PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1192117)

Clipboard (0)
None

Related Articles

1.  Phocine Distemper Virus: Current Knowledge and Future Directions 
Viruses  2014;6(12):5093-5134.
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.
doi:10.3390/v6125093
PMCID: PMC4276944  PMID: 25533658
Morbillivirus; pinnipeds; sea otter; CD150/SLAM; phylogeny; pathology; epidemiology; immunity; vaccine
2.  Phocine Distemper Virus in Seals, East Coast, United States, 2006 
Emerging Infectious Diseases  2011;17(2):215-220.
: Phocine Distemper Virus in Seals
In 2006 and 2007, elevated numbers of deaths among seals, constituting an unusual mortality event, occurred off the coasts of Maine and Massachusetts, United States. We isolated a virus from seal tissue and confirmed it as phocine distemper virus (PDV). We compared the viral hemagglutinin, phosphoprotein, and fusion (F) and matrix (M) protein gene sequences with those of viruses from the 1988 and 2002 PDV epizootics. The virus showed highest similarity with a PDV 1988 Netherlands virus, which raises the possibility that the 2006 isolate from the United States might have emerged independently from 2002 PDVs and that multiple lineages of PDV might be circulating among enzootically infected North American seals. Evidence from comparison of sequences derived from different tissues suggested that mutations in the F and M genes occur in brain tissue that are not present in lung, liver, or blood, which suggests virus persistence in the central nervous system.
doi:10.3201/eid1702.100190
PMCID: PMC3204746  PMID: 21291591
Phocine distemper virus; morbilliviruses; epizootic; genomic sequence; phylogeny; central nervous system; persistent infection; mutations; United States; research
3.  Prevalence of phocine distemper virus specific antibodies: bracing for the next seal epizootic in north-western Europe 
In 1988 and 2002, two major phocine distemper virus (PDV) outbreaks occurred in harbour seals (Phoca vitulina) in north-western European coastal waters, causing the death of tens of thousands seals. Here we investigated whether PDV is still circulating among seals of the Dutch coastal waters and whether seals have protective serum-antibodies against PDV. Therefore seal serum samples, collected from 2002 to 2012, were tested for the presence of PDV-neutralizing antibodies. Antibodies were detected in most seals in 2002 and 2003 while after 2003 antibodies were detected only in seals less than two month-old and adult seals that probably had survived the 2002 PDV-epizootic. We estimated the current proportion of seals with antibodies against PDV at 11%. These findings suggest that at present the vast majority of seals are not immune to PDV infection. PDV re-introduction in this area may cause a major epizootic with infection of >80% and mass-mortality of >50% of the population.
doi:10.1038/emi.2013.2
PMCID: PMC3630493  PMID: 26038436
phocine distemper virus; seals; serology; epizootic
4.  Age- and Sex-Specific Mortality Patterns in an Emerging Wildlife Epidemic: The Phocine Distemper in European Harbour Seals 
PLoS ONE  2007;2(9):e887.
Analyses of the dynamics of diseases in wild populations typically assume all individuals to be identical. However, profound effects on the long-term impact on the host population can be expected if the disease has age and sex dependent dynamics. The Phocine Distemper Virus (PDV) caused two mass mortalities in European harbour seals in 1988 and in 2002. We show the mortality patterns were highly age specific on both occasions, where young of the year and adult (>4 yrs) animals suffered extremely high mortality, and sub-adult seals (1–3 yrs) of both sexes experienced low mortality. Consequently, genetic differences cannot have played a main role explaining why some seals survived and some did not in the study region, since parents had higher mortality levels than their progeny. Furthermore, there was a conspicuous absence of animals older than 14 years among the victims in 2002, which strongly indicates that the survivors from the previous disease outbreak in 1988 had acquired and maintained immunity to PDV. These specific mortality patterns imply that contact rates and susceptibility to the disease are strongly age and sex dependent variables, underlining the need for structured epidemic models for wildlife diseases. Detailed data can thus provide crucial information about a number of vital parameters such as functional herd immunity. One of many future challenges in understanding the epidemiology of the PDV and other wildlife diseases is to reveal how immune system responses differ among animals in different stages during their life cycle. The influence of such underlying mechanisms may also explain the limited evidence for abrupt disease thresholds in wild populations.
doi:10.1371/journal.pone.0000887
PMCID: PMC1964516  PMID: 17849016
5.  Molecular Epidemiology of Seal Parvovirus, 1988–2014 
PLoS ONE  2014;9(11):e112129.
A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00×10−4 for the partial NS gene and 1.15×10−4 for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.
doi:10.1371/journal.pone.0112129
PMCID: PMC4229121  PMID: 25390639
6.  Evaluating the Influence of Epidemiological Parameters and Host Ecology on the Spread of Phocine Distemper Virus through Populations of Harbour Seals 
PLoS ONE  2008;3(7):e2710.
Background
Outbreaks of phocine distemper virus (PDV) in Europe during 1988 and 2002 were responsible for the death of around 23,000 and 30,000 harbour seals, respectively. These epidemics, particularly the one in 2002, provided an unusual opportunity to estimate epidemic parameters for a wildlife disease. There were marked regional differences in the values of some parameters both within and between epidemics.
Methodology and Principal Findings
We used an individual-based model of seal movement that allowed us to incorporate realistic representations of space, time and animal behaviour into a traditional epidemiological modelling framework. We explored the potential influence of a range of ecological (foraging trip duration, time of epidemic onset, population size) and epidemiological (length of infectious period, contact rate between infectious and susceptible individuals, case mortality) parameters on four readily-measurable epidemic characteristics (number of dead individuals, duration of epidemic, peak mortality date and prevalence) and on the probability that an epidemic would occur in a particular region. We analysed the outputs as if they were the results of a series of virtual experiments, using Generalised Linear Modelling. All six variables had a significant effect on the probability that an epidemic would be recognised as an unusual mortality event by human observers.
Conclusions
Regional and temporal variation in contact rate was the most likely cause of the observed differences between the two epidemics. This variation could be a consequence of differences in the way individuals divide their time between land and sea at different times of the year.
doi:10.1371/journal.pone.0002710
PMCID: PMC2442657  PMID: 18628992
7.  Stage-structured transmission of phocine distemper virus in the Dutch 2002 outbreak 
Heterogeneities in transmission among hosts can be very important in shaping infectious disease dynamics. In mammals with strong social organization, such heterogeneities are often structured by functional stage: juveniles, subadults and adults. We investigate the importance of such stage-related heterogeneities in shaping the 2002 phocine distemper virus (PDV) outbreak in the Dutch Wadden Sea, when more than 40 per cent of the harbour seals were killed. We do this by comparing the statistical fit of a hierarchy of models with varying transmission complexity: homogeneous versus heterogeneous mixing and density- versus frequency-dependent transmission. We use the stranding data as a proxy for incidence and use Poisson likelihoods to estimate the ‘who acquires infection from whom’ (WAIFW) matrix. Statistically, the model with strong heterogeneous mixing and density-dependent transmission was found to best describe the transmission dynamics. However, patterns of incidence support a model of frequency-dependent transmission among adults and juveniles. Based on the maximum-likelihood WAIFW matrix estimates, we use the next-generation formalism to calculate an R0 between 2 and 2.5 for the Dutch 2002 PDV epidemic.
doi:10.1098/rspb.2009.0175
PMCID: PMC2690464  PMID: 19364743
phocine distemper virus; harbour seals; Phoca vitulina; stage-structured transmission; who acquires infection from whom matrix; next-generation matrix
8.  Phocine Distemper Outbreak, the Netherlands, 2002 
Emerging Infectious Diseases  2005;11(12):1945-1948.
During the 2002 phocine distemper epidemic, 2,284 seals, primarily harbor seals (Phoca vitulina), were found stranded along the Dutch coast. Stranding pattern varied with age, sex, state of decomposition, wind, and location. Cumulative proportion of deaths (54%) was comparable to that in the first reported epidemic in 1988.
doi:10.3201/eid1112.050596
PMCID: PMC3367637  PMID: 16485486
Epidemiology; Phocine distemper virus; Phoca vitulina; the Netherlands; dispatch
9.  Complete Genome Sequence of Phocine Distemper Virus Isolated from a Harbor Seal (Phoca vitulina) during the 1988 North Sea Epidemic 
Genome Announcements  2013;1(3):e00291-13.
Phocine distemper virus (PDV) was identified as the cause of a large morbillivirus outbreak among harbor seals in the North Sea in 1988. PDV is a member of the family Paramyxoviridae, genus Morbillivirus. Until now, no full-genome sequence of PDV has been available.
doi:10.1128/genomeA.00291-13
PMCID: PMC3695424  PMID: 23814028
10.  Pathology of morbillivirus infection in striped dolphins (Stenella coeruleoalba) from Valencia and Murcia, Spain. 
During the summer and fall of 1990 hundreds of striped dolphins (Stenella coeruleoalba) died in the Spanish Mediterranean as a result of morbillivirus infection. A pathological investigation was carried out on dolphins from Valencia and Murcia which were among the first to die in the epizootic. The dolphins were in poor body condition and pneumonia was the main necropsy finding. Microscopic lung lesions characterized by necrosis of bronchial and bronchiolar epithelium and infiltration of alveoli with macrophages, lymphocytes, neutrophils and multinucleated syncytia were seen in most dolphins. Cytoplasmic and nuclear eosinophilic viral inclusions were present in bronchial and bronchiolar epithelium and in syncytia. Focal granulomatous inflammation associated with nematodes was also present. Brain lesions included diffuse degeneration and necrosis of neurons, microgliosis, perivascular cuffing, formation of syncytia and focal demyelination. Cytoplasmic and nuclear eosinophilic inclusions were present in neurons and glial cells. There was severe lymphoid necrosis and depletion of spleen and lymph nodes and syncytia also occurred in lymph nodes. Biliary and transitional epithelium contained nuclear and cytoplasmic eosinophilic inclusions. Immunoperoxidase staining using monoclonal antibodies to phocine distemper virus confirmed the presence of morbillivirus antigens in lung and brain. The distribution and severity of lesions in striped dolphins are similar to those of distemper in seals, harbor porpoises and terrestrial mammals. The formation of syncytia in the lung and brain may be a useful pathological indicator of morbillivirus infection and may be used in the investigation of pinniped and cetacean strandings in North America.
Images
PMCID: PMC1263546  PMID: 1423061
11.  Monoclonal Antibody-Based Competitive Enzyme-Linked Immunosorbent Assay for Detection of Morbillivirus Antibody in Marine Mammal Sera 
Journal of Clinical Microbiology  2001;39(5):1877-1881.
A competitive enzyme-linked immunosorbent assay (cELISA), using two monoclonal antibodies (MAbs), was developed and compared with the standard virus neutralization test (VNT) for detecting antibodies against canine distemper virus (CDV) and phocine distemper virus (PDV) in sera from dogs and various species of marine mammals. The test depends on the blocking of MAb binding to solid-phase antigen in the presence of positive serum. Test conditions were optimized by using control VNT-negative and -positive sera specific for CDV and PDV. A positive cutoff value of 30% inhibition, which represents the mean cutoff of a VNT-negative population (n = 623) plus 2 standard deviations, was adopted for the test. A total of 736 serum samples were tested by the new cELISA and by the VNT as the “gold standard.” An unexpected but useful finding was the ability of this CDV- and PDV-specific cELISA to also detect antibodies against the related pair dolphin morbillivirus and porpoise morbillivirus. Based on a subpopulation of 625 sera used in statistical analyses, the overall sensitivity and specificity of cELISA relative to those of the VNT were 94.9 and 97.7%, respectively. Because the cELISA proved to be nearly as sensitive and specific as the VNT while being simpler and more rapid, it would be an adequate screening test for suspect CDV or PDV cases and would also be useful for epidemiological surveillance of morbilliviral infections in marine mammal populations.
doi:10.1128/JCM.39.5.1877-1881.2001
PMCID: PMC88042  PMID: 11326007
12.  Phylogenetic Characterization of Canine Distemper Viruses Detected in Naturally Infected Dogs in North America 
Journal of Clinical Microbiology  2005;43(10):5009-5017.
In 2004, six puppies and one adult dog from a total of four premises were subjected to necropsy evaluation. For five of the seven dogs, disease caused by canine distemper virus (CDV) infection was suspected based on clinical signs. In all of the dogs, a diagnosis of CDV infection was established by the presence of compatible gross and histologic lesions, immunohistochemical labeling for CDV antigen, and detection of CDV RNA by reverse transcription-PCR. To further characterize the CDV strains detected in the four cases, complete gene sequences were determined for the hemagglutinin (H) and fusion (F) protein genes, while partial gene sequencing was performed for the phosphoprotein gene. A total of 4,508 bases were sequenced for the CDV strains detected from each of the four cases. Two cases were found to have identical sequences except for 2 bases in the intergenic region of the F and H genes. Phylogenetic analysis strongly suggested an evolutionary relationship between sequences detected in these two cases and those of phocine distemper virus 2 and two other strains of CDV not previously detected in the continental United States. Clear phylogenetic relationships were not established for viruses detected in the two additional cases; however, one strain showed similarity to CDV strains detected in a panda from China. Importantly, the three CDV strains detected were demonstrated to be genetically distinct from known vaccine strains and strains previously reported in the continental United States.
doi:10.1128/JCM.43.10.5009-5017.2005
PMCID: PMC1248462  PMID: 16207955
13.  Mass die-Off of Caspian seals caused by canine distemper virus. 
Emerging Infectious Diseases  2000;6(6):637-639.
Thousands of Caspian seals (Phoca caspica) died in the Caspian Sea from April to August 2000. Lesions characteristic of morbillivirus infection were found in tissue specimens from dead seals. Canine distemper virus infection was identified by serologic examination, reverse transcriptase- polymerase chain reaction, and sequencing of selected P gene fragments. These results implicate canine distemper virus infection as the primary cause of death.
PMCID: PMC2640919  PMID: 11076723
14.  Phocine Distemper Virus in Northern Sea Otters in the Pacific Ocean, Alaska, USA 
Emerging Infectious Diseases  2009;15(6):925-927.
Phocine distemper virus (PDV) has caused 2 epidemics in harbor seals in the Atlantic Ocean but had never been identified in any Pacific Ocean species. We found that northern sea otters in Alaska are infected with PDV, which has created a disease threat to several sympatric and decreasing Pacific marine mammals.
doi:10.3201/eid1506.090056
PMCID: PMC2727316  PMID: 19523293
Viruses; phocine distemper virus; northern sea otters; Alaska; Pacific Ocean; dispatch
15.  Detection of Canine Distemper Virus Nucleoprotein RNA by Reverse Transcription-PCR Using Serum, Whole Blood, and Cerebrospinal Fluid from Dogs with Distemper 
Journal of Clinical Microbiology  1999;37(11):3634-3643.
Reverse transcription-PCR (RT-PCR) was used to detect canine distemper virus (CDV) nucleoprotein (NP) RNA in serum, whole blood, and cerebrospinal fluid (CSF) samples from 38 dogs with clinically suspected distemper. Results were correlated to clinical findings, anti-CDV neutralizing antibody titers, postmortem findings, and demonstration of CDV NP antigen by immunohistochemistry. The specificity of the RT-PCR was ensured by amplification of RNA from various laboratory CDV strains, restriction enzyme digestion, and Southern blot hybridization. In 29 of 38 dogs, CDV infection was confirmed by postmortem examination and immunohistochemistry. The animals displayed the catarrhal, systemic, and nervous forms of distemper. Seventeen samples (serum, whole blood, or CSF) from dogs with distemper were tested with three sets of primers targeted to different regions of the NP gene of the CDV Onderstepoort strain. Expected amplicons were observed in 82, 53, and 41% of the 17 samples, depending upon the primer pair used. With the most sensitive primer pair (primer pair I), CDV NP RNA was detected in 25 of 29 (86%) serum samples and 14 of 16 (88%) whole blood and CSF samples from dogs with distemper but not in body fluids from immunohistochemically negative dogs. Nucleotide sequence analysis of five RT-PCR amplicons from isolates from the field revealed few silent point mutations. These isolates exhibited greater homology to the Rockborn (97 to 99%) than to the Onderstepoort (95 to 96%) CDV strain. In summary, although the sensitivity of the RT-PCR for detection of CDV is strongly influenced by the location of the selected primers, this nucleic acid detection system represents a highly specific and sensitive method for the antemortem diagnosis of distemper in dogs, regardless of the form of distemper, humoral immune response, and viral antigen distribution.
PMCID: PMC85712  PMID: 10523566
16.  Rapid and Sensitive Detection of Immunoglobulin M (IgM) and IgG Antibodies against Canine Distemper Virus by a New Recombinant Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay 
Journal of Clinical Microbiology  1999;37(4):1049-1056.
Canine distemper morbillivirus (CDV) infection causes a frequently fatal systemic disease in a broad range of carnivore species, including domestic dogs. In CDV infection, classical serology provides data of diagnostic and prognostic values (kinetics of seroconversion) and is also used to predict the optimal vaccination age of pups. Routine CDV serology is still based on time- and cost-intensive virus neutralization assays (V-NA). Here, we describe a new capture-sandwich enzyme-linked immunosorbent assay (ELISA) that uses recombinant baculovirus-expressed nucleocapsid (N) protein of a recent CDV wild-type isolate (2544/Han95) for the detection of CDV-specific antibodies in canine sera. Recombinant antigen was produced with high efficacy in Heliothis virescens larvae. The capture-sandwich ELISA enabled a clear-cut qualitative evaluation of the CDV-specific immunoglobulin G (IgG) and IgM serostatuses of 196 and 35 dog sera, respectively. Inter-rater agreement analysis (κ = 0.988) indicated that the ELISA can be used unrestrictedly as a substitute for the V-NA for the qualitative determination of CDV-specific IgG serostatus. In an attempt to semiquantify N-specific antibodies, a one-step-dilution (alpha method) IgG-specific ELISA was implemented. Alpha values of ≥50% showed very good inter-rater agreement (κ = 0.968) with V-NA titers of ≥1/100 50% neutralizing dose (ND50) as measured against the central European CDV wild-type isolate 2544/Han95 in canine sera originating from northern Germany. An ND50 titer of 1/100 is considered a threshold, and titers of ≥1/100 indicate a resilient, protective immunity. CDV N-specific antibodies of the IgM class were detected by the newly developed ELISA in 9 of 15 sera obtained from dogs with symptoms of acute distemper. In leucocytes of 5 of the 15 dogs (all of which were also IgM positive) CDV RNA was detected by reverse transcription (RT)-PCR. The recombinant capture-sandwich ELISA detecting N-specific antibodies of the IgG class provided superior sensitivity and specificity and thus represents a rapid and cost-effective alternative to classical CDV V-NA. By detection of specific IgM antibodies, the ELISA will be complementary to RT-PCR and V-NA in the diagnosis of acute distemper infections.
PMCID: PMC88648  PMID: 10074525
17.  Wildlife Reservoirs of Canine Distemper Virus Resulted in a Major Outbreak in Danish Farmed Mink (Neovison vison) 
PLoS ONE  2014;9(1):e85598.
A major outbreak of canine distemper virus (CDV) in Danish farmed mink (Neovison vison) started in the late summer period of 2012. At the same time, a high number of diseased and dead wildlife species such as foxes, raccoon dogs, and ferrets were observed. To track the origin of the outbreak virus full-length sequencing of the receptor binding surface protein hemagglutinin (H) was performed on 26 CDV's collected from mink and 10 CDV's collected from wildlife species. Subsequent phylogenetic analyses showed that the virus circulating in the mink farms and wildlife were highly identical with an identity at the nucleotide level of 99.45% to 100%. The sequences could be grouped by single nucleotide polymorphisms according to geographical distribution of mink farms and wildlife. The signaling lymphocytic activation molecule (SLAM) receptor binding region in most viruses from both mink and wildlife contained G at position 530 and Y at position 549; however, three mink viruses had an Y549H substitution. The outbreak viruses clustered phylogenetically in the European lineage and were highly identical to wildlife viruses from Germany and Hungary (99.29% – 99.62%). The study furthermore revealed that fleas (Ceratophyllus sciurorum) contained CDV and that vertical transmission of CDV occurred in a wild ferret. The study provides evidence that wildlife species, such as foxes, play an important role in the transmission of CDV to farmed mink and that the virus may be maintained in the wild animal reservoir between outbreaks.
doi:10.1371/journal.pone.0085598
PMCID: PMC3890312  PMID: 24454897
18.  Length of intervals between epidemics: evaluating the influence of maternal transfer of immunity 
Ecology and Evolution  2014;4(5):568-575.
The length of intervals between epidemic outbreaks of infectious diseases is critical in epidemiology. In several species of marine mammals and birds, it is pivotal to also consider the life history of the species of concern, as the contact rate between individuals can have a seasonal flux, for example, due to aggregations during the breeding season. Recently, particular interest has been given to the role of the dynamics of immunity in determining the intervals between epidemics in wild animal populations. One potentially powerful, but often neglected, process in this context is the maternal transfer of immunity. Here, we explore theoretically how the transfer of maternal antibodies can delay the recurrence of epidemics using Phocine Distemper in harbor seals as an example of a system in which epidemic outbreaks are followed by pathogen extinction. We show that the presence of temporarily protected newborns can significantly increase the predicted interval between epidemics, and this effect is strongly dependent on the degree of synchrony in the breeding season. Furthermore, we found that stochasticity in the onset of epidemics in combination with maternally acquired immunity increases the predicted intervals between epidemics even more. These effects arise because newborns with maternal antibodies temporarily boost population level immunity above the threshold of herd immunity, particularly when breeding is synchronous. Overall, our results show that maternal antibodies can have a profound influence on the dynamics of wildlife epidemics, notably in gregarious species such as many marine mammals and seabirds.
doi:10.1002/ece3.955
PMCID: PMC4098137  PMID: 25035798
Epidemiology; harbor seal; host–parasite interactions; maternal antibodies; phocine distemper
19.  No Serological Evidence that Harbour Porpoises Are Additional Hosts of Influenza B Viruses 
PLoS ONE  2014;9(2):e89058.
Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena) are sympatric with seals in these waters and are also occasionally in close contact with humans after stranding and subsequent rehabilitation. In addition, virus attachment studies demonstrated that influenza B viruses can bind to cells of the respiratory tract of these animals. Therefore, we hypothesized that harbour porpoises might be a reservoir of influenza B viruses. In the present study, an unique set of serum samples from 79 harbour porpoises, stranded alive on the Dutch coast between 2003 and 2013, was tested for the presence of antibodies against influenza B viruses by use of the hemagglutination inhibition test and for antibodies against influenza A viruses by use of a competitive influenza A nucleoprotein ELISA. No antibodies were detected against either virus, suggesting that influenza A and B virus infections of harbour porpoises in Dutch coastal waters are not common, which was supported by statistical analysis of the dataset.
doi:10.1371/journal.pone.0089058
PMCID: PMC3923852  PMID: 24551217
20.  CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus. 
Journal of Virology  1997;71(1):42-49.
Canine distemper virus (CDV), a lymphotropic and neurotropic negative-stranded RNA virus of the Morbillivirus genus, causes a life-threatening disease in several carnivores, including domestic dogs. To identify the cellular receptor(s) involved in the uptake of CDV by susceptible cells, we isolated a monoclonal antibody (MAb K41) which binds to the cell surface and inhibits the CDV infection of several cell lines from various species. Pretreatment of cells with MAb K41 reduces the number of infectious centers and the size of the syncytia. Using affinity chromatography with MAb K41, we purified from HeLa and Vero cell extracts a 26-kDa protein which contained the amino acid sequence TKDEPQRETLK of human CD9, a member of the tetraspan transmembrane or transmembrane 4 superfamily of cell surface proteins. Transfection of NIH 3T3 or MDBK cells with a CD9 expression plasmid rendered these cells permissive for viral infection and raised virus production by a factor of 10 to 100. The mechanism involved is still unclear, since we were unable to detect direct binding of CDV to CD9 by using immunoprecipitation and a virus overlay protein binding assay. These findings indicate that human CD9 and its homologs in other species are necessary factors for the uptake of CDV by target cells, the formation of syncytia, and the production of progeny virus.
PMCID: PMC191022  PMID: 8985321
21.  Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein. 
Journal of Virology  1985;53(2):691-694.
Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, 32P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1,700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1,500, 1,850, 1,850 and 2,500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.
Images
PMCID: PMC254687  PMID: 3838194
22.  Pandemic H1N1 Influenza Isolated from Free-Ranging Northern Elephant Seals in 2010 off the Central California Coast 
PLoS ONE  2013;8(5):e62259.
Interspecies transmission of influenza A is an important factor in the evolution and ecology of influenza viruses. Marine mammals are in contact with a number of influenza reservoirs, including aquatic birds and humans, and this may facilitate transmission among avian and mammalian hosts. Virus isolation, whole genome sequencing, and hemagluttination inhibition assay confirmed that exposure to pandemic H1N1 influenza virus occurred among free-ranging Northern Elephant Seals (Mirounga angustirostris) in 2010. Nasal swabs were collected from 42 adult female seals in April 2010, just after the animals had returned to the central California coast from their short post-breeding migration in the northeast Pacific. Swabs from two seals tested positive by RT-PCR for the matrix gene, and virus was isolated from each by inoculation into embryonic chicken eggs. Whole genome sequencing revealed greater than 99% homology with A/California/04/2009 (H1N1) that emerged in humans from swine in 2009. Analysis of more than 300 serum samples showed that samples collected early in 2010 (n = 100) were negative and by April animals began to test positive for antibodies against the pH1N1 virus (HI titer of ≥1∶40), supporting the molecular findings. In vitro characterizations studies revealed that viral replication was indistinguishable from that of reference strains of pH1N1 in canine kidney cells, but replication was inefficient in human epithelial respiratory cells, indicating these isolates may be elephant seal adapted viruses. Thus findings confirmed that exposure to pandemic H1N1 that was circulating in people in 2009 occurred among free-ranging Northern Elephant Seals in 2010 off the central California coast. This is the first report of pH1N1 (A/Elephant seal/California/1/2010) in any marine mammal and provides evidence for cross species transmission of influenza viruses in free-ranging wildlife and movement of influenza viruses between humans and wildlife.
doi:10.1371/journal.pone.0062259
PMCID: PMC3655164  PMID: 23690933
23.  Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management 
PLoS ONE  2011;6(12):e28816.
This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses.
doi:10.1371/journal.pone.0028816
PMCID: PMC3237542  PMID: 22194920
24.  A Highly Divergent Picornavirus in a Marine Mammal▿  
Journal of Virology  2007;82(1):311-320.
Nucleic acids from an unidentified virus from ringed seals (Phoca hispida) were amplified using sequence-independent PCR, subcloned, and then sequenced. The full genome of a novel RNA virus was derived, identifying the first sequence-confirmed picornavirus in a marine mammal. The phylogenetic position of the tentatively named seal picornavirus 1 (SePV-1) as an outlier to the grouping of parechoviruses was found consistently in alignable regions of the genome. A mean protein sequence identity of only 19.3 to 30.0% was found between the 3D polymerase gene sequence of SePV-1 and those of other picornaviruses. The predicted secondary structure of the short 506-base 5′-untranslated region showed some attributes of a type IVB internal ribosome entry site, and the polyprotein lacked an apparent L peptide, both properties associated with the Parechovirus genus. The presence of two SePV-1 2A genes and of the canonical sequence required for cotranslational cleavage resembled the genetic organization of Ljungan virus. Minor genetic variants were detected in culture supernatants derived from 8 of 108 (7.4%) seals collected in 2000 to 2002, indicating a high prevalence of SePV-1 in this hunted seal population. The high level of genetic divergence of SePV-1 compared to other picornaviruses and its mix of characteristics relative to its closest relatives support the provisional classification of SePV-1 as the prototype for a new genus in the family Picornaviridae.
doi:10.1128/JVI.01240-07
PMCID: PMC2224395  PMID: 17942560
25.  Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA 
Virology Journal  2004;1:2.
Background
Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor) living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV) lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons.
Results
Phylogenetic analyses of subgenomic CDV fusion (F) -, phosphoprotein (P) -, and complete hemagglutinin (H) – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses.
Conclusions
Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages.
doi:10.1186/1743-422X-1-2
PMCID: PMC524033  PMID: 15507154

Results 1-25 (1192117)