviral Compounds 
ACS chemical biology  2009;4(11):939-947.
Nef is an HIV-1 accessory protein essential for AIDS progression and an attractive target for drug discovery. Lack of a catalytic function makes Nef difficult to assay in chemical library screens. We developed a high-throughput screening assay for inhibitors of Nef function by coupling it to one of its host cell binding partners, the Src-family kinase Hck. Hck activation is dependent upon Nef in this assay, providing a direct readout of Nef activity in vitro. Using this screen, a unique diphenylfuropyrimidine was identified as a strong inhibitor of Nef-dependent Hck activation. This compound also exhibited remarkable antiretroviral effects, blocking Nef-dependent HIV replication in cell culture. Structurally related analogs were synthesized and shown to exhibit similar Nef-dependent anti-viral activity, identifying the diphenylfuropyrimidine substructure as a new lead for antiretroviral drug development. This study demonstrates that coupling non-catalytic HIV accessory factors with host cell target proteins addressable by high-throughput assays may afford new avenues for the discovery of anti-HIV agents.
doi:10.1021/cb900195c
PMCID: PMC2861989  PMID: 19807124
9.  The Identification of a Small Molecule Compound That Reduces HIV-1 Nef-Mediated Viral Infectivity Enhancement 
PLoS ONE  2011;6(11):e27696.
Nef is a multifunctional HIV-1 protein that accelerates progression to AIDS, and enhances the infectivity of progeny viruses through a mechanism that is not yet understood. Here, we show that the small molecule compound 2c reduces Nef-mediated viral infectivity enhancement. When added to viral producer cells, 2c did not affect the efficiency of viral production itself. However, the infectivity of the viruses produced in the presence of 2c was significantly lower than that of control viruses. Importantly, an inhibitory effect was observed with Nef+ wild-type viruses, but not with viruses produced in the absence of Nef or in the presence of proline-rich PxxP motif-disrupted Nef, both of which displayed significantly reduced intrinsic infectivity. Meanwhile, the overexpression of the SH3 domain of the tyrosine kinase Hck, which binds to a PxxP motif in Nef, also reduced viral infectivity. Importantly, 2c inhibited Hck SH3-Nef binding, which was more marked when Nef was pre-incubated with 2c prior to its incubation with Hck, indicating that both Hck SH3 and 2c directly bind to Nef and that their binding sites overlap. These results imply that both 2c and the Hck SH3 domain inhibit the interaction of Nef with an unidentified host protein and thereby reduce Nef-mediated infectivity enhancement. The first inhibitory compound 2c is therefore a valuable chemical probe for revealing the underlying molecular mechanism by which Nef enhances the infectivity of HIV-1.
doi:10.1371/journal.pone.0027696
PMCID: PMC3217016  PMID: 22110726
10.  Structure, dynamics and Hck interaction of full-length HIV-1 Nef 
Proteins  2011;79(5):1609-1622.
Nef is an HIV accessory protein that plays an important role in the progression of disease after viral infection. It interferes with numerous signaling pathways, one of which involves serine/threonine kinases. Here, we report the results of an NMR structural investigation on full-length Nef and its interaction with the entire regulatory domain of Hck (residues 72–256; Hck32L). A helical conformation was found at the N-terminus for residues 14–22, preceding the folded core domain. In contrast to the previously studied truncated Nef (Nef Δ1–39), the full-length Nef did not show any interactions of Trp57/Leu58 with the hydrophobic patch formed by helices α1 and α2. Upon Hck32L binding, the N-terminal anchor domain as well as the well-known SH3-binding site of Nef exhibited significant chemical shift changes. Upon Nef binding, resonance changes in the Hck spectrum were confined mostly to the SH3 domain, with additional effects seen for the connector between SH3 and SH2, the N-terminal region of SH2 and the linker region that contains the regulatory polyproline motif. The binding data suggest that in full-length Nef more than the core domain partakes in the interaction. The solution conformation of Hck32L was modeled using RDC data and compared with the crystal structure of the equivalent region in the inactivated full-length Hck, revealing a notable difference in the relative orientations of the SH3 and SH2 domains. The RDC-based model combined with 15N backbone dynamics data suggest that Hck32L adopts an open conformation without binding of the polyproline motif in the linker to the SH3 domain.
doi:10.1002/prot.22986
PMCID: PMC3076547  PMID: 21365684
NMR; HIV-1; Nef; Hck; Binding
11.  Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix 
Retrovirology  2012;9:47.
Background
HIV-1 Nef is a multifunctional protein required for full pathogenicity of the virus. As Nef has no known enzymatic activity, it necessarily functions through protein-protein interaction interfaces. A critical Nef protein interaction interface is centered on its polyproline segment (P69VRPQVPLRP78) which contains the helical SH3 domain binding protein motif, PXXPXR. We hypothesized that any Nef-SH3 domain interactions would be lost upon mutation of the prolines or arginine of PXXPXR. Further, mutation of the non-motif “X” residues, (Q73, V74, and L75) would give altered patterns of inhibition for different Nef/SH3 domain protein interactions.
Results
We found that mutations of either of the prolines or the arginine of PXXPXR are defective for Nef-Hck binding, Nef/activated PAK2 complex formation and enhancement of virion infectivity (EVI). Mutation of the non-motif “X” residues (Q, V and L) gave similar patterns of inhibition for Nef/activated PAK2 complex formation and EVI which were distinct from the pattern for Hck binding. These results implicate an SH3 domain containing protein other than Hck for Nef/activated PAK2 complex formation and EVI. We have also mutated Nef residues at the N-and C-terminal ends of the polyproline segment to explore interactions outside of PXXPXR. We discovered a new locus GFP/F (G67, F68, P69 and F90) that is required for Nef/activated PAK2 complex formation and EVI.
MHC Class I (MHCI) downregulation was only partially inhibited by mutating the PXXPXR motif residues, but was fully inhibited by mutating the C-terminal P78. Further, we observed that MHCI downregulation strictly requires G67 and F68. Our mutational analysis confirms the recently reported structure of the complex between Nef, AP-1 μ1 and the cytoplasmic tail of MHCI, but does not support involvement of an SH3 domain protein in MHCI downregulation.
Conclusion
Nef has evolved to be dependent on interactions with multiple SH3 domain proteins. To the N- and C- terminal sides of the polyproline helix are multifunctional protein interaction sites. The polyproline segment is also adapted to downregulate MHCI with a non-canonical binding surface. Our results demonstrate that Nef polyproline helix is highly adapted to directly interact with multiple host cell proteins.
doi:10.1186/1742-4690-9-47
PMCID: PMC3464899  PMID: 22651890
HIV-1; Nef; CD4; MHC class I; p21-activated protein kinase; Protein-protein interaction interface; SH3 domain
12.  An inhibitor-resistant mutant of Hck protects CML cells against the antiproliferative and apoptotic effects of the broad-spectrum Src family kinase inhibitor A-419259 
Oncogene  2008;27(56):7055-7069.
Chronic myelogenous leukemia (CML) is driven by Bcr-Abl, a constitutively active protein-tyrosine kinase that stimulates proliferation and survival of myeloid progenitors. Global inhibition of myeloid Src family kinase (SFK) activity with the broad-spectrum pyrrolo-pyrimidine inhibitor, A-419259, blocks proliferation and induces apoptosis in CML cell lines, suggesting that transformation by Bcr-Abl requires SFK activity. However, the contribution of Hck and other individual SFKs to Bcr-Abl signaling is less clear. Here, we developed an A-419259-resistant mutant of Hck by replacing the gatekeeper residue (Thr-338; c-Src numbering) in the inhibitor-binding site with a bulkier methionine residue (Hck-T338M). This substitution reduced Hck sensitivity to A-419259 by more than 30-fold without significantly affecting kinase activity in vitro. Expression of Hck-T338M protected K-562 CML cells and Bcr-Abl-transformed TF-1 myeloid cells from the apoptotic and antiproliferative effects of A-419259. These effects correlated with persistence of Hck-T338M kinase activity in the presence of the compound, and were accompanied by sustained Erk and Stat5 activation. In contrast, control cells expressing equivalent levels of wild-type Hck retained sensitivity to the inhibitor. We also show for the first time that A-419259 induces cell-cycle arrest and apoptosis in primary CD34+ CML cells with equal potency to imatinib. These data suggest that Hck has a nonredundant function as a key downstream signaling partner for Bcr-Abl and may represent a potential drug target in CML.
doi:10.1038/onc.2008.330
PMCID: PMC2738638  PMID: 18794796
Bcr-Abl; CML; Hck; Stat5; pyrrolo-pyrimidine; Src-family kinase inhibitor
13.  Single-Domain Antibody-SH3 Fusions for Efficient Neutralization of HIV-1 Nef Functions 
Journal of Virology  2012;86(9):4856-4867.
HIV-1 Nef is essential for AIDS pathogenesis, but this viral protein is not targeted by antiviral strategies. The functions of Nef are largely related to perturbations of intracellular trafficking and signaling pathways through leucine-based and polyproline motifs that are required for interactions with clathrin-associated adaptor protein complexes and SH3 domain-containing proteins, such as the phagocyte-specific kinase Hck. We previously described a single-domain antibody (sdAb) targeting Nef and inhibiting many, but not all, of its biological activities. We now report a further development of this anti-Nef strategy through the demonstration of the remarkable inhibitory activity of artificial Nef ligands, called Neffins, comprised of the anti-Nef sdAb fused to modified SH3 domains. The Neffins inhibited all key activities of Nef, including Nef-mediated CD4 and major histocompatibility complex class I (MHC-I) cell surface downregulation and enhancement of virus infectivity. When expressed in T lymphocytes, Neffins specifically inhibited the Nef-induced mislocalization of the Lck kinase, which contributes to the alteration of the formation of the immunological synapse. In macrophages, Neffins inhibited the Nef-induced formation of multinucleated giant cells and podosome rosettes, and it counteracted the inhibitory activity of Nef on phagocytosis. Since we show here that these effects of Nef on macrophage and T cell functions were both dependent on the leucine-based and polyproline motifs, we confirmed that Neffins disrupted interactions of Nef with both AP complexes and Hck. These results demonstrate that it is possible to inhibit all functions of Nef, both in T lymphocytes and macrophages, with a single ligand that represents an efficient tool to develop new antiviral strategies targeting Nef.
doi:10.1128/JVI.06329-11
PMCID: PMC3347381  PMID: 22345475
14.  Human Immunodeficiency Virus Type 1 Nef-Mediated Downregulation of CD4 Correlates with Nef Enhancement of Viral Pathogenesis 
Journal of Virology  2003;77(3):2124-2133.
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)4 within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)4-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors.
doi:10.1128/JVI.77.3.2124-2133.2003
PMCID: PMC140869  PMID: 12525647
15.  Regulation of p73 by Hck through kinase-dependent and independent mechanisms 
Background
p73, a p53 family member is a transcription factor that plays a role in cell cycle, differentiation and apoptosis. p73 is regulated through post translational modifications and protein interactions. c-Abl is the only known tyrosine kinase that phosphorylates and activates p73. Here we have analyzed the role of Src family kinases, which are involved in diverse signaling pathways, in regulating p73.
Results
Exogenously expressed as well as cellular Hck and p73 interact in vivo. In vitro binding assays show that SH3 domain of Hck interacts with p73. Co-expression of p73 with Hck or c-Src in mammalian cells resulted in tyrosine phosphorylation of p73. Using site directed mutational analysis, we determined that Tyr-28 was the major site of phosphorylation by Hck and c-Src, unlike c-Abl which phosphorylates Tyr-99. In a kinase dependent manner, Hck co-expression resulted in stabilization of p73 protein in the cytoplasm. Activation of Hck in HL-60 cells resulted in tyrosine phosphorylation of endogenous p73. Both exogenous and endogenous Hck localize to the nuclear as well as cytoplasmic compartment, just as does p73. Ectopically expressed Hck repressed the transcriptional activity of p73 as determined by promoter assays and semi-quantitative RT-PCR analysis of the p73 target, Ipaf and MDM2. SH3 domain- dependent function of Hck was required for its effect on p73 activity, which was also reflected in its ability to inhibit p73-mediated apoptosis. We also show that Hck interacts with Yes associated protein (YAP), a transcriptional co-activator of p73, and shRNA mediated knockdown of YAP protein reduces p73 induced Ipaf promoter activation.
Conclusion
We have identified p73 as a novel substrate and interacting partner of Hck and show that it regulates p73 through mechanisms that are dependent on either catalytic activity or protein interaction domains. Hck-SH3 domain-mediated interactions play an important role in the inhibition of p73-dependent transcriptional activation of a target gene, Ipaf, as well as apoptosis.
doi:10.1186/1471-2199-8-45
PMCID: PMC1899183  PMID: 17535448
16.  Activation of the PAK-Related Kinase by Human Immunodeficiency Virus Type 1 Nef in Primary Human Peripheral Blood Lymphocytes and Macrophages Leads to Phosphorylation of a PIX-p95 Complex 
Journal of Virology  1999;73(12):9899-9907.
Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication in both primary T lymphocytes and monocyte-derived macrophages. This enhancement phenotype has been linked to the ability of Nef to modulate the activity of cellular kinases. We find that despite the reported high-affinity interaction between Nef and the Src kinase Hck in vitro, a Nef-Hck interaction in the context of HIV-1-infected primary macrophages is not detectable. However, Nef binding and activation of the PAK-related kinase and phosphorylation of its substrate could be readily detected in both infected primary T lymphocytes and macrophages. Furthermore, we show that this substrate is a complex composed of the recently characterized PAK interacting partner PIX (PAK-interacting guanine nucleotide exchange factor) and its tightly associated p95 protein. PAK and PIX-p95 appear to be differentially activated and phosphorylated depending on the intracellular environment in which nef is expressed. These results identify the PIX-p95 complex as a novel effector of Nef in primary cells and suggest that the regulation of the PAK signaling pathway may differ in T cells and macrophages.
PMCID: PMC113039  PMID: 10559302
17.  Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41 
PLoS Pathogens  2011;7(12):e1002442.
Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis.
Author Summary
Nef is a pathogenic factor expressed by primate lentiviruses. HIV-1 virions produced by cells that express Nef acquire unknown modifications that allow them to infect new target cells with higher efficiency. We hypothesized that Nef might alter the structure or function of the HIV-1 Env glycoproteins. In this study we tested whether Nef alters the sensitivity of HIV-1 to several agents that inhibit HIV-1 by binding to different parts of Env. We found that Nef confers 10 to 50-fold resistance to neutralization by two antibodies (2F5 and 4E10) that belong to one of the most powerful classes of neutralizing agents, which are active against a wide range of HIV-1 isolates. We established that Nef decreases the recognition of the virus particles by these antibodies, which bind to a domain of the Env adjacent to the retroviral membrane (MPER). Env from diverse HIV-1 isolates are equally sensitive to this activity, and Nef proteins derived from both HIV-1 and SIV retain the activity. By protecting lentiviruses from one of the most broadly-acting classes of neutralizing antibodies, this new activity of Nef might make a significant contribution to AIDS pathogenesis.
doi:10.1371/journal.ppat.1002442
PMCID: PMC3240605  PMID: 22194689
18.  Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function 
Retrovirology  2012;9:34.
Background
The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region.
Results
The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck.
Conclusion
Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
doi:10.1186/1742-4690-9-34
PMCID: PMC3476393  PMID: 22537596
HIV; Nef; Sequence motifs; SH3 domain binding; Cytoskeleton; Lck; Receptor downregulation; Infectivity; Replication
19.  Effector Kinase Coupling Enables High-Throughput Screens for Direct HIV-1 Nef Antagonists with Anti-retroviral Activity 
Chemistry & biology  2013;20(1):82-91.
HIV-1 Nef, a critical AIDS progression factor, represents an important target protein for antiretroviral drug discovery. Because Nef lacks intrinsic enzymatic activity, we developed an assay that couples Nef to the activation of Hck, a Src-family member and Nef effector protein. Using this assay, we screened a large, diverse chemical library and identified small molecules that block Nef-dependent Hck activity with low micromolar potency. Of these, a diphenylpyrazolo compound demonstrated sub-micromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound binds directly to Nef via a pocket formed by the Nef dimerization interface and disrupts Nef dimerization in cells. Coupling of non-enzymatic viral accessory factors to host cell effector proteins amenable to high-throughput screening may represent a general strategy for the discovery of new antimicrobial agents.
doi:10.1016/j.chembiol.2012.11.005
PMCID: PMC3559019  PMID: 23352142
20.  HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common β-COP–Dependent Pathway in T Cells 
PLoS Pathogens  2008;4(8):e1000131.
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.
Author Summary
HIV is unique among viral pathogens in its capacity to cause chronic and progressive disease in almost all infected people. To accomplish this, HIV must evade the host immune response, especially cytotoxic T lymphocytes (CTLs), which normally function to lyse virally infected cells. HIV encodes a factor, Nef, which protects HIV infected cells from lysis by anti-HIV CTLs. To prevent CTL lysis, Nef interferes with the expression of host MHC-I, which is needed for CTL recognition of infected targets. A clear understanding of how Nef works has been hampered by its many complex functions. In addition to MHC-I, Nef protein disrupts the expression of multiple other cellular targets using different mechanisms and it is unclear how one protein can accomplish all these tasks. Here, we provide evidence that Nef acts as a highly flexible adaptor protein that is capable of utilizing different protein binding domains depending on which cellular target it is bound to. For example, we present evidence that Nef binding to MHC-I creates novel motifs that result in the recruitment of AP-1 and subsequently β-COP. This series of events results in the mis-localization of MHC-I from the cell surface to cellular degradative compartments, where MHC-I is destroyed.
doi:10.1371/journal.ppat.1000131
PMCID: PMC2515349  PMID: 18725938
21.  Active site profiling reveals coupling between domains in SRC-family kinases 
Nature chemical biology  2012;9(1):43-50.
Protein kinases, key regulators of intracellular signal transduction, have emerged as an important class of drug targets. Chemical proteomic tools that facilitate the functional interrogation of protein kinase active sites are powerful reagents for studying the regulation of this large enzyme family and for performing inhibitor selectivity screens. Here we describe a new crosslinking strategy that enables rapid and quantitative profiling of protein kinase active sites in lysates and live cells. Applying this methodology to the SRC-family kinases (SFKs) SRC and HCK led to the identification of a series of conformation-specific, ATP-competitive inhibitors that display a distinct preference for autoinhibited forms of these kinases. Furthermore, we show that ligands that demonstrate this selectivity are able to modulate the ability of the regulatory domains of SRC and HCK to engage in intermolecular binding interactions. These studies provide insight into the regulation of this important family of tyrosine kinases.
doi:10.1038/nchembio.1118
PMCID: PMC3522794  PMID: 23143416
22.  Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2 
Retrovirology  2011;8:64.
Background
The HIV-1 accessory protein Nef is an important determinant of lentiviral pathogenicity that contributes to disease progression by enhancing viral replication and other poorly understood mechanisms. Nef mediates diverse functions including downmodulation of cell surface CD4 and MHC Class I, enhancement of viral infectivity, and enhancement of T cell activation. Nef interacts with a multiprotein signaling complex that includes Src family kinases, Vav1, CDC42, and activated PAK2 (p21-activated kinase 2). Although previous studies have attempted to identify a biological role for the Nef-PAK2 signaling complex, the importance of this complex and its constituent proteins in Nef function remains unclear.
Results
Here, we show that Nef mutants defective for PAK2-association, but functional for CD4 and MHC Class I downmodulation and infectivity enhancement, are also defective for the ability to enhance viral replication in primary T cells that are infected and subsequently activated by sub-maximal stimuli (1 μg/ml PHA-P). In contrast, these Nef mutants had little or no effect on HIV-1 replication in T cells activated by stronger stimuli (2 μg/ml PHA-P or anti-CD3/CD28-coated beads). Viruses bearing wild-type Nefs, but not Nef mutants defective for PAK2 association, enhanced NFAT and IL2 receptor promoter activity in Jurkat cells. Moreover, expression of wild-type Nefs, but not mutant Nefs defective for PAK2 association, was sufficient to enhance responsiveness of primary CD4 and CD8 T cells to activating stimuli in Nef-expressing and bystander cells. siRNA knockdown of PAK2 in Jurkat cells reduced NFAT activation induced by anti-CD3/CD28 stimulation both in the presence and absence of Nef, and expression of a PAK2 dominant mutant inhibited Nef-mediated enhancement of CD25 expression.
Conclusion
Nef-mediated enhancement of cellular activation and viral replication in primary T cells is dependent on PAK2 and on the strength of the activating stimuli, and correlates with the ability of Nef to associate with PAK2. PAK2 is likely to play a role in Nef-mediated enhancement of viral replication and immune activation in vivo.
doi:10.1186/1742-4690-8-64
PMCID: PMC3169461  PMID: 21819585
23.  Differential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement 
PLoS ONE  2014;9(8):e105629.
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.
doi:10.1371/journal.pone.0105629
PMCID: PMC4140816  PMID: 25144189
24.  How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4 
eLife  2014;3:e01754.
The Nef protein of HIV-1 downregulates the cell surface co-receptor CD4 by hijacking the clathrin adaptor complex AP-2. The structural basis for the hijacking of AP-2 by Nef is revealed by a 2.9 Å crystal structure of Nef bound to the α and σ2 subunits of AP-2. Nef binds to AP-2 via its central loop (residues 149–179) and its core. The determinants for Nef binding include residues that directly contact AP-2 and others that stabilize the binding-competent conformation of the central loop. Residues involved in both direct and indirect interactions are required for the binding of Nef to AP-2 and for downregulation of CD4. These results lead to a model for the docking of the full AP-2 tetramer to membranes as bound to Nef, such that the cytosolic tail of CD4 is situated to interact with its binding site on Nef.
DOI: http://dx.doi.org/10.7554/eLife.01754.001
eLife digest
Infection by a pathogen, such as a bacterium or virus, activates both the innate immune response—which is immediate but not specific to the pathogen—and the adaptive immune response, which is stronger and specific to the pathogen. White blood cells called CD4+ T helper cells play an important role in the early stages of the adaptive immune response by helping to activate and regulate other white blood cells that go on to eradicate the pathogen.
HIV-1 is a retrovirus that infects immune cells that have the CD4 receptor on their surface, including CD4+ T helper cells. As the number of worker CD4+ T helper cells falls, the adaptive immune response gradually weakens, and the HIV-1 infected individual becomes increasingly susceptible to infection and disease. An individual is said to develop AIDS when either their CD4+ T helper cell count falls below 200 cells per microliter or they begin to experience specific diseases associated with the HIV-1 infection.
In an effort to prevent and treat AIDS, researchers have worked to understand the HIV-1 genome and have developed medicines that target the enzymatic activity of viral proteins involved in viral replication. When used in combination, these drugs have helped to reduce transmission of HIV-1, and also to reduce deaths from the disease. However, worries about side effects and drug resistance mean that there is a need to develop new drugs.
The HIV-1 genome codes for a number of accessory proteins, including a protein known as Nef that attacks the CD4+ T helper cells, removing the CD4 protein that gives the cells their name. This reduces the ability of the T cells to activate the immune system and allows the virus to spread. Nef acts by forming a complex with a protein called AP-2 in the T cells, and this complex then interacts with the CD4 proteins, causing them to be internalized and then destroyed inside the cells.
Ren et al. have now worked out the structure of the Nef:AP-2 complex at the molecular level and identified the amino acid residues within the Nef protein that interact with the AP-2 protein. This allowed Ren et al. to propose a detailed model of the interaction between the complex and the CD4 protein, and how this leads to the protein being destroyed. This information could be used to develop drugs that work by blocking the amino residues on AP-2 that bind to Nef. Moreover, since these sites are not susceptible to rapid mutations, such drugs are less likely to encounter the problem of drug resistance.
DOI: http://dx.doi.org/10.7554/eLife.01754.002
doi:10.7554/eLife.01754
PMCID: PMC3901399  PMID: 24473078
HIV-1; protein crystallography; membrane traffic; human
25.  p50Cdc37 Can Buffer the Temperature-Sensitive Properties of a Mutant of Hck 
Molecular and Cellular Biology  2000;20(18):6984-6995.
Genetic studies have previously revealed that Cdc37p is required for the catalytic competence of v-Src in yeast. We have reasoned that temperature-sensitive mutants of Src family kinases might be more sensitive to the cellular level of p50Cdc37, the mammalian homolog of Cdc37p, than their wild-type counterpart, thus potentially providing a unique opportunity to elucidate the involvement of p50Cdc37 in the folding and stabilization of Src family kinases. A temperature-sensitive mutant of a constitutively active form of Hck (i.e., tsHck499F) was created by mutating two amino acids within the kinase domain of Hck499F. Significantly, overexpression of p50Cdc37 rescues the catalytic activity of tsHck499F at 33°C, while partially buffering it against inactivation at higher temperatures (e.g., 37 and 39°C). Hsp90 function is required for tsHck499F activity and its stabilization by p50Cdc37, but overexpression of Hsp90 is not sufficient to stabilize tsHck499F. Overexpression of p50Cdc37 promotes the association of tsHck499F with Hsp90, suggesting that the cellular level of p50Cdc37 might be the rate-limiting step in the association of tsHck499F with Hsp90. A truncation mutant of p50Cdc37 that cannot bind Hsp90 still has a limited capacity to rescue the catalytic activity of tsHck499F and promote its association with Hsp90. This is a particularly important observation, since it argues that rather than solely acting as a passive adapter protein to tether tsHck499F to Hsp90, p50Cdc37 may also act allosterically to enhance the association of tsHck499F with Hsp90. The findings presented here might also have implications for our understanding of the evolution of protein kinases and tumor development.
PMCID: PMC88773  PMID: 10958693

Results 1-25 (994960)