Search tips
Search criteria

Results 1-25 (1012072)

Clipboard (0)

Related Articles

1.  EBV Promotes Human CD8+ NKT Cell Development 
PLoS Pathogens  2010;6(5):e1000915.
The reports on the origin of human CD8+ Vα24+ T-cell receptor (TCR) natural killer T (NKT) cells are controversial. The underlying mechanism that controls human CD4 versus CD8 NKT cell development is not well-characterized. In the present study, we have studied total 177 eligible patients and subjects including 128 healthy latent Epstein-Barr-virus(EBV)-infected subjects, 17 newly-onset acute infectious mononucleosis patients, 16 newly-diagnosed EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. We have established human-thymus/liver-SCID chimera, reaggregated thymic organ culture, and fetal thymic organ culture. We here show that the average frequency of total and CD8+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 acute EBV infectious mononucleosis patients, 16 EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. However, the frequency of total and CD8+ NKT cells is remarkably increased in the acute EBV infectious mononucleosis patients at year 1 post-onset. EBV-challenge promotes CD8+ NKT cell development in the thymus of human-thymus/liver-SCID chimeras. The frequency of total (3% of thymic cells) and CD8+ NKT cells (∼25% of NKT cells) is significantly increased in EBV-challenged chimeras, compared to those in the unchallenged chimeras (<0.01% of thymic cells, CD8+ NKT cells undetectable, respectively). The EBV-induced increase in thymic NKT cells is also reflected in the periphery, where there is an increase in total and CD8+ NKT cells in liver and peripheral blood in EBV-challenged chimeras. EBV-induced thymic CD8+ NKT cells display an activated memory phenotype (CD69+CD45ROhiCD161+CD62Llo). After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or reaggregated thymic organ cultures. Thymic antigen-presenting EBV-infected dendritic cells are required for this process. IL-7, produced mainly by thymic dendritic cells, is a major and essential factor for CD8+ NKT cell differentiation in EBV-challenged human-thymus/liver-SCID chimeras and fetal thymic organ cultures. Additionally, these EBV-induced CD8+ NKT cells produce remarkably more perforin than that in counterpart CD4+ NKT cells, and predominately express CD8αα homodimer in their co-receptor. Thus, upon interaction with certain viruses, CD8 lineage-specific NKT cells are developed, differentiated and matured intrathymically, a finding with potential therapeutic importance against viral infections and tumors.
Author Summary
We show that the average frequency of total and CD8+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 patients with acute lytic EBV infection, 16 EBV-associated HL patients, and 16 EBV-negative normal subjects. The frequency of total and CD8+ NKT cells is remarkably increased in the lytic EBV-infected patients at year 1 post-onset. EBV-challenge promotes total and CD8+ NKT cell development in the thymus and liver of human-thymus/liver-SCID chimeras, compared to those in the unchallenged chimeras. After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or reaggregated thymic organ cultures. Thymic EBV-infected dendritic cells are required for this process. IL-7 is an essential factor for CD8+ NKT cell differentiation. EBV-induced CD8+ NKT cells produce remarkably more perforin, and predominately express CD8αα homodimer. CD8 lineage-specific NKT cells are developed and differentiated intrathymically upon EBV-exposure, a finding with potential therapeutic importance against viral infections and tumors.
PMCID: PMC2873918  PMID: 20502687
2.  The Importance Of Epigenetic Alterations In The Development Of Epstein-Barr Virus-Related Lymphomas 
Epstein-Barr virus (EBV), a human gammaherpesvirus, is associated with a series of malignant tumors. These include lymphomas (Burkitt’s lymphoma, Hodgkin’s disease, T/NK-cell lymphoma, post-transplant lymphoproliferative disease, AIDS-associated lymphoma, X-linked lymphoproliferative syndrome), carcinomas (nasopharyngeal carcinoma, gastric carcinoma, carcinomas of major salivary glands, thymic carcinoma, mammary carcinoma) and a sarcoma (leiomyosarcoma). The latent EBV genomes persist in the tumor cells as circular episomes, co-replicating with the cellular DNA once per cell cycle. The expression of latent EBV genes is cell type specific due to the strict epigenetic control of their promoters. DNA methylation, histone modifications and binding of key cellular regulatory proteins contribute to the regulation of alternative promoters for transcripts encoding the nuclear antigens EBNA1 to 6 and affect the activity of promoters for transcripts encoding transmembrane proteins (LMP1, LMP2A, LMP2B). In addition to genes transcribed by RNA polymerase II, there are also two RNA polymerase III transcribed genes in the EBV genome (EBER 1 and 2). The 5′ and internal regulatory sequences of EBER 1 and 2 transcription units are invariably unmethylated. The highly abundant EBER 1 and 2 RNAs are not translated to protein. Based on the cell type specific epigenetic marks associated with latent EBV genomes one can distinguish between viral epigenotypes that differ in transcriptional activity in spite of having an identical (or nearly identical) DNA sequence. Whereas latent EBV genomes are regularly targeted by epigenetic control mechanisms in different cell types, EBV encoded proteins may, in turn, affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. There are EBNA1 binding sites in the human genome. Because high affinity binding of EBNA1 to its recognition sites is known to specify sites of DNA demethylation, we suggest that binding of EBNA1 to its cellular target sites may elicit local demethylation and contribute thereby to the activation of silent cellular promoters. EBNA2 interacts with histone acetyltransferases, and EBNALP (EBNA5) coactivates transcription by displacing histone deacetylase 4 from EBNA2-bound promoter sites. EBNA3C (EBNA6) seems to be associated both with histone acetylases and deacetylases, although in separate complexes. LMP1, a transmembrane protein involved in malignant transformation, can affect both alternative systems of epigenetic memory, DNA methylation and the Polycomb-trithorax group of protein complexes. In epithelial cells LMP1 can up-regulate DNA methyltransferases and, in Hodgkin lymphoma cells, induce the Polycomb group protein Bmi-1. In addition, LMP1 can also modulate cellular gene expression programs by affecting, via the NF-κB pathway, levels of cellular microRNAs miR-146a and miR-155. These interactions may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms, autoimmune phenomena, immunodeficiency). Thus, Epstein-Barr virus, similarly to other viruses and certain bacteria, may induce pathological changes by epigenetic reprogramming of host cells. Elucidation of the epigenetic consequences of EBV-host interactions (within the framework of the emerging new field of patho-epigenetics) may have important implications for therapy and disease prevention, because epigenetic processes are reversible and continuous silencing of EBV genes contributing to patho-epigenetic changes may prevent disease development.
PMCID: PMC3033174  PMID: 21416002
3.  Adoptive Transfer of EBV Specific CD8+ T Cell Clones Can Transiently Control EBV Infection in Humanized Mice 
PLoS Pathogens  2014;10(8):e1004333.
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.
Author Summary
Epstein Barr virus persistently infects more than 90% of the human adult population. While fortunately carried as an asymptomatic chronic infection in most individuals, it causes B cell lymphomas and carcinomas in some patients. Symptomatic primary EBV infection, called infectious mononucleosis, predisposes for some of these malignancies and is characterized by massive expansions of cytotoxic T cells, which are mostly directed against lytic EBV antigens that are expressed during virus particle production. Therefore, we investigated the protective role of lytic EBV antigen specific T cells during EBV infection and the contribution of lytic EBV infection to virus-associated tumor formation. We found that lytic EBV antigen specific T cells kill B cells with lytic virus replication and might thereby transiently control EBV infection in mice with human immune system components. Furthermore, we observed that EBV associated B cell tumors outside secondary lymphoid organs may require lytic replication for efficient formation. Thus, we suggest that lytic EBV antigens should be explored for vaccination against symptomatic EBV infection and EBV associated extra-lymphoid tumors.
PMCID: PMC4148450  PMID: 25165855
4.  The need and challenges for development of an Epstein-Barr virus vaccine 
Vaccine  2013;31(0 2):B194-B196.
Epstein-Barr virus (EBV) is the major cause of infectious mononucleosis and is associated with several malignancies including nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and lymphoma after organ or stem cell transplant. A candidate vaccine containing soluble EBV glycoprotein gp350 protected cottontop tamarins from EBV lymphoma after challenge with EBV. In the only phase 2 trial of an EBV vaccine in humans, soluble gp350 in alum and monophosphoryl lipid A adjuvant reduced the rate of infectious mononucleosis in EBV seronegative adults, but did not affect the rate of EBV infection. A peptide vaccine corresponding to EBV latency proteins has been tested in a small number of adults to prevent infectious mononucleosis. Some of the barriers to development of an EBV vaccine include (a) whether additional viral proteins in addition to gp350 would be more effective for preventing mononucleosis or EBV malignancies, (b) the difficulty of performing clinical trials to prevent EBV associated malignancies in the absence of good surrogate markers for tumor development, and the long period of time between primary EBV infection and development of many EBV tumors, (c) the lack of knowledge of immune correlates for protection against EBV infection and disease, (d) the limitations in animal models to study protection against EBV infection and disease, and (e) the need for additional information on the economic and societal burden of infectious mononucleosis to assess the cost-benefit of a prophylactic vaccine.
PMCID: PMC3636506  PMID: 23598481
Epstein-Barr virus; infectious mononucleosis; nasopharyngeal carcinoma; Burkitt lymphoma; gastric carcinoma; Hodgkin lymphoma
5.  Epstein–barr virus vaccines 
Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis (IM) and is associated with epithelial cell malignancies such as nasopharyngeal carcinoma and gastric carcinoma, as well as lymphoid malignancies including Hodgkin lymphoma, Burkitt lymphoma, non-Hodgkin lymphoma and post-transplant lymphoproliferative disorder. EBV vaccines to prevent primary infection or disease, or therapeutic vaccines to treat EBV malignancies have not been licensed. Most efforts to develop prophylactic vaccines have focused on EBV gp350, which is the major target of neutralizing antibody. A single phase 2 trial of an EBV gp350 vaccine has been reported; the vaccine reduced the rate of IM but not virus infection. The observation that infusion of EBV-specific T cells can reduce disease due to Hodgkin lymphoma and nasopharyngeal carcinoma provides a proof of principle that a therapeutic vaccine for these and other EBV-associated malignancies might be effective. Most therapeutic vaccines have targeted EBV LMP2 and EBV nuclear antigen-1. As EBV is associated with nearly 200 000 new malignancies each year worldwide, an EBV vaccine to prevent these diseases is needed.
PMCID: PMC4318489  PMID: 25671130
6.  A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1) 
PLoS Genetics  2013;9(1):e1003147.
Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10−15 for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.
Author Summary
Many factors influence individual differences in susceptibility to infectious disease, including genetic factors of the host. Here we use several genome-wide investigative tools (linkage, association, joint linkage and association, and the analysis of gene expression data) to search for host genetic factors influencing Epstein-Barr virus (EBV) infection. EBV is a human herpes virus that infects up to 90% of adults worldwide, infection with which has been associated with severe complications including malignancies and autoimmune disorders. In a sample of >1,300 Mexican American family members, we found significant evidence of association of anti–EBV antibody levels with loci on chromosome 6 in the human leukocyte antigen region, which contains genes related to immune function. The top two independent loci in this region were HLA-DRB1 and HLA-DQB1, both of which are involved in the presentation of foreign antigens to T cells. This finding was specific to EBV and not to 12 other pathogens we examined. We also report an overlap of genetic factors influencing both EBV antibody level and EBV–related cancers and autoimmune disorders. This work demonstrates the presence of EBV susceptibility loci and provides impetus for further investigation to better understand the underlying mechanisms related to differences in disease progression among individuals infected with this pathogen.
PMCID: PMC3542101  PMID: 23326239
7.  The B-Cell Specific Transcription Factor, Oct-2, Promotes Epstein-Barr Virus Latency by Inhibiting the Viral Immediate-Early Protein, BZLF1 
PLoS Pathogens  2012;8(2):e1002516.
The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells.
Author Summary
Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell malignancies. EBV infection of cells can result in either lytic replication or latency. Memory B cells are the primary site of EBV latency within the human host, while oropharyngeal epithelial cells support the lytic form of infection. However, the cellular mechanism(s) that enable EBV to establish viral latency in a B-cell specific manner are not currently understood. In this report, we show that the B-cell specific cellular transcription factor, Oct-2, promotes viral latency by inhibiting the lytic form of infection. We find that Oct-2 interacts directly with the EBV immediate-early protein, BZLF1, and abrogates its ability to activate lytic viral gene transcription through protein-protein interactions off the DNA. Furthermore, knockdown of endogenous Oct-2 expression in several latently-infected Burkitt lymphoma B-cell lines increases EBV lytic protein expression. In addition, we show that certain stimuli which can prompt lytic EBV reactivation in B cells also decrease expression of endogenous Oct-2. Our results suggest that the cellular transcription factor, Oct-2, promotes EBV latency in a B-cell dependent manner.
PMCID: PMC3276558  PMID: 22346751
8.  Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells*  
Epstein-Barr virus (EBV), a human gammaherpesvirus carried by more than 90% of the world’s population, is associated with malignant tumors such as Burkitt’s lymphoma (BL), Hodgkin lymphoma, post-transplant lymphoma, extra-nodal natural killer/T cell lymphoma, and nasopharyngeal and gastric carcinomas in immune-compromised patients. In the process of infection, EBV faces challenges: the host cell environment is harsh, and the survival and apoptosis of host cells are precisely regulated. Only when host cells receive sufficient survival signals may they immortalize. To establish efficiently a lytic or long-term latent infection, EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways. This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors, which decide the fate of the host cell. The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown. Still, EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host. We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.
PMCID: PMC3542954  PMID: 23303627
Epstein-Barr virus; Bcl family members; Apoptosis; Drugs therapy
9.  Virus and Autoantigen-Specific CD4+ T Cells Are Key Effectors in a SCID Mouse Model of EBV-Associated Post-Transplant Lymphoproliferative Disorders 
PLoS Pathogens  2014;10(5):e1004068.
Polyclonal Epstein-Barr virus (EBV)-infected B cell line (lymphoblastoid cell lines; LCL)-stimulated T-cell preparations have been successfully used to treat EBV-positive post-transplant lymphoproliferative disorders (PTLD) in transplant recipients, but function and specificity of the CD4+ component are still poorly defined. Here, we assessed the tumor-protective potential of different CD4+ T-cell specificities in a PTLD-SCID mouse model. Injection of different virus-specific CD4+ T-cell clones showed that single specificities were capable of prolonging mouse survival and that the degree of tumor protection directly correlated with recognition of target cells in vitro. Surprisingly, some CD4+ T-cell clones promoted tumor development, suggesting that besides antigen recognition, still elusive functional differences exist among virus-specific T cells. Of several EBV-specific CD4+ T-cell clones tested, those directed against virion antigens proved most tumor-protective. However, enriching these specificities in LCL-stimulated preparations conferred no additional survival benefit. Instead, CD4+ T cells specific for unknown, probably self-antigens were identified as principal antitumoral effectors in LCL-stimulated T-cell lines. These results indicate that virion and still unidentified cellular antigens are crucial targets of the CD4+ T-cell response in this preclinical PTLD-model and that enriching the corresponding T-cell specificities in therapeutic preparations may enhance their clinical efficacy. Moreover, the expression in several EBV-negative B-cell lymphoma cell lines implies that these putative autoantigen(s) might also qualify as targets for T-cell-based immunotherapy of virus-negative B cell malignancies.
Author Summary
The γ-herpesvirus Epstein-Barr virus (EBV) is associated with several human malignancies, including post-transplant lymphoproliferative disorders (PTLD) in immunocompromised patients. The successful treatment of EBV-positive PTLD by the infusion of EBV-specific T-cell lines has provided an important proof of principle for immunotherapy of EBV-associated tumors and for cancer immunotherapy in general. EBV-specific T-cell preparations for clinical application are generated by repeated stimulation with autologous LCL in vitro. These lines contain CD4+ and CD8+ components but the specificity of the infused CD4+ T cells is still poorly defined. Using a mouse model of PTLD, we assessed the antitumoral potential of single virus-specific CD4+ T-cell clones. While T cells specific for a virion antigen of the virus prolonged mouse survival, other virus-specific clones had no effect or, unexpectedly, even promoted tumor growth. Moreover, the principal antitumoral effectors in LCL-stimulated T-cell preparations were CD4+ T cells specific for non-virus antigens. The definition of virion- and potentially autoantigen-specific CD4+ T cells as key effectors against PTLD may contribute to the design of generic and standardized protocols for the generation of T-cell lines with improved clinical efficacy. In addition, the observed tumor-promoting propensity of some CD4+ T cells may have implications for adoptive T-cell therapy in general.
PMCID: PMC4031221  PMID: 24853673
10.  Soluble Rhesus Lymphocryptovirus gp350 Protects against Infection and Reduces Viral Loads in Animals that Become Infected with Virus after Challenge 
PLoS Pathogens  2011;7(10):e1002308.
Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.
Author Summary
Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is associated with several cancers. Presently there is no licensed vaccine to prevent EBV diseases. Two types of candidate vaccines are under development; one involves immunization with the major glycoprotein (gp350) on the outside of the virus, while the other involves vaccination with EBV proteins expressed during latency. We compared these two types of candidate vaccines in a rhesus monkey model of EBV and found that the gp350 vaccine induced better protection from infection. In addition, animals that received the rhesus EBV glycoprotein and became infected had a lower level of rhesus EBV DNA in the blood at 23 months after challenge than animals that received the rhesus EBV latency protein vaccine that subsequently were infected. Since levels of EBV DNA in the blood have been predictive for EBV lymphomas in transplant patients, the ability of rhesus EBV gp350 to reduce levels of rhesus EBV in the blood after infection suggests the EBV gp350 could have a role in reducing certain EBV-associated cancers. This is the first test of candidate vaccines in the rhesus monkey model of EBV and shows that this model should be useful in further evaluation of EBV vaccines.
PMCID: PMC3197588  PMID: 22028652
11.  Development of Drugs for Epstein - Barr virus using High-Throughput in silico Virtual Screening 
Expert opinion on drug discovery  2010;5(12):10.1517/17460441.2010.524640.
Importance of the field
Epstein-Barr virus (EBV) is a ubiquitious human herpesvirus that is causally associated with endemic forms of Burkitt’s lymphoma (BL), nasopharyngeal carcinoma, and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects over 90% of the adult population and is responsible for ~1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases.
Areas covered in this review
In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes, as well as proteins that are expressed exclusively during latent infection, like EBNA1 and LMP1. Since the atomic structure of the EBNA1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, like EBNA1, to treat EBV infection and disease.
What the reader will gain
The reader will be familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process.
Take home message
Despite the impressive efficacy of nucleoside analogues for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. Since EBV-latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease.
PMCID: PMC3816986  PMID: 22822721
Epstein-Barr virus (EBV); DNA polymerase; LMP1; EBNA1; computational screening
12.  Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner 
Virology Journal  2014;11:110.
Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt’s lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely.
Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance.
mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin.
Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.
PMCID: PMC4059732  PMID: 24917448
Epstein-Barr virus; BZLF1; BRLF1; Lytic replication; mTOR; Rapamycin
13.  Epstein-Barr Virus Antibodies and the Risk of Associated Malignancies: Review of the Literature 
American Journal of Epidemiology  2014;180(7):687-695.
Epstein-Barr virus (EBV), a ubiquitous herpes virus that infects 90% of humans by adulthood, is linked to the development of various cancers, including nasopharyngeal carcinoma, gastric cancer, Burkitt lymphoma, non-Hodgkin lymphoma (NHL), and Hodgkin lymphoma. We reviewed the literature published since 1980 regarding an association between antibodies against EBV proteins and the risk of EBV-associated malignancies. Immunoglobulin A antibody levels that are elevated before diagnosis have consistently been associated with the risk of nasopharyngeal carcinoma, and patients with Hodgkin lymphoma have significantly higher immunoglobulin G antibody levels than disease-free controls. However, the link between the immune response to EBV and other EBV-associated malignancies was less clear. Although evidence of an association between the risk of Burkitt lymphoma and immunoglobulin G antibodies was consistent for available studies, the sample sizes were limited. Evidence for a link between antibodies against EBV and risk of either gastric cancer or NHL was inconsistent. Future investigations should account for tumor EBV status because only 7%–10% of gastric tumors and select NHL subtypes are related to EBV infection. Comparing differences in the associations between the humoral immune response to EBV and disease risk across cancers may help elucidate how this ubiquitous virus contributes to distinct tumors globally.
PMCID: PMC4271109  PMID: 25167864
Burkitt lymphoma; EBV antibodies; EBV immune response; EBV serology; gastric carcinoma; Hodgkin lymphoma; nasopharyngeal carcinoma; non-Hodgkin lymphoma
14.  Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt's lymphoma Akata cells 
Molecular Cancer  2007;6:3.
Epigenetic silencing of regulatory genes by aberrant methylation contributes to tumorigenesis. DNA methyltransferase inhibitors (DNMTI) represent promising new drugs for anti-cancer therapies. The DNMTI 5-Azacytidine is effective against myelodysplastic syndrome, but induces switching of latent to lytic Epstein-Barr virus (EBV) in vitro and results in EBV DNA demethylation with the potential of induction of lytic EBV in vivo. This is of considerable concern given that recurrent lytic EBV has been linked with an increased incidence of EBV-associated lymphomas. Based on the distinct properties of action we hypothesized that the newer DNMTI Zebularine might differ from 5-Azacytidine in its potential to induce switching from latent to lytic EBV. Here we show that both 5-Azacytidine and Zebularine are able to induce expression of E-cadherin, a cellular gene frequently silenced by hypermethylation in cancers, and thus demonstrate that both DNMTI are active in our experimental setting consisting of EBV-harboring Burkitt's lymphoma Akata cells. Quantification of mRNA expression of EBV genes revealed that 5-Azacytidine induces switching from latent to lytic EBV and, in addition, that the immediate-early lytic infection progresses to early and late lytic infection. Furthermore, 5-Azacytidine induced upregulation of the latent EBV genes LMP2A, LMP2B, and EBNA2 in a similar fashion as observed following switching of latent to lytic EBV upon cross-linking of the B-cell receptor. In striking contrast, Zebularine did not exhibit any effect neither on lytic nor on latent EBV gene expression. Thus, Zebularine might be safer than 5-Azacytidine for the treatment of cancers in EBV carriers and could also be applied against EBV-harboring tumors, since it does not induce switching from latent to lytic EBV which may result in secondary EBV-associated malignancies.
PMCID: PMC1781464  PMID: 17214905
15.  An Epstein-Barr Virus Encoded Inhibitor of Colony Stimulating Factor-1 Signaling Is an Important Determinant for Acute and Persistent EBV Infection 
PLoS Pathogens  2012;8(12):e1003095.
Acute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.
Author Summary
Epstein-Barr virus (EBV) is a herpesvirus that persistently infects nearly all humans by adulthood. Acute and persistent phases of EBV infection are associated with a variety of human diseases, including infectious mononucleosis and cancer. To investigate how EBV interacts with the host to successfully establish acute and persistent infection, we combined the power of the rhesus macaque animal model for EBV infection with genetic engineering of the EBV-related herpesvirus, or lymphocryptovirus (LCV), that naturally infects rhesus macaques. We created a recombinant rhLCV carrying a mutated EBV BARF1 homologue, a replication-associated viral protein that is secreted and blocks Colony Stimulating Factor-1 (CSF-1) signaling, a cytokine important for innate immunity. Oral inoculation of rhesus macaques showed that the virus' ability to block CSF-1 was important for achieving the normally high viral loads during acute infection, and surprisingly, was also needed to establish normal levels of virus infection, or viral setpoint, during persistent infection. These studies show that virus-mediated interruption of innate immunity is critical for both acute and persistent phases of EBV infection. Understanding how EBV successfully infects humans and how the natural history of EBV infection can be disrupted will aid in development of vaccines to prevent EBV-associated diseases.
PMCID: PMC3531511  PMID: 23300447
16.  Epstein-Barr virus-driven lymphomagenesis in the context of human immunodeficiency virus type 1 infection 
Epstein–Barr virus (EBV) is a ubiquitous human γ-herpes virus which establishes a life-long asymptomatic infection in immunocompetent hosts. In human immunodeficiency virus type 1 (HIV-1) infected patients, the impaired immunosurveillance against EBV may favor the development of EBV-related diseases, ranging from lymphoproliferative disorders to B cell non-Hodgkin’s lymphomas (NHL). Antiretroviral therapy (ART) has significantly modified the natural course of HIV-1 infection, resulting in decreased HIV-1 plasmaviremia, increased CD4 lymphocytes, and decreased opportunistic infections, indicating a restoration of immune functions. However, the impact of ART appears to be less favorable on EBV-related malignancies than on other AIDS-defining tumors, such as Kaposi’s sarcoma, and NHL remains the most common cancer during the ART era. EBV-driven tumors are associated with selective expression of latent oncogenic proteins, but uncontrolled lytic cycle with virus replication and/or reactivation may favor cell transformation, at least in the early phases. Several host’s factors may promote EBV reactivation and replication; besides immunodepression, inflammation/chronic immune stimulation may play an important role. Microbial pathogen-associated molecular patterns and endogenous damage-associated molecular patterns, through Toll-like receptors, activate the immune system and may promote EBV reactivation and/or polyclonal expansion of EBV-infected cells. A body of evidence suggests that chronic immune stimulation is a hallmark of HIV-1 pathogenesis and may persist even in ART-treated patients. This review focuses on lymphomagenesis driven by EBV both in the context of the natural history of HIV-1 infection and in ART-treated patients. Understanding the mechanisms involved in the expansion of EBV-infected cells is a premise for the identification of prognostic markers of EBV-associated malignancies.
PMCID: PMC3799006  PMID: 24151490
EBV; HIV-1; B cell activation; chronic immune activation; EBV-related malignancies; antiretroviral therapy; EBV lytic reactivation
17.  Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells. 
Journal of Virology  1991;65(4):1701-1709.
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.
PMCID: PMC239974  PMID: 1848303
18.  ZEB1 Regulates the Latent-Lytic Switch in Infection by Epstein-Barr Virus 
PLoS Pathogens  2007;3(12):e194.
The immediate-early (IE) BZLF1 gene of Epstein-Barr virus (EBV) regulates the switch between latent and lytic infection by EBV. We previously showed that the cellular transcription factor ZEB1 binds to a sequence element, ZV, located at nt −17 to −12 relative to the transcription initiation site of the BZLF1 promoter, Zp, repressing transcription from Zp in a transient transfection assay. Here, we report the phenotype in the context of a whole EBV genome of a variant of EBV strain B95.8 containing a 2-bp substitution mutation in the ZV element of Zp that reduced, but did not eliminate, ZEB1 binding to Zp. Strikingly, epithelial 293 cells latently infected with the EBV ZV mutant spontaneously produced IE-, early-, and late-gene products and infectious virus, while wild-type (WT)-infected 293 cells did not and have never been reported to do so. Furthermore, treatment with the chemical inducers sodium butyrate and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to an additional order-of-magnitude production of infectious virus in the ZV mutant–infected 293 cells, but still no virus in the WT-infected 293 cells. Similarly, ZV mutant–infected Burkitt's lymphoma BJAB cells accumulated at least 10-fold more EBV IE mRNAs than did WT-infected BJAB cells, with TPA or sodium butyrate treatment leading to an additional 5- to 10-fold accumulation of EBV IE mRNAs in the ZV mutant–infected cells. Thus, we conclude that ZEB1 binding to Zp plays a central role in regulating the latent-lytic switch in EBV-infected epithelial and B cells, suggesting ZEB1 as a target for lytic-induction therapies in EBV-associated malignancies.
Author Summary
Ninety percent of people in the world become infected with Epstein-Barr virus (EBV). The virus can infect both epithelial and B cells, either making more virus and killing the cell or establishing a latent form of infection where it is stably maintained in the host. EBV infection is associated with the development of some types of cancer. We show here that a mere 2-bp substitution mutation in the silencer element, ZV, of the promoter of EBV's immediate-early BZLF1 gene in the context of a whole EBV genome can lead to spontaneous reactivation of EBV out of latency into lytic replication, with production of infectious virus in some cells. The presence of the mutation also (i) made the virus more responsive to reactivation following treatment with chemical inducers, and (ii) disrupted binding of a cellular transcriptional repressor protein, ZEB1, to the BZLF1 promoter. Our work suggests a method to kill EBV-infected cancer cells by treating them with agents that lower the repressor activity of ZEB1. It also suggests one may be able to generate a vaccine against EBV infection using a constitutively lytic EBV strain made by knocking out the silencer elements of the BZLF1 promoter.
PMCID: PMC2134958  PMID: 18085824
19.  Phase I Clinical Trial of Valacyclovir and Standard of Care Cyclophosphamide in Children With Endemic Burkitt Lymphoma in Malawi 
Treatment options for Epstein-Barr virus (EBV)-associated Burkitt lymphoma in Africa are limited because of chemotherapy-associated toxicity. Since other EBV-associated diseases respond to antiviral agents, we investigated adding an antiviral agent, valacyclovir, to the current chemotherapy regimen in Malawi. In this phase I safety study, we showed that cyclophosphamide combined with valacyclovir was safe. Phase II efficacy trials should now be undertaken.
Nucleoside analogues, including acyclovir, ganciclovir, and their precursors, have shown some efficacy against several Epstein-Barr virus (EBV)-associated diseases, including active EBV infection and posttransplantation lymphoproliferative disorder (PTLD). They have also been proposed as a possible treatment for EBV-associated malignancies, including endemic Burkitt lymphoma. The safety of nucleoside analogues in combination with chemotherapy in the developing world has not been studied and is necessary before any large scale efficacy trials are conducted.
Patients and Methods
Children 3–15 years old meeting inclusion criteria were assigned to a 3+3 dose escalation trial of combination valacyclovir (15 and 30 mg/kg, 3 times daily for 40 days) and cyclophosphamide (CPM) (40 mg/kg day 1, 60 mg/kg on days 8, 18, and 28) or CPM monotherapy. Subjects were monitored for clinical and laboratory toxicity and had EBV levels measured regularly. Dose-limiting toxicity (DLT) was our primary outcome.
We found that the combination of valacyclovir and CPM was safe and did not lead to any DLT compared with CPM monotherapy. The most common side effects were vomiting, abdominal pain, and tumor site pain, which were similar in both arms. Patients with measurable serum EBV showed decreased loads over their treatment course.
We recommend a phase II valacyclovir dose of 30 mg/kg 3 times daily for 40 days. We also observed that 6 of our 12 patients with presumed Burkitt lymphoma had measurable EBV viral loads that decreased over the course of their treatment, suggesting that phase II studies should investigate this correlation further. This study paves the way for a phase II efficacy trial of combined valacyclovir and CPM in the treatment of endemic Burkitt lymphoma.
PMCID: PMC3654008  PMID: 23260601
20.  Regulation of the latent-lytic switch in Epstein–Barr virus 
Epstein–Barr virus (EBV) infection contributes to the development of several different types of human malignancy, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. As a herpesvirus, EBV can establish latent or lytic infection in cells. EBV-positive tumors are composed almost exclusively of cells with latent EBV infection. Strategies for inducing the lytic form of EBV infection in tumor cells are being investigated as a potential therapy for EBV-positive tumors. In this article, we review how cellular and viral proteins regulate the latent-lytic EBV switch in infected B cells and epithelial cells, and discuss how harnessing lytic viral reactivation might be used therapeutically.
PMCID: PMC4048781  PMID: 24457012
Ataxia-telangiectasia mutated (ATM); Hypoxia; Genome methylation; Lytic induction therapy; TGF-β
21.  A Molecular Link between Malaria and Epstein–Barr Virus Reactivation 
PLoS Pathogens  2007;3(6):e80.
Although malaria and Epstein–Barr (EBV) infection are recognized cofactors in the genesis of endemic Burkitt lymphoma (BL), their relative contribution is not understood. BL, the most common paediatric cancer in equatorial Africa, is a high-grade B cell lymphoma characterized by c-myc translocation. EBV is a ubiquitous B lymphotropic virus that persists in a latent state after primary infection, and in Africa, most children have sero-converted by 3 y of age. Malaria infection profoundly affects the B cell compartment, inducing polyclonal activation and hyper-gammaglobulinemia. We recently identified the cystein-rich inter-domain region 1α (CIDR1α) of the Plasmodium falciparum membrane protein 1 as a polyclonal B cell activator that preferentially activates the memory compartment, where EBV is known to persist. Here, we have addressed the mechanisms of interaction between CIDR1α and EBV in the context of B cells. We show that CIDR1α binds to the EBV-positive B cell line Akata and increases the number of cells switching to the viral lytic cycle as measured by green fluorescent protein (GFP) expression driven by a lytic promoter. The virus production in CIDR1α-exposed cultures was directly proportional to the number of GFP-positive Akata cells (lytic EBV) and to the increased expression of the EBV lytic promoter BZLF1. Furthermore, CIDR1α stimulated the production of EBV in peripheral blood mononuclear cells derived from healthy donors and children with BL. Our results suggest that P. falciparum antigens such as CIDR1α can directly induce EBV reactivation during malaria infection that may increase the risk of BL development for children living in malaria-endemic areas. To our knowledge, this is the first report to show that a microbial protein can drive a latently infected B cell into EBV replication.
Author Summary
Malaria and Epstein–Barr virus (EBV) infections are recognized cofactors in the genesis of endemic Burkitt lymphoma, the most common paediatric cancer in equatorial Africa. EBV is a ubiquitous virus residing in B lymphocytes that establishes a lifelong persistence in the host after primary infection. EBV has two lifestyles: latent infection (non-productive), and lytic replication (productive). Children living in malaria-endemic areas exhibit an elevated viral load, and acute malaria infection increases the levels of circulating EBV. The mechanisms leading to viral reactivation during Plasmodium falciparum malaria infection are not well understood. Cystein-rich inter-domain region 1α (CIDR1α) is a domain of a large protein expressed at the surface of P. falciparum–infected red blood cells. Based on previous findings showing that CIDR1α activates and expands the B cells compartment where EBV persists, we assessed the impact of CIDR1α on viral reactivation. Here, we identify CIDR1α as the first microbial protein able to drive a latently EBV-infected B cell (no virus production) into lytic replication (virus production). Our results suggest that P. falciparum–derived proteins can lead to a direct reactivation of EBV during acute malaria infection, increasing the risk of Burkitt lymphoma development for children living in malaria-endemic areas.
PMCID: PMC1891325  PMID: 17559303
22.  Epstein-Barr Virus Large Tegument Protein BPLF1 Contributes to Innate Immune Evasion through Interference with Toll-Like Receptor Signaling 
PLoS Pathogens  2014;10(2):e1003960.
Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.
Author Summary
Epstein-Barr virus (EBV) is a human herpesvirus that persistently infects >90% of adults worldwide. One factor underlying the ability of EBV to establish such widespread and lifelong infections is its capacity to escape elimination by the human immune system. Among the first lines of defense against viral infection is the human Toll-like receptor (TLR) system. These receptors can detect the presence of viruses and initiate an intracellular protein signaling cascade that leads to the expression of immune response genes. The activation status of many proteins in this signaling cascade is regulated by the addition of ubiquitin tags. EBV has previously been reported to encode enzymes, called deubiquitinases (DUBs), which are capable of removing such ubiquitin tags from substrate proteins. In our study, we found that one of these enzymes, BPLF1, functions as an active DUB during EBV production in infected cells before being packaged into newly produced viral particles. Furthermore, our study provides insight into the way in which EBV can subvert the human immune response, as we show that BPLF1 can remove ubiquitin tags from proteins in the TLR signaling cascade. This inhibits TLR signaling and decreases the expression of immune response genes.
PMCID: PMC3930590  PMID: 24586164
23.  Identification of a new class of small molecules that efficiently reactivate latent Epstein-Barr virus 
ACS chemical biology  2014;9(3):785-795.
Epstein-Barr Virus (EBV) persists as a latent infection in many lymphoid and epithelial malignancies, including Burkitt's lymphomas, nasopharyngeal carcinomas, and gastric carcinomas. Current chemotherapeutic treatments of EBV-positive cancers include broad- spectrum cytotoxic drugs that ignore the EBV-positive status of tumors. An alternative strategy, referred to as oncolytic therapy, utilizes drugs that stimulate reactivation of latent EBV to enhance the selective killing of EBV positive tumors, especially in combination with existing inhibitors of herpesvirus lytic replication, like Ganciclovir (GCV). At present, no small molecule, including histone deacetylase (HDAC) inhibitors, have proven safe or effective in clinical trials for treatment of EBV positive cancers. Aiming to identify new chemical entities that induce EBV lytic cycle, we have developed a robust high throughput cell-based assay to screen 66,840 small molecule compounds. Five structurally related tetrahydrocarboline derivatives were identified, two of which had EC50 measurements in the range of 150-170 nM. We show that these compounds reactivate EBV lytic markers ZTA and EA-D in all EBV-positive cell lines we have tested independent of the type of latency. The compounds reactivate a higher percentage of latently infected cells than HDAC inhibitors or phorbol esters in many cell types. The most active compounds showed low toxicity to EBV-negative cells, but were highly effective at selective cell killing of EBV-positive cells when combined with GCV. We conclude that we have identified a class of small molecule compounds that are highly effective at reactivating latent EBV infection in a variety of cell types, and show promise for lytic therapy in combination with GCV.
PMCID: PMC4159771  PMID: 24028149
EBV; lytic therapy; HTS; reactivation; small molecule screen; tetrahydrocarbolines
24.  The Spectrum of Epstein-Barr Virus-Associated Lymphoproliferative Disease in Korea: Incidence of Disease Entities by Age Groups 
Journal of Korean Medical Science  2008;23(2):185-192.
This study is to identify the spectrum of Epstein-Barr virus (EBV)-positive lymphoproliferative diseases (LPD) and relationships between these diseases in Korea. The EBV status and clinicopathology of 764 patients, including acute EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV (CAEBV) infections, B-LPD arising in chronic latent EBV infection, T & natural killer (NK) cell non-Hodgkin's lymphomas (NHL), B-NHLs, and Hodgkin's lymphomas (HD), were analyzed. T or NK cell NHLs were the most common forms of EBV-positive NHLs (107/167, 64%); among these, nasal-type NK/T cell lymphomas were the most common (89/107, 83%). According to the age, Burkitt's lymphoma was the most common in early childhood; in teenagers, chronic (active) EBV infection-associated LPD was the most common type. The incidence of NK/T cell lymphoma began to increase from the twenties and formed the major type of EBV-associated tumor throughout life. Diffuse large B cell lymphoma formed the major type in the sixties and seventies. In conclusion, primary infections in early childhood are complicated by the development of CAEBV infections that are main predisposing factors for EBV-associated T or NK cell malignancies in young adults. In old patients, decreased immunity associated with old age and environmental cofactors may provoke the development of peripheral T cell lymphoma, unspecified, and diffuse large B cell lymphoma.
PMCID: PMC2526432  PMID: 18436998
Lymphoma; Epstein-Barr Virus; Lymphohistiocytosis, Hemophagocytic
25.  Dasatinib therapy results in decreased B cell proliferation, splenomegaly, and tumor growth in a murine model of lymphoma expressing Myc and Epstein-Barr virus LMP2A 
Antiviral Research  2012;95(1):49-56.
Epstein-Barr virus (EBV) infection and latency has been associated with malignant diseases including nasopharyngeal carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and immune deficiency associated lymphoproliferative diseases. EBV-encoded latent membrane protein 2A (LMP2A) recruits Lyn and Syk kinases via its SH2-domain binding motifs, and modifies their signaling pathways. LMP2A transgenic mice develop hyperproliferative bone marrow B cells and immature peripheral B cells through modulation of Lyn kinase signaling. LMP2A/λ-MYC double transgenic mice develop splenomegaly and cervical lymphomas starting at 8 weeks of age. We reasoned that targeting Lyn in LMP2A-expressing B cells with dasatinib would provide a therapeutic option for EBV-associated malignancies. Here, we show that dasatinib inhibits B cell colony formation by LMP2A transgenic bone marrow cells, and reverses splenomegaly and tumor growth in both a pre-tumor and a syngeneic tumor transfer model of EBV-associated Burkitt lymphoma. Our data support the idea that dasatinib may prove to be an effective therapeutic molecule for the treatment of EBV-associated malignancies.
PMCID: PMC3377840  PMID: 22609829
Burkitt lymphoma; dasatinib; Epstein-Barr virus (EBV); latent membrane protein 2A (LMP2A); Lyn; post-transplant lymphoproliferative diseases (PTLD)

Results 1-25 (1012072)