PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1191883)

Clipboard (0)
None

Related Articles

1.  Phocine Distemper Virus: Current Knowledge and Future Directions 
Viruses  2014;6(12):5093-5134.
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.
doi:10.3390/v6125093
PMCID: PMC4276944  PMID: 25533658
Morbillivirus; pinnipeds; sea otter; CD150/SLAM; phylogeny; pathology; epidemiology; immunity; vaccine
2.  Prevalence of phocine distemper virus specific antibodies: bracing for the next seal epizootic in north-western Europe 
In 1988 and 2002, two major phocine distemper virus (PDV) outbreaks occurred in harbour seals (Phoca vitulina) in north-western European coastal waters, causing the death of tens of thousands seals. Here we investigated whether PDV is still circulating among seals of the Dutch coastal waters and whether seals have protective serum-antibodies against PDV. Therefore seal serum samples, collected from 2002 to 2012, were tested for the presence of PDV-neutralizing antibodies. Antibodies were detected in most seals in 2002 and 2003 while after 2003 antibodies were detected only in seals less than two month-old and adult seals that probably had survived the 2002 PDV-epizootic. We estimated the current proportion of seals with antibodies against PDV at 11%. These findings suggest that at present the vast majority of seals are not immune to PDV infection. PDV re-introduction in this area may cause a major epizootic with infection of >80% and mass-mortality of >50% of the population.
doi:10.1038/emi.2013.2
PMCID: PMC3630493
phocine distemper virus; seals; serology; epizootic
3.  Phocine Distemper Virus in Seals, East Coast, United States, 2006 
Emerging Infectious Diseases  2011;17(2):215-220.
: Phocine Distemper Virus in Seals
In 2006 and 2007, elevated numbers of deaths among seals, constituting an unusual mortality event, occurred off the coasts of Maine and Massachusetts, United States. We isolated a virus from seal tissue and confirmed it as phocine distemper virus (PDV). We compared the viral hemagglutinin, phosphoprotein, and fusion (F) and matrix (M) protein gene sequences with those of viruses from the 1988 and 2002 PDV epizootics. The virus showed highest similarity with a PDV 1988 Netherlands virus, which raises the possibility that the 2006 isolate from the United States might have emerged independently from 2002 PDVs and that multiple lineages of PDV might be circulating among enzootically infected North American seals. Evidence from comparison of sequences derived from different tissues suggested that mutations in the F and M genes occur in brain tissue that are not present in lung, liver, or blood, which suggests virus persistence in the central nervous system.
doi:10.3201/eid1702.100190
PMCID: PMC3204746  PMID: 21291591
Phocine distemper virus; morbilliviruses; epizootic; genomic sequence; phylogeny; central nervous system; persistent infection; mutations; United States; research
4.  Age- and Sex-Specific Mortality Patterns in an Emerging Wildlife Epidemic: The Phocine Distemper in European Harbour Seals 
PLoS ONE  2007;2(9):e887.
Analyses of the dynamics of diseases in wild populations typically assume all individuals to be identical. However, profound effects on the long-term impact on the host population can be expected if the disease has age and sex dependent dynamics. The Phocine Distemper Virus (PDV) caused two mass mortalities in European harbour seals in 1988 and in 2002. We show the mortality patterns were highly age specific on both occasions, where young of the year and adult (>4 yrs) animals suffered extremely high mortality, and sub-adult seals (1–3 yrs) of both sexes experienced low mortality. Consequently, genetic differences cannot have played a main role explaining why some seals survived and some did not in the study region, since parents had higher mortality levels than their progeny. Furthermore, there was a conspicuous absence of animals older than 14 years among the victims in 2002, which strongly indicates that the survivors from the previous disease outbreak in 1988 had acquired and maintained immunity to PDV. These specific mortality patterns imply that contact rates and susceptibility to the disease are strongly age and sex dependent variables, underlining the need for structured epidemic models for wildlife diseases. Detailed data can thus provide crucial information about a number of vital parameters such as functional herd immunity. One of many future challenges in understanding the epidemiology of the PDV and other wildlife diseases is to reveal how immune system responses differ among animals in different stages during their life cycle. The influence of such underlying mechanisms may also explain the limited evidence for abrupt disease thresholds in wild populations.
doi:10.1371/journal.pone.0000887
PMCID: PMC1964516  PMID: 17849016
5.  Evaluating the Influence of Epidemiological Parameters and Host Ecology on the Spread of Phocine Distemper Virus through Populations of Harbour Seals 
PLoS ONE  2008;3(7):e2710.
Background
Outbreaks of phocine distemper virus (PDV) in Europe during 1988 and 2002 were responsible for the death of around 23,000 and 30,000 harbour seals, respectively. These epidemics, particularly the one in 2002, provided an unusual opportunity to estimate epidemic parameters for a wildlife disease. There were marked regional differences in the values of some parameters both within and between epidemics.
Methodology and Principal Findings
We used an individual-based model of seal movement that allowed us to incorporate realistic representations of space, time and animal behaviour into a traditional epidemiological modelling framework. We explored the potential influence of a range of ecological (foraging trip duration, time of epidemic onset, population size) and epidemiological (length of infectious period, contact rate between infectious and susceptible individuals, case mortality) parameters on four readily-measurable epidemic characteristics (number of dead individuals, duration of epidemic, peak mortality date and prevalence) and on the probability that an epidemic would occur in a particular region. We analysed the outputs as if they were the results of a series of virtual experiments, using Generalised Linear Modelling. All six variables had a significant effect on the probability that an epidemic would be recognised as an unusual mortality event by human observers.
Conclusions
Regional and temporal variation in contact rate was the most likely cause of the observed differences between the two epidemics. This variation could be a consequence of differences in the way individuals divide their time between land and sea at different times of the year.
doi:10.1371/journal.pone.0002710
PMCID: PMC2442657  PMID: 18628992
6.  Stage-structured transmission of phocine distemper virus in the Dutch 2002 outbreak 
Heterogeneities in transmission among hosts can be very important in shaping infectious disease dynamics. In mammals with strong social organization, such heterogeneities are often structured by functional stage: juveniles, subadults and adults. We investigate the importance of such stage-related heterogeneities in shaping the 2002 phocine distemper virus (PDV) outbreak in the Dutch Wadden Sea, when more than 40 per cent of the harbour seals were killed. We do this by comparing the statistical fit of a hierarchy of models with varying transmission complexity: homogeneous versus heterogeneous mixing and density- versus frequency-dependent transmission. We use the stranding data as a proxy for incidence and use Poisson likelihoods to estimate the ‘who acquires infection from whom’ (WAIFW) matrix. Statistically, the model with strong heterogeneous mixing and density-dependent transmission was found to best describe the transmission dynamics. However, patterns of incidence support a model of frequency-dependent transmission among adults and juveniles. Based on the maximum-likelihood WAIFW matrix estimates, we use the next-generation formalism to calculate an R0 between 2 and 2.5 for the Dutch 2002 PDV epidemic.
doi:10.1098/rspb.2009.0175
PMCID: PMC2690464  PMID: 19364743
phocine distemper virus; harbour seals; Phoca vitulina; stage-structured transmission; who acquires infection from whom matrix; next-generation matrix
7.  Phocine Distemper Outbreak, the Netherlands, 2002 
Emerging Infectious Diseases  2005;11(12):1945-1948.
During the 2002 phocine distemper epidemic, 2,284 seals, primarily harbor seals (Phoca vitulina), were found stranded along the Dutch coast. Stranding pattern varied with age, sex, state of decomposition, wind, and location. Cumulative proportion of deaths (54%) was comparable to that in the first reported epidemic in 1988.
doi:10.3201/eid1112.050596
PMCID: PMC3367637  PMID: 16485486
Epidemiology; Phocine distemper virus; Phoca vitulina; the Netherlands; dispatch
8.  Complete Genome Sequence of Phocine Distemper Virus Isolated from a Harbor Seal (Phoca vitulina) during the 1988 North Sea Epidemic 
Genome Announcements  2013;1(3):e00291-13.
Phocine distemper virus (PDV) was identified as the cause of a large morbillivirus outbreak among harbor seals in the North Sea in 1988. PDV is a member of the family Paramyxoviridae, genus Morbillivirus. Until now, no full-genome sequence of PDV has been available.
doi:10.1128/genomeA.00291-13
PMCID: PMC3695424  PMID: 23814028
9.  Wildlife Reservoirs of Canine Distemper Virus Resulted in a Major Outbreak in Danish Farmed Mink (Neovison vison) 
PLoS ONE  2014;9(1):e85598.
A major outbreak of canine distemper virus (CDV) in Danish farmed mink (Neovison vison) started in the late summer period of 2012. At the same time, a high number of diseased and dead wildlife species such as foxes, raccoon dogs, and ferrets were observed. To track the origin of the outbreak virus full-length sequencing of the receptor binding surface protein hemagglutinin (H) was performed on 26 CDV's collected from mink and 10 CDV's collected from wildlife species. Subsequent phylogenetic analyses showed that the virus circulating in the mink farms and wildlife were highly identical with an identity at the nucleotide level of 99.45% to 100%. The sequences could be grouped by single nucleotide polymorphisms according to geographical distribution of mink farms and wildlife. The signaling lymphocytic activation molecule (SLAM) receptor binding region in most viruses from both mink and wildlife contained G at position 530 and Y at position 549; however, three mink viruses had an Y549H substitution. The outbreak viruses clustered phylogenetically in the European lineage and were highly identical to wildlife viruses from Germany and Hungary (99.29% – 99.62%). The study furthermore revealed that fleas (Ceratophyllus sciurorum) contained CDV and that vertical transmission of CDV occurred in a wild ferret. The study provides evidence that wildlife species, such as foxes, play an important role in the transmission of CDV to farmed mink and that the virus may be maintained in the wild animal reservoir between outbreaks.
doi:10.1371/journal.pone.0085598
PMCID: PMC3890312  PMID: 24454897
10.  Molecular Epidemiology of Seal Parvovirus, 1988–2014 
PLoS ONE  2014;9(11):e112129.
A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00×10−4 for the partial NS gene and 1.15×10−4 for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.
doi:10.1371/journal.pone.0112129
PMCID: PMC4229121  PMID: 25390639
11.  Phylogenetic Characterization of Canine Distemper Viruses Detected in Naturally Infected Dogs in North America 
Journal of Clinical Microbiology  2005;43(10):5009-5017.
In 2004, six puppies and one adult dog from a total of four premises were subjected to necropsy evaluation. For five of the seven dogs, disease caused by canine distemper virus (CDV) infection was suspected based on clinical signs. In all of the dogs, a diagnosis of CDV infection was established by the presence of compatible gross and histologic lesions, immunohistochemical labeling for CDV antigen, and detection of CDV RNA by reverse transcription-PCR. To further characterize the CDV strains detected in the four cases, complete gene sequences were determined for the hemagglutinin (H) and fusion (F) protein genes, while partial gene sequencing was performed for the phosphoprotein gene. A total of 4,508 bases were sequenced for the CDV strains detected from each of the four cases. Two cases were found to have identical sequences except for 2 bases in the intergenic region of the F and H genes. Phylogenetic analysis strongly suggested an evolutionary relationship between sequences detected in these two cases and those of phocine distemper virus 2 and two other strains of CDV not previously detected in the continental United States. Clear phylogenetic relationships were not established for viruses detected in the two additional cases; however, one strain showed similarity to CDV strains detected in a panda from China. Importantly, the three CDV strains detected were demonstrated to be genetically distinct from known vaccine strains and strains previously reported in the continental United States.
doi:10.1128/JCM.43.10.5009-5017.2005
PMCID: PMC1248462  PMID: 16207955
12.  Detection of Canine Distemper Virus Nucleoprotein RNA by Reverse Transcription-PCR Using Serum, Whole Blood, and Cerebrospinal Fluid from Dogs with Distemper 
Journal of Clinical Microbiology  1999;37(11):3634-3643.
Reverse transcription-PCR (RT-PCR) was used to detect canine distemper virus (CDV) nucleoprotein (NP) RNA in serum, whole blood, and cerebrospinal fluid (CSF) samples from 38 dogs with clinically suspected distemper. Results were correlated to clinical findings, anti-CDV neutralizing antibody titers, postmortem findings, and demonstration of CDV NP antigen by immunohistochemistry. The specificity of the RT-PCR was ensured by amplification of RNA from various laboratory CDV strains, restriction enzyme digestion, and Southern blot hybridization. In 29 of 38 dogs, CDV infection was confirmed by postmortem examination and immunohistochemistry. The animals displayed the catarrhal, systemic, and nervous forms of distemper. Seventeen samples (serum, whole blood, or CSF) from dogs with distemper were tested with three sets of primers targeted to different regions of the NP gene of the CDV Onderstepoort strain. Expected amplicons were observed in 82, 53, and 41% of the 17 samples, depending upon the primer pair used. With the most sensitive primer pair (primer pair I), CDV NP RNA was detected in 25 of 29 (86%) serum samples and 14 of 16 (88%) whole blood and CSF samples from dogs with distemper but not in body fluids from immunohistochemically negative dogs. Nucleotide sequence analysis of five RT-PCR amplicons from isolates from the field revealed few silent point mutations. These isolates exhibited greater homology to the Rockborn (97 to 99%) than to the Onderstepoort (95 to 96%) CDV strain. In summary, although the sensitivity of the RT-PCR for detection of CDV is strongly influenced by the location of the selected primers, this nucleic acid detection system represents a highly specific and sensitive method for the antemortem diagnosis of distemper in dogs, regardless of the form of distemper, humoral immune response, and viral antigen distribution.
PMCID: PMC85712  PMID: 10523566
13.  CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus. 
Journal of Virology  1997;71(1):42-49.
Canine distemper virus (CDV), a lymphotropic and neurotropic negative-stranded RNA virus of the Morbillivirus genus, causes a life-threatening disease in several carnivores, including domestic dogs. To identify the cellular receptor(s) involved in the uptake of CDV by susceptible cells, we isolated a monoclonal antibody (MAb K41) which binds to the cell surface and inhibits the CDV infection of several cell lines from various species. Pretreatment of cells with MAb K41 reduces the number of infectious centers and the size of the syncytia. Using affinity chromatography with MAb K41, we purified from HeLa and Vero cell extracts a 26-kDa protein which contained the amino acid sequence TKDEPQRETLK of human CD9, a member of the tetraspan transmembrane or transmembrane 4 superfamily of cell surface proteins. Transfection of NIH 3T3 or MDBK cells with a CD9 expression plasmid rendered these cells permissive for viral infection and raised virus production by a factor of 10 to 100. The mechanism involved is still unclear, since we were unable to detect direct binding of CDV to CD9 by using immunoprecipitation and a virus overlay protein binding assay. These findings indicate that human CD9 and its homologs in other species are necessary factors for the uptake of CDV by target cells, the formation of syncytia, and the production of progeny virus.
PMCID: PMC191022  PMID: 8985321
14.  Mass die-Off of Caspian seals caused by canine distemper virus. 
Emerging Infectious Diseases  2000;6(6):637-639.
Thousands of Caspian seals (Phoca caspica) died in the Caspian Sea from April to August 2000. Lesions characteristic of morbillivirus infection were found in tissue specimens from dead seals. Canine distemper virus infection was identified by serologic examination, reverse transcriptase- polymerase chain reaction, and sequencing of selected P gene fragments. These results implicate canine distemper virus infection as the primary cause of death.
PMCID: PMC2640919  PMID: 11076723
15.  Phocine Distemper Virus in Northern Sea Otters in the Pacific Ocean, Alaska, USA 
Emerging Infectious Diseases  2009;15(6):925-927.
Phocine distemper virus (PDV) has caused 2 epidemics in harbor seals in the Atlantic Ocean but had never been identified in any Pacific Ocean species. We found that northern sea otters in Alaska are infected with PDV, which has created a disease threat to several sympatric and decreasing Pacific marine mammals.
doi:10.3201/eid1506.090056
PMCID: PMC2727316  PMID: 19523293
Viruses; phocine distemper virus; northern sea otters; Alaska; Pacific Ocean; dispatch
16.  Canine Distemper Virus (CDV) in Another Big Cat: Should CDV Be Renamed Carnivore Distemper Virus? 
mBio  2013;4(5):e00702-13.
ABSTRACT
One of the greatest threats to the conservation of wild cat populations may be dogs or, at least, one of their viruses. Canine distemper virus (CDV), a single-stranded RNA virus in the Paramyxoviridae family and genus Morbillivirus, infects and causes disease in a variety of species, not just canids. An outbreak of CDV in wild lions in the Serengeti, Tanzania, in 1994 was a wake-up call for conservationists, as it demonstrated that an infectious disease could swiftly impact a previously healthy felid population. To understand how this virus causes disease in noncanid hosts, researchers have focused on specific mutations in the binding site of the CDV hemagglutinin gene. Now, Seimon et al. provide information on CDV in its latest feline victim, the endangered wild Amur tiger (Panthera tigris altaica) [T. A. Seimon et al., mBio 4(4):e00410-13, 2013, doi:10.1128/mBio.00410-13]. Their findings of CDV strains infecting tigers, in combination with recent information from other felids, paints a different picture, one in which CDV strains from a variety of geographic lineages and with a variety of amino acid residues in the hemagglutinin gene binding site can infect cats and cause disease. Although CDV has been known as a multihost disease since its discovery in domestic dogs in 1905, perhaps it is time to reconsider whether these noncanid species are not just incidental or “spillover” hosts but, rather, a normal part of the complex ecology of this infectious disease.
doi:10.1128/mBio.00702-13
PMCID: PMC3774196  PMID: 24045642
17.  Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus 
Virology Journal  2010;7:122.
Background
Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions.
Results
Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains.
Conclusions
The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.
doi:10.1186/1743-422X-7-122
PMCID: PMC2907576  PMID: 20534175
18.  Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences. 
Journal of Virology  1986;58(2):408-416.
The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer.
Images
PMCID: PMC252926  PMID: 3754588
19.  Rapid and Sensitive Detection of Immunoglobulin M (IgM) and IgG Antibodies against Canine Distemper Virus by a New Recombinant Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay 
Journal of Clinical Microbiology  1999;37(4):1049-1056.
Canine distemper morbillivirus (CDV) infection causes a frequently fatal systemic disease in a broad range of carnivore species, including domestic dogs. In CDV infection, classical serology provides data of diagnostic and prognostic values (kinetics of seroconversion) and is also used to predict the optimal vaccination age of pups. Routine CDV serology is still based on time- and cost-intensive virus neutralization assays (V-NA). Here, we describe a new capture-sandwich enzyme-linked immunosorbent assay (ELISA) that uses recombinant baculovirus-expressed nucleocapsid (N) protein of a recent CDV wild-type isolate (2544/Han95) for the detection of CDV-specific antibodies in canine sera. Recombinant antigen was produced with high efficacy in Heliothis virescens larvae. The capture-sandwich ELISA enabled a clear-cut qualitative evaluation of the CDV-specific immunoglobulin G (IgG) and IgM serostatuses of 196 and 35 dog sera, respectively. Inter-rater agreement analysis (κ = 0.988) indicated that the ELISA can be used unrestrictedly as a substitute for the V-NA for the qualitative determination of CDV-specific IgG serostatus. In an attempt to semiquantify N-specific antibodies, a one-step-dilution (alpha method) IgG-specific ELISA was implemented. Alpha values of ≥50% showed very good inter-rater agreement (κ = 0.968) with V-NA titers of ≥1/100 50% neutralizing dose (ND50) as measured against the central European CDV wild-type isolate 2544/Han95 in canine sera originating from northern Germany. An ND50 titer of 1/100 is considered a threshold, and titers of ≥1/100 indicate a resilient, protective immunity. CDV N-specific antibodies of the IgM class were detected by the newly developed ELISA in 9 of 15 sera obtained from dogs with symptoms of acute distemper. In leucocytes of 5 of the 15 dogs (all of which were also IgM positive) CDV RNA was detected by reverse transcription (RT)-PCR. The recombinant capture-sandwich ELISA detecting N-specific antibodies of the IgG class provided superior sensitivity and specificity and thus represents a rapid and cost-effective alternative to classical CDV V-NA. By detection of specific IgM antibodies, the ELISA will be complementary to RT-PCR and V-NA in the diagnosis of acute distemper infections.
PMCID: PMC88648  PMID: 10074525
20.  A Ferret Model of Canine Distemper Virus Virulence and Immunosuppression 
Journal of Virology  2003;77(23):12579-12591.
Canine distemper virus (CDV) infects many carnivores, including ferrets and dogs, and is the member of the Morbillivirus genus most easily amenable to experimentation in a homologous small-animal system. To gain insights into the determinants of CDV pathogenesis, we isolated a strain highly virulent for ferrets by repeated passaging in these animals. Sequence comparison of the genome of this strain with that of its highly attenuated precursor revealed 19 mutations distributed almost evenly in the six genes. We then recovered a virus from a cDNA copy of the virulent CDV strain's consensus sequence by using a modified reverse genetics system based on B cells. We infected ferrets with this virus and showed that it fully retained virulence as measured by the timing of rash appearance, disease onset, and death. Body temperature, leukocyte number, lymphocyte proliferation activity, and cell-associated viremia also had similar kinetics. We then addressed the question of the relative importance of the envelope and other viral constituents for virulence. Viruses in which the envelope genes (matrix, fusion, and hemagglutinin) of the virulent strain were combined with the other genes of the attenuated strain caused severe rash and fever even if the disease onset was delayed. Viruses in which the nucleocapsid, polymerase, and phosphoprotein genes (coding also for the V and C proteins) of the virulent strain were combined with the envelope genes of the attenuated strain caused milder signs of disease. Thus, virulence-inducing mutations have accumulated throughout the genome.
doi:10.1128/JVI.77.23.12579-12591.2003
PMCID: PMC262577  PMID: 14610181
21.  The Asia 2 specific signal peptide region and other domains in fusion protein genes characterized Asia 1 and Asia 2 canine distemper viruses 
Virology Journal  2009;6:157.
Background
Although the presence of Asia 2 group of canine distemper virus (CDV) was known by the sequencing and phylogenetic analysis of hemagglutinin (H) gene, the fusion (F) protein gene sequence of Asia 2 group had not been identified. So, the sequence analysis of F gene was carried out to elucidate the genotypic varaitons among Asian isolates.
Results
The phylogenetic analysis of F and H gene sequences from fourteen CDV isolates obtained from diseased dogs in Japan and Thailand indicated that the F genes had a new initiation codon and extra 27 nucleotides upstream of the usual open reading frame (ORF) and the F proteins had extra 9 amino acids at the N-terminal position only in Asia 2 isolates. On the contrary, the Asia 1 isolates had three extra putative N-glycosylation sites (two sites in the signal peptide region and one site in the F1 region) except for two strains of Th12 and Ac96I (two sites in signal peptide region) adding to four putative N-glycosylation sites that were conserved among all Asian isolates and Onderstepoort strain. In addition to this difference in N-glycosylation sites, the signal peptide region had a great diversity between Asia 1 and Asia 2 isolates. Also, characteristic amino acids were detected for some strains.
Conclusion
Asia 2 isolates were distinguished from other CDV lineages by the extra 27 nucleotide sequence. The signal peptide region of F gene gives a remarkable differentiation between Asia 1 and Asia 2 isolates. Strains Th12 and Ac96I were differentiated from other Asia 1 strains by the F protein glycosylation sites.
doi:10.1186/1743-422X-6-157
PMCID: PMC2764698  PMID: 19807927
22.  Pathogenesis and phylogenetic analyses of canine distemper virus strain ZJ7 isolate from domestic dogs in China 
Virology Journal  2011;8:520.
A new isolate of canine distemper virus (CDV), named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N), phosphoprotein (P) and receptor binding haemagglutinin (H) gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China.
doi:10.1186/1743-422X-8-520
PMCID: PMC3229531  PMID: 22087872
Canine distemper virus (CDV); MDCK; Genotype; Phylogenetic analysis; Pathogenesis; Virulence
23.  Arctic Lineage-Canine Distemper Virus as a Cause of Death in Apennine Wolves (Canis lupus) in Italy 
PLoS ONE  2014;9(1):e82356.
Canine distemper virus (CDV) infection is a primary threat affecting a wide number of carnivore species, including wild animals. In January 2013, two carcasses of Apennine wolves (Canis lupus) were collected in Ortona dei Marsi (L'Aquila province, Italy) by the local Veterinary Services. CDV was immediately identified either by RT-PCR or immunohistochemistry in lung and central nervous tissue samples. At the same time, severe clinical signs consistent with CDV infection were identified and taped (Videos S1–S3) from three wolves rescued in the areas surrounding the National Parks of the Abruzzi region by the Veterinary Services. The samples collected from these symptomatic animals also turned out CDV positive by RT-PCR. So far, 30 carcasses of wolves were screened and CDV was detected in 20 of them. The sequencing of the haemagglutinin gene and subsequent phylogenetic analysis demonstrated that the identified virus belonged to the CDV Arctic lineage. Strains belonging to this lineage are known to circulate in Italy and in Eastern Europe amongst domestic dogs. To the best of our knowledge this is the first report of CDV Arctic lineage epidemics in the wild population in Europe.
doi:10.1371/journal.pone.0082356
PMCID: PMC3896332  PMID: 24465373
24.  Efficient Isolation of Wild Strains of Canine Distemper Virus in Vero Cells Expressing Canine SLAM (CD150) and Their Adaptability to Marmoset B95a Cells 
Journal of Virology  2003;77(18):9943-9950.
We have previously shown that canine signaling lymphocyte activation molecule (SLAM; also known as CD150) acts as a cellular receptor for canine distemper virus (CDV). In this study, we established Vero cells stably expressing canine SLAM (Vero.DogSLAMtag cells). Viruses were isolated in Vero.DogSLAMtag cells one day after inoculation with spleen samples from five out of seven dogs with distemper. By contrast, virus isolation with reportedly sensitive marmoset B95a cells was only successful from three diseased animals at 7 to 10 days after inoculation, and no virus was recovered from any dogs when Vero cells were used for isolation. The CDV strain isolated in Vero.DogSLAMtag cells did not cause cytopathic effects in B95a and human SLAM-expressing Vero cells, whereas the strain isolated in B95a cells from the same dog did so in canine or human SLAM-expressing Vero cells as well as B95a cells. There were two amino acid differences in the hemagglutinin sequence between these strains. Cell fusion analysis after expression of envelope proteins and vesicular stomatitis virus pseudotype assay showed that their hemagglutinins were responsible for the difference in cell tropism between them. Site-directed mutagenesis indicated that glutamic acid to lysine substitution at position 530 of the hemagglutinin was required for the adaptation to the usage of marmoset SLAM. Our results indicate that Vero cells stably expressing canine SLAM are highly sensitive to CDV in clinical specimens and that only a single amino acid substitution in the hemagglutinin can allow the virus to adapt to marmoset SLAM.
doi:10.1128/JVI.77.18.9943-9950.2003
PMCID: PMC224612  PMID: 12941904
25.  Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein. 
Journal of Virology  1985;53(2):691-694.
Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, 32P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1,700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1,500, 1,850, 1,850 and 2,500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.
Images
PMCID: PMC254687  PMID: 3838194

Results 1-25 (1191883)