Search tips
Search criteria

Results 1-25 (581386)

Clipboard (0)

Related Articles

1.  High-dose, short-interval daptomycin regimen was safe and well tolerated in three patients with chronic renal failure 
The recommended daptomycin dosage is 4 or 6 mg/kg/day for the treatment of complicated skin and soft tissue infections or for Staphylococcus aureus bacteremia, endocarditis, and osteomyelitis. Every other day administration is usually recommended for patients with mild to moderate renal impairment. Higher doses (>6 mg/kg/day) have been explored as a possible alternative. Daptomycin is considered a safe anti-methicillin-resistant S. aureus (MRSA) drug, although renal dysfunction may be worsened. In this paper we report on three patients with chronic renal failure who received a higher dose of daptomycin daily for successful treatment for MRSA bacteremia, MRSA osteomyelitis, and methicillin-resistant S. epidermidis (MRSE) endocarditis.
Previous administration of other drugs, including vancomycin, teicoplanin, and linezolid, had failed. In spite of daily treatment with daptomycin instead of the recommended alternate day regimen, adverse effects, such as elevation of creatinine and creatine phosphokinase, did not occur.
These experiences suggest that administration of high-dose/short-interval daptomycin can be efficient and safe even in the setting of renal dysfunction, and should be considered for the treatment of severe MRSA/MRSE infections in these patients.
PMCID: PMC3821543  PMID: 24235850
daptomycin; high-dose; renal failure; methicillin-resistant Staphylococcus aureus; creatine phosphokinase
2.  Addition of Ceftaroline to Daptomycin after Emergence of Daptomycin-Nonsusceptible Staphylococcus aureus during Therapy Improves Antibacterial Activity 
Antimicrobial Agents and Chemotherapy  2012;56(10):5296-5302.
Antistaphylococcal beta-lactams enhance daptomycin activity and have been used successfully in combination for refractory methicillin-resistant Staphylococcus aureus (MRSA) infections. Ceftaroline possesses MRSA activity, but it is unknown if it improves the daptomycin potency comparably to other beta-lactams. We report a complex patient case of endocarditis who was treated with daptomycin in combination with ceftaroline, which resulted in clearance of a daptomycin-nonsusceptible strain. An in vitro pharmacokinetic/pharmacodynamic model of renal failure was used to simulate the development of daptomycin resistance and evaluate the microbiologic effects of daptomycin plus ceftaroline treatment. Combination therapy with daptomycin and ceftaroline restored daptomycin sensitivity in vivo and resulted in clearance of persistent blood cultures. Daptomycin susceptibility in vitro was increased in the presence of either ceftaroline or oxacillin. Daptomycin at 6 mg/kg of body weight every 48 h was bactericidal in the model but resulted in regrowth and daptomycin resistance (MIC, 2 to 4 μg/ml) with continued monotherapy. The addition of ceftaroline at 200 mg every 12 h after the emergence of daptomycin resistance enhanced bacterial killing. Importantly, daptomycin plus ceftaroline as the initial combination therapy produced rapid and sustained bactericidal activity and prevented daptomycin resistance. Both in vivo- and in vitro-derived daptomycin resistance resulted in bacteria with more fluid cell membranes. After ceftaroline was added in the model, fluidity was restored to the level of the initial in vivo isolate. Daptomycin-resistant isolates required high daptomycin exposures (at least 10 mg/kg) to optimize cell membrane damage with daptomycin alone. Ceftaroline combined with daptomycin was effective in eliminating daptomycin-resistant MRSA, and these results further justify the potential use of daptomycin plus beta-lactam therapy for these refractory infections.
PMCID: PMC3457349  PMID: 22869564
3.  Clinical experience with daptomycin in Europe: the first 2.5 years 
To describe the patient populations and infections being treated with daptomycin, as well as the efficacy and safety outcomes.
Patients and methods
Data from the European Cubicin Outcomes Registry and Experience (EU-CORESM), retrospectively collected at 118 institutions between January 2006 and August 2008, were analysed.
Daptomycin treatment was documented in 1127 patients with diverse infections, including complicated skin and soft tissue infections (33%), bacteraemia (22%), endocarditis (12%) and osteomyelitis (6%). It was used empirically, before microbiological results became available, in 53% of patients. Staphylococcus aureus was the most common pathogen (34%), with 52% of isolates resistant to methicillin; coagulase-negative staphylococci and enterococci were also frequent, with 22% of Enterococcus faecium isolates resistant to vancomycin. Daptomycin was used as first-line therapy in 302 (27%) patients. When used second line, the most common reasons for discontinuation of previous antibiotic were treatment failure and toxicity or intolerance. The use of concomitant antibiotics was reported in 65% of patients. Most frequent doses were 6 mg/kg (47%) and 4 mg/kg (32%). The median duration of daptomycin therapy was 10 days (range 1–246 days) in the inpatient setting and 13 days (range 2–189 days) in the outpatient setting. The overall clinical success rate was 79%, with a clinical failure rate of <10% for all infection types. Low failure rates were observed in first- and second-line therapy (6% and 8%, respectively). Daptomycin demonstrated a favourable safety and tolerability profile regardless of treatment duration.
Daptomycin has a relevant role in the treatment of Gram-positive infections.
PMCID: PMC3058564  PMID: 21393205
cyclic lipopeptide; Gram-positive infections; registry
4.  Successful use of daptomycin in Panton-Valentine leucocidin positive Staphylococcus aureus paediatric osteomyelitis 
Efficacy of daptomycin has been recorded in adult Gram-positive bone and joint infections OAI (1) and daptomycin has been used as secondary or tertiary agent when primary agents have failed (1, 2) in the treatment of osteoarticular infections caused by Staphylococcus aureus.
Presentation of case
We report a 16-year-old schoolboy with Panton-Valentine Leucocidin (PVL) positive methicillin susceptible S. aureus osteomyelitis, who was refractory to 9 days of recognised antimicrobial chemotherapy with progressive multifocal haematogenous spread. Subsequent addition of daptomycin promptly cleared the bacteraemia and arrested the disease process within 9 days.
Although cases have been reported of daptomycin usage in children with invasive staphylococcus bacteraemia, endocarditis and OAI (2), we believe this to be the first case report describing the use of daptomycin in paediatric osteomyelitis caused by PVL positive S. aureus.
Repercussions of osteomyelitis, in particular those caused by PVL S. aureus, and evolving resistance patterns internationally, highlight the need for further evaluation of daptomycin in the paediatric arena. The response seen with the addition of Daptomycin in this case suggests possible reduction in hospital stay and number of surgical procedures when compared to other published series using conventional antibiotic regimens.
PMCID: PMC3356530  PMID: 22503914
PVL, Panton-Valentine Leucocidin; MSSA, methicillin-sensitive Staphylococcus aureus; OAI, Osteoarticular infection; Osteomyelitis; Daptomycin; Panton-Valentine Leucocidin; Off label drug use; Paediatric
5.  Comparative Activities of Daptomycin, Linezolid, and Tigecycline against Catheter-Related Methicillin-Resistant Staphylococcus Bacteremic Isolates Embedded in Biofilm▿  
In the setting of catheter-related bloodstream infections, intraluminal antibiotic lock therapy could be useful for the salvage of vascular catheters. In this in vitro study, we investigated the efficacies of the newer antibiotics daptomycin, linezolid, and tigecycline, in comparison with those of vancomycin, minocycline, and rifampin, against methicillin-resistant Staphylococcus aureus (MRSA) embedded in biofilm. We also assessed the emergence of MRSA strains resistant to these antibiotics, alone or in combination with rifampin, after 4-hour daily use for catheter lock therapy. Minocycline, daptomycin, and tigecycline were more efficacious in inhibiting MRSA in biofilm than linezolid, vancomycin, and the negative control (P < 0.001) after the first day of exposure to these antibiotics, with minocycline being the most active, followed by daptomycin and then tigecycline, and with vancomycin and linezolid lacking activity, similar to the negative control. After 3 days of 4-hour daily exposures, daptomycin was the fastest in eradicating MRSA from biofilm, followed by minocycline and tigecycline, which were faster than linezolid, rifampin, and vancomycin (P < 0.001). When rifampin was used alone, it was the least effective in eradicating MRSA from biofilm after 5 days of 4-hour daily exposures, as it was associated with the emergence of rifampin-resistant MRSA. However, when rifampin was used in combination with other antibiotics, the combination was significantly effective in eliminating MRSA colonization in biofilm more rapidly than each of the antibiotics alone. In summary, daptomycin, minocycline, and tigecycline should be considered further for antibiotic lock therapy, and rifampin should be considered for enhanced antistaphylococcal activity but not as a single agent.
PMCID: PMC1855569  PMID: 17353249
6.  Daptomycin compared with teicoplanin and vancomycin for therapy of experimental Staphylococcus aureus endocarditis. 
Antimicrobial Agents and Chemotherapy  1990;34(11):2081-2085.
The efficacies of daptomycin, teicoplanin, and vancomycin were compared in the therapy of experimental Staphylococcus aureus endocarditis. Rabbits infected with either of two methicillin-susceptible strains (SA-12871 or its moderately teicoplanin-resistant derivative SA-12873) or a methicillin-resistant S. aureus strain (MRSA-494) were treated with daptomycin, 8 mg/kg of body weight, every 8 h; teicoplanin, 12.5 mg/kg (low-dose teicoplanin [teicoplanin-LD], excluding MRSA-494) or 40 mg/kg (high-dose teicoplanin [teicoplanin-HD]) every 12 h; or vancomycin, 17.5 mg/kg every 6 h, for 4 days. Compared with no treatment daptomycin, teicoplamin-HD, and vancomycin significantly reduced bacterial counts of all test strains in vegetations and renal and splenic tissues (P less than 0.001). Teicoplanin-LD was equally effective against SA-12871 but failed against SA-12873, with three of six animals still being bacteremic at the end of therapy. For SA-12871, daptomycin was as effective as teicoplanin-HD and was superior to teicoplanin-LD and vancomycin (P = 0.02) in lowering vegetation bacterial counts. There were no differences between daptomycin, teicoplanin-HD, or vancomycin in the reduction of bacterial counts in tissues for any of the test strains. In rabbits infected with SA-12871, vegetations from 33% of teicoplanin-LD-treated, 6% of teicoplanin-HD-treated, and 13% of daptomycin-treated animals yielded organisms for which there were up to eightfold increases in the MICs. Resistance may have contributed to early death in one daptomycin-treated animal. No increases in the MICs for the test strain were detected in animals infected with SA-12873 or MRSA-494. We conclude that in this model and against these strains of S. aureus, daptomycin and teicoplanin-HD are as efficacious as vancomycin, but diminished susceptibility to both can develop during therapy.
PMCID: PMC172003  PMID: 1963526
7.  Comparative evaluation of daptomycin (LY146032) and vancomycin in the treatment of experimental methicillin-resistant Staphylococcus aureus osteomyelitis in rabbits. 
A rabbit model for methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis was used to compare treatment with daptomycin, a new peptolide, and vancomycin. Daptomycin (4 mg/kg) and vancomycin (40 mg/kg) were injected subcutaneously every 12 and 6 h, respectively. After treatment, MRSA was found in bone cultures from 18 of 18 control rabbits, 10 of 17 animals treated with daptomycin, and 11 of 18 animals treated with vancomycin. Drug concentrations were measured in serum, uninfected bone, and infected bone 1 h after daptomycin or vancomycin was injected in a group of rabbits that had been infected for 3 to 4 weeks. Vancomycin was present at the highest concentrations in infected and uninfected bone. The results of this study suggest that daptomycin was similar to vancomycin in the eradication of MRSA from infected bone in an experimental model of osteomyelitis.
PMCID: PMC172515  PMID: 2546488
8.  Daptomycin in bone and joint infections: a review of the literature 
To review the pharmacology, pharmacokinetics, efficacy, and safety of daptomycin, a novel antibiotic for the treatment of bone and joint infections, a literature search of relevant articles was conducted.
Materials and methods
A PubMed/MEDLINE search (1990–April 2008) to identify relevant English-language literature was conducted. Search terms included bone and joint infection, osteomyelitis, daptomycin, and methicillin-resistant Staphylococcus aureus (MRSA). Additional articles were identified by reviewing the bibliographies of articles cited. Programs and abstracts from infectious disease meetings were searched, and prescribing information of antibiotics indicated for bone and joint infections consulted. All articles identified from data sources published in English were evaluated.
Caused primarily by Gram-positive pathogens such as S. aureus and, to a lesser extent, Enterococcus faecalis, bone and joint infections are difficult to treat successfully. Surgical intervention and prolonged courses of antibiotics are frequently required, and failure of first-line antibiotic therapy is common. The emergence of S. aureus strains with reduced susceptibility to vancomycin, the longstanding gold standard for bone and joint infections, has complicated the clinical scenario. Few randomized trials comparing the efficacy of different antibiotics for bone and joint infections exist. Daptomycin, a novel intravenous lipopeptide antibiotic, has shown potent in vitro activity against a broad spectrum of Gram-positive bacteria, including many resistant pathogens commonly associated with bone and joint infections such as MRSA and vancomycin-resistant E. faecalis. Early clinical investigation of daptomycin in bone and joint infections unresponsive to antibiotics, such as vancomycin, has found a cure rate of approximately 80%, with a low incidence of adverse events and drug resistance.
Further studies are warranted to determine if limited clinical evidence, described in individual case reports and a daptomycin-specific retrospective registry, suggests daptomycin is a promising option for patients with bone and joint infections such as MRSA osteomyelitis.
PMCID: PMC2755777  PMID: 18989686
Bone; Daptomycin; Infection; Osteomyelitis; MRSA; VRE
9.  Native Valve Endocarditis Caused by Corynebacterium striatum with Heterogeneous High-Level Daptomycin Resistance: Collateral Damage from Daptomycin Therapy? 
We describe a patient who developed Corynebacterium striatum native valve endocarditis after receiving two 6-week courses of daptomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. The organism exhibited in vitro heteroresistance to daptomycin, with two subpopulations showing daptomycin susceptibility (MIC of ≤0.094 μg/ml) and high-level resistance to daptomycin (MIC of ≥256 μg/ml). The selection of daptomycin-resistant Gram-positive skin flora with the potential of causing invasive disease may be a concern during prolonged courses of daptomycin.
PMCID: PMC3370765  PMID: 22450978
10.  Daptomycin, Fosfomycin, or Both for Treatment of Methicillin-Resistant Staphylococcus aureus Osteomyelitis in an Experimental Rat Model▿ 
Antimicrobial Agents and Chemotherapy  2011;55(11):4999-5003.
The in vivo activities of daptomycin, fosfomycin, and a combination of both antibiotics against a clinical isolate of methicillin-resistant Staphylococcus aureus (daptomycin MIC, 0.25 μg/ml; fosfomycin MIC, 0.5 μg/ml) were evaluated in a rat model of osteomyelitis. A total of 37 rats with experimental osteomyelitis were treated for 4 weeks with either 60 mg/kg of body weight of daptomycin subcutaneously once daily, 75 mg/kg fosfomycin intraperitoneally once daily, a combination of both drugs, or a saline placebo. After the completion of treatment, animals were euthanized, and the infected tibiae were processed for quantitative bacterial culture. Bone cultures were found to be positive for methicillin-resistant S. aureus in 9 of 9 (100%) animals of the placebo group, in 9 of 9 (100%) animals treated with daptomycin, in 1 of 10 (10%) fosfomycin-treated rats, and in 1 of 9 (22.2%) rats comprising the combination group. Results of bacterial counts in the bone samples were expressed as log10 CFU/g of bone and analyzed by using the Mann-Whitney U test followed by Bonferroni's multiple-comparison test. Based on bacterial counts, treatment with daptomycin was significantly superior to placebo, although it remained inferior to treatment with fosfomycin. No synergistic or antagonistic effect was observed for the combination therapy. No development of resistance against daptomycin or fosfomycin was observed after the 4-week treatment period.
PMCID: PMC3194995  PMID: 21859942
11.  Daptomycin and Tigecycline Have Broader Effective Dose Ranges than Vancomycin as Prophylaxis against a Staphylococcus aureus Surgical Implant Infection in Mice 
Vancomycin is widely used for intravenous prophylaxis against surgical implant infections. However, it is unclear whether alternative antibiotics used to treat methicillin-resistant Staphylococcus aureus (MRSA) infections are effective as prophylactic agents. The aim of this study was to compare the efficacies of vancomycin, daptomycin, and tigecycline as prophylactic therapy against a methicillin-sensitive S. aureus (MSSA) or MRSA surgical implant infection in mice. MSSA or MRSA was inoculated into the knee joints of mice in the presence of a surgically placed medical-grade metallic implant. The efficacies of low- versus high-dose vancomycin (10 versus 110 mg/kg), daptomycin (1 versus 10 mg/kg), and tigecycline (1 versus 10 mg/kg) intravenous prophylaxis were compared using in vivo bioluminescence imaging, ex vivo bacterial counts, and biofilm formation. High-dose vancomycin, daptomycin, and tigecycline resulted in similar reductions in bacterial burden and biofilm formation. In contrast, low-dose daptomycin and tigecycline were more effective than low-dose vancomycin against the implant infection. In this mouse model of surgical implant MSSA or MRSA infection, daptomycin and tigecycline prophylaxis were effective over a broader dosage range than vancomycin. Future studies in humans will be required to determine whether these broader effective dose ranges for daptomycin and tigecycline in mice translate to improved efficacy in preventing surgical implant infections in clinical practice.
PMCID: PMC3346658  PMID: 22371896
12.  Daptomycin Eluted From Calcium Sulfate Appears Effective Against Staphylococcus 
The emergence of resistant strains of Gram-positive organisms in osteomyelitis creates treatment challenges. Daptomycin is an antibiotic that shows promise for treating some resistant strains of Gram-positive infections; however, it has not been widely used clinically for the treatment of osteomyelitis. We determined whether daptomycin eluted from calcium sulfate—a local delivery vehicle used for the treatment of osteomyelitis—retained activity against Gram-positive bacteria. Daptomycin was mixed with calcium sulfate hemihydrate, with both laboratory powder and a commercial kit, to form a hardened pellet. Daptomycin was eluted from calcium sulfate and retained its ability to inhibit bacterial growth of Staphylococcus aureus and Staphylococcus epidermidis for eluates gathered up to 28 days. Our preliminary data demonstrates sterilized pellets with daptomycin retained their ability to inhibit bacterial growth of certain strains of Gram-positive organisms.
PMCID: PMC2384021  PMID: 18431614
13.  Daptomycin-nonsusceptible, vancomycin-intermediate, methicillin-resistant Staphylococcus aureus endocarditis 
Due to the emergence of Staphylococcus aureus with reduced vancomycin susceptibility, newer antibiotics, including daptomycin, have been used to treat methicillin-resistant S aureus infections. Daptomycin is a cyclic lipopeptide that is approved to treat S aureus bacteremia and right-sided endocarditis, and reports of S aureus with reduced susceptibility to daptomycin are infrequent. To our knowledge, the present report describes the first Canadian case of daptomycin-nonsusceptible, vancomycin-intermediate S aureus infection.
PMCID: PMC3403664  PMID: 23730321
Daptomycin nonsusceptible; Endocarditis; Methicillin-resistant Staphylococcus aureus; Vancomycin intermediate resistance
14.  Daptomycin use in patients with osteomyelitis: a preliminary report from the EU-CORESM database 
Osteomyelitis is a complex and heterogeneous group of infections that require surgical and antimicrobial interventions. Because treatment failure or intolerance is common, new treatment options are needed. Daptomycin has broad Gram-positive activity, penetrates bone effectively and has bactericidal activity within biofilms. This is the first report on clinical outcomes in patients with osteomyelitis from the multicentre, retrospective, non-interventional European Cubicin® Outcomes Registry and Experience (EU-CORESM), a large database on real-world daptomycin use.
Patients and methods
In total, 220 patients were treated for osteomyelitis; the population was predominantly elderly, with predisposing baseline conditions such as diabetes and chronic renal/cardiac diseases.
Most patients (76%) received prior antibiotic treatment, and first-line treatment failure was the most frequent reason to start daptomycin. Common sites of infection were the knee (22%) or hip (21%), and the most frequently isolated pathogens were Staphylococcus aureus (33%) and coagulase-negative staphylococci (32%). Overall, 52% of patients had surgery, 55% received concomitant antibiotics and 29% received a proportion of daptomycin therapy as outpatients. Clinical success was achieved in 75% of patients. Among patients with prosthetic device-related osteomyelitis, there was a trend towards higher success rates if the device was removed. Daptomycin was generally well tolerated.
This analysis suggests that daptomycin is an effective and well-tolerated treatment option for osteomyelitis and highlights the importance of optimal surgical intervention and appropriate microbiological diagnosis for clinical outcomes.
PMCID: PMC3682689  PMID: 23515247
lipopeptides; Gram-positive infections; bone infections; prosthetic device infections; non-interventional study
15.  Pharmacokinetics and Tolerability of Daptomycin at Doses up to 12 Milligrams per Kilogram of Body Weight Once Daily in Healthy Volunteers 
Antimicrobial Agents and Chemotherapy  2006;50(10):3245-3249.
Daptomycin, a novel lipopeptide, is bactericidal against a broad range of gram-positive strains, including methicillin- (MRSA) and vancomycin-resistant Staphylococcus aureus. Daptomycin is approved at 4 mg/kg of body weight given intravenously once daily for the treatment of complicated skin and skin structure infections and at 6 mg/kg for the treatment of S. aureus bloodstream infections (bacteremia), including right-sided endocarditis caused by methicillin-susceptible S. aureus and MRSA. The present study was designed to evaluate the multiple-dose pharmacokinetics and safety of daptomycin at doses of 6 to 12 mg/kg in healthy volunteers. Three cohorts of 12 subjects each were given daptomycin (10 mg/kg) or placebo once daily for 14 days, daptomycin (12 mg/kg) or placebo once daily for 14 days, or daptomycin (6 or 8 mg/kg) once daily for 4 days. Daptomycin produced dose-proportional increases in the area under the plasma concentration-time curve and in trough daptomycin levels and nearly dose-proportional increases in peak daptomycin concentrations. Other pharmacokinetic parameters measured on day 1 and at steady state were independent of the dose, including the half-life (approximately 8 h), weight-normalized plasma clearance (9 to 10 ml/h/kg), and volume of distribution (approximately 100 ml/kg). Plasma protein binding was 90% to 93% and was independent of the daptomycin concentration. Daptomycin did not produce electrocardiographic abnormalities or electrophysiological evidence of muscle or nerve toxicity. Daptomycin was well tolerated in subjects dosed with up to 12 mg/kg intravenously for 14 days. Doses of daptomycin higher than 6 mg/kg once daily may be considered in further studies to evaluate the safety and efficacy of daptomycin in difficult-to-treat infections.
PMCID: PMC1610083  PMID: 17005801
16.  Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections 
Daptomycin is a lipopeptide antibiotic active against gram-positive organisms and recently approved for marketing in Japan. This study investigates the efficacy and safety of daptomycin in Japanese patients with skin and soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) for regulatory filing in Japan. Overall, 111 Japanese patients with SSTI were randomized in this open-label, randomized, active-comparator controlled, parallel-group, multicenter, phase III study. Patients received intravenous daptomycin 4 mg/kg once daily or vancomycin 1 g twice daily for 7–14 days. Efficacy was determined by a blinded Efficacy Adjudication Committee. Among patients with SSTIs caused by MRSA, 81.8 % (95 % CI, 69.1–90.9) of daptomycin recipients and 84.2 % (95 % CI, 60.4–96.6) of vancomycin recipients achieved a successful clinical response at the test-of-cure (TOC) visit. The microbiological success rate against MRSA at the TOC visit was 56.4 % (95 % CI, 42.3–69.7) with daptomycin and 47.4 % (95 % CI, 24.4–71.1) with vancomycin. Daptomycin was generally well tolerated; most adverse events were of mild to moderate severity. The measurement of daptomycin concentration in plasma revealed that patients with mild or moderate impaired renal function showed similar pharmacokinetics profiles to patients with normal renal function. Clinical and microbiological responses, stratified by baseline MRSA susceptibility, suggested that patients infected with MRSA of higher daptomycin MIC showed a trend of lower clinical success with a P value of 0.052 by Cochran–Armitage test. Daptomycin was clinically and microbiologically effective for the treatment of MRSA-associated SSTIs in Japanese patients.
PMCID: PMC3682108  PMID: 23085743
Daptomycin; MRSA; Vancomycin; Skin infection; Soft tissue infection; SSTI
17.  Efficacy of Daptomycin-Cloxacillin Combination in Experimental Foreign-Body Infection Due to Methicillin-Resistant Staphylococcus aureus 
Despite the use of daptomycin alone at high doses (greater than 6 mg/kg of body weight/day) against difficult-to-treat infections, clinical failures and resistance appeared. Recently, the combination daptomycin-cloxacillin showed enhanced efficacy in clearing bacteremia caused by methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to evaluate the efficacy of daptomycin at usual and high doses (equivalent to 6 and 10 mg/kg/day in humans, respectively) in combination with cloxacillin in a rat tissue cage infection model by MRSA and to compare its efficacy to that of daptomycin-rifampin. We used MRSA strain ATCC BAA-39. In the log- and stationary-phase kill curves, daptomycin-cloxacillin improved the bactericidal activity of daptomycin, especially in log phase. For in vivo studies, therapy was administered intraperitoneally for 7 days with daptomycin at 100 mg/kg/day and 45/mg/kg/day (daptomycin 100 and daptomycin 45), daptomycin 100-cloxacillin at 200 mg/kg/12 h, daptomycin 45-cloxacillin, and daptomycin 100-rifampin at 25 mg/kg/12 h. Daptomycin-rifampin was the best therapy (P < 0.05). Daptomycin 45 was the least effective treatment and did not protect against the emergence of resistant strains. There were no differences between the two dosages of daptomycin plus cloxacillin in any situation, and both protected against resistance. The overall effect of the addition of cloxacillin to daptomycin was a significantly greater cure rate (against adhered bacteria) than that for daptomycin alone. In conclusion, daptomycin-cloxacillin enhanced modestly the in vivo efficacy of daptomycin alone against foreign-body infection by MRSA and was less effective than daptomycin plus rifampin. The benefits of adding cloxacillin to daptomycin should be especially evaluated against infections by rifampin-resistant MRSA and for protection against the emergence of daptomycin nonsusceptibility.
PMCID: PMC3393403  PMID: 22585211
18.  A potential role for daptomycin in enterococcal infections: what is the evidence? 
Nosocomial infections caused by enterococci present a challenge for clinicians because treatment options are often limited due to the widespread occurrence of strains resistant to multiple antibiotics, including vancomycin. Daptomycin is a first-in-class cyclic lipopeptide that has proven efficacy for the treatment of Gram-positive infections. Although methicillin-resistant Staphylococcus aureus has been the most prominent target in the clinical development of daptomycin, this agent has demonstrated potent bactericidal activity in enterococcal infection models and has been used for the treatment of enterococcal infections in humans. In recent years, large-scale susceptibility studies have shown that daptomycin is active against >98% of enterococci tested, irrespective of their susceptibility to other antibacterial agents. This lack of cross-resistance reflects the fact that daptomycin has a mode of action distinct from those of other antibiotics, including glycopeptides. While there are limited data available from randomized controlled trials, extensive clinical experience with daptomycin in enterococcal infections (including bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and urinary tract infections) has been reported. This growing body of evidence provides useful insights regarding the efficacy of daptomycin against enterococci in clinical settings.
PMCID: PMC2868529  PMID: 20363805
Gram-positive bacteria; cyclic lipopeptide antibiotics; nosocomial infections; vancomycin resistance
19.  Correlation between Vancomycin MIC Values and Those of Other Agents against Gram-Positive Bacteria among Patients with Bloodstream Infections Caused by Methicillin-Resistant Staphylococcus aureus ▿  
Antimicrobial Agents and Chemotherapy  2009;53(12):5141-5144.
An increase in the distribution of vancomycin MIC values among methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) isolates has been noted. It is postulated that the shift in vancomycin MIC values may be associated with a concurrent rise in the MIC values of other anti-MRSA agents. Scant data are available on the correlation between vancomycin MIC values and the MIC values of other anti-MRSA agents. This study examined the correlation between vancomycin MIC values and the MIC values of daptomycin, linezolid, tigecycline, and teicoplanin among 120 patients with bloodstream infections caused by MRSA at a tertiary care hospital between January 2005 and May 2007. For each included patient, the MIC values of the antibiotics under study were determined by the Etest method and were separated into the following two categories: day 1 (index) and post-day 1 (subsequent). For subsequent isolates, the MIC values for each antibiotic from the post-day 1 terminal isolate were used. Among the index isolates, there was a significant correlation (P value, <0.01) between the MIC values for vancomycin and daptomycin and between the MIC values for vancomycin and teicoplanin. The MIC values for daptomycin were significantly correlated with linezolid, tigecycline, and teicoplanin MIC values. Among the 48 patients with subsequent isolates, vancomycin MIC values were significantly correlated with MIC values for daptomycin, linezolid, and teicoplanin (ρ value of ≥0.38 for all comparisons). This study documented an association between vancomycin MIC values and the MIC values of other anti-MRSA antibiotics among patients with bloodstream infections caused by MRSA primarily treated with vancomycin.
PMCID: PMC2786352  PMID: 19805558
20.  Bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: the potential role of daptomycin 
Staphylococcus aureus bacteremia is a common disease with a high risk of mortality and complications. An increasing proportion of cases are methicillin-resistant S.aureus (MRSA), and methicillin-resistance is being observed from both community-acquired bacteremias and in healthcare-associated infections. The duration of bacteremia and transesophageal echocardiographic findings are useful in predicting the likelihood of complications including endocarditis. Therapy with vancomycin has been the mainstay in the treatment of MRSA bacteremias, but is associated with a long duration of bacteremia on therapy and relapses. Loss of susceptibility to vancomycin, due to thickened cell walls and through the acquisition of the vanA gene, has been described. Daptomycin is newly approved lipopeptide that is highly bactericidal against most strains of MRSA. In a randomized trial, daptomycin was demonstrated to be effective in the treatment of S. aureus bacteremia and right-sided endocarditis. However treatment failures associated with isolates with daptomycin non-susceptibility are reported, and there is a correlation between isolates with reduced vancomycin susceptibility and reduced daptomycin susceptibility. Daptomycin is a useful alternative to vancomycin in the therapy of MRSA bacteremia and endocarditis. However the appropriate role of daptomycin in optimizing therapy with MRSA bacteremia and endocarditis remains to be elucidated.
PMCID: PMC2374935  PMID: 18472990
methicillin-resistant Staphylococcus aureus; bacteremia; endocarditis; daptomycin
21.  Evaluation of the Novel Combination of High-Dose Daptomycin plus Trimethoprim-Sulfamethoxazole against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Using an In Vitro Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations 
Antimicrobial Agents and Chemotherapy  2012;56(11):5709-5714.
Daptomycin-nonsusceptible (DNS) Staphylococcus aureus is found in difficult-to-treat infections, and the optimal therapy is unknown. We investigated the activity of high-dose (HD) daptomycin plus trimethoprim-sulfamethoxazole de-escalated to HD daptomycin or trimethoprim-sulfamethoxazole against 4 clinical DNS methicillin-resistant S. aureus (MRSA) isolates in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations (109 CFU/g). Simulated regimens included HD daptomycin at 10 mg/kg/day for 14 days, trimethoprim-sulfamethoxazole at 160/800 mg every 12 h for 14 days, HD daptomycin plus trimethoprim-sulfamethoxazole for 14 days, and the combination for 7 days de-escalated to HD daptomycin for 7 days and de-escalated to trimethoprim-sulfamethoxazole for 7 days. Differences in CFU/g (at 168 and 336 h) were evaluated by analysis of variance (ANOVA) with a Tukey's post hoc test. Daptomycin MICs were 4 μg/ml (SA H9749-1, vancomycin-intermediate Staphylococcus aureus; R6212, heteroresistant vancomycin-intermediate Staphylococcus aureus) and 2 μg/ml (R5599 and R5563). Trimethoprim-sulfamethoxazole MICs were ≤0.06/1.19 μg/ml. HD daptomycin plus trimethoprim-sulfamethoxazole displayed rapid bactericidal activity against SA H9749-1 (at 7 h) and R6212 (at 6 h) and bactericidal activity against R5599 (at 72 h) and R5563 (at 36 h). A ≥8 log10 CFU/g decrease was observed with HD daptomycin plus trimethoprim-sulfamethoxazole against all strains (at 48 to 144 h), which was maintained with de-escalation to HD daptomycin or trimethoprim-sulfamethoxazole at 336 h. The combination for 14 days and the combination for 7 days de-escalated to HD daptomycin or trimethoprim-sulfamethoxazole was significantly better than daptomycin monotherapy (P < 0.05) and trimethoprim-sulfamethoxazole monotherapy (P < 0.05) at 168 and 336 h. Combination therapy followed by de-escalation offers a novel bactericidal therapeutic alternative for high-inoculum, serious DNS MRSA infections.
PMCID: PMC3486589  PMID: 22908167
22.  Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins 
Journal of Bacteriology  2012;194(17):4494-4504.
Daptomycin is a lipopeptide antibiotic used clinically for the treatment of certain types of Gram-positive infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Details of the mechanism of action of daptomycin continue to be elucidated, particularly the question of whether daptomycin acts on the cell membrane, the cell wall, or both. Here, we use fluorescence microscopy to directly visualize the interaction of daptomycin with the model Gram-positive bacterium Bacillus subtilis. We show that the first observable cellular effects are the formation of membrane distortions (patches of membrane) that precede cell death by more than 30 min. Membrane patches are able to recruit the essential cell division protein DivIVA. Recruitment of DivIVA correlates with membrane defects and changes in cell morphology, suggesting a localized alteration in the activity of enzymes involved in cell wall synthesis that could account for previously described effects of daptomycin on cell wall morphology and septation. Membrane defects colocalize with fluorescently labeled daptomycin, DivIVA, and fluorescent reporters of peptidoglycan biogenesis (Bocillin FL and BODIPY FL-vancomycin), suggesting that daptomycin plays a direct role in these events. Our results support a mechanism for daptomycin with a primary effect on cell membranes that in turn redirects the localization of proteins involved in cell division and cell wall synthesis, causing dramatic cell wall and membrane defects, which may ultimately lead to a breach in the cell membrane and cell death. These results help resolve the longstanding questions regarding the mechanism of action of this important class of antibiotics.
PMCID: PMC3415520  PMID: 22661688
23.  Fosfomycin-Daptomycin and Other Fosfomycin Combinations as Alternative Therapies in Experimental Foreign-Body Infection by Methicillin-Resistant Staphylococcus aureus 
The efficacy of daptomycin, imipenem, or rifampin with fosfomycin was evaluated and compared with that of daptomycin-rifampin in a tissue cage model infection caused by methicillin-resistant Staphylococcus aureus (MRSA). Strain HUSA 304 was used. The study yielded the following results for MICs (in μg/ml): fosfomycin, 4; daptomycin, 1; imipenem, 0.25; and rifampin, 0.03. The study yielded the following results for minimum bactericidal concentration (MBC) (in μg/ml): fosfomycin, 8; daptomycin, 4; imipenem, 32; and rifampin, 0.5. Daptomycin-rifampin was confirmed as the most effective therapy against MRSA foreign-body infections. Fosfomycin combinations with high doses of daptomycin and rifampin were efficacious alternative therapies in this setting. Fosfomycin-imipenem was relatively ineffective and did not protect against resistance.
PMCID: PMC3535973  PMID: 23089756
24.  Daptomycin and Its Immunomodulatory Effect: Consequences for Antibiotic Treatment of Methicillin-Resistant Staphylococcus aureus Wound Infections after Heart Surgery 
Infections by methicillin-resistant Staphylococcus aureus (MRSA) play an increasing role in the postoperative course. Although wound infections after cardiac surgery are rare, the outcome is limited by the prolonged treatment with high mortality. Not only surgical debridement is crucial, but also antibiotic support. Next to vancomycin and linezolid, daptomycin gains increasing importance. Although clinical evidence is limited, daptomycin has immunomodulatory properties, resulting in the suppression of cytokine expression after host immune response stimulation by MRSA. Experimental studies showed an improved efficacy of daptomycin in combination with administration of vitamin E before infecting wounds by MRSA.
PMCID: PMC3949290  PMID: 24653723
cardiac surgery; antibiotic treatment; wound debridement; resistant bacteria; Staphylococcus aureus; mediastinitis
25.  Daptomycin Is Effective in Treatment of Experimental Endocarditis Due to Methicillin-Resistant and Glycopeptide-Intermediate Staphylococcus aureus▿  
Daptomycin is a lipopeptide antibiotic with potent in vitro activity against gram-positive cocci, including Staphylococcus aureus. This study evaluated the in vitro and in vivo efficacies of daptomycin against two clinical isolates: methicillin-resistant S. aureus (MRSA) 277 (vancomycin MIC, 2 μg/ml) and glycopeptide-intermediate S. aureus (GISA) ATCC 700788 (vancomycin MIC, 8 μg/ml). Time-kill experiments demonstrated that daptomycin was bactericidal in vitro against these two strains. The in vivo activity of daptomycin (6 mg/kg of body weight every 24 h) was evaluated by using a rabbit model of infective endocarditis and was compared with the activities of a high-dose (HD) vancomycin regimen (1 g intravenously every 6 h), the recommended dose (RD) of vancomycin regimen (1 g intravenously every 12 h) for 48 h, and no treatment (as a control). Daptomycin was significantly more effective than the vancomycin RD in reducing the density of bacteria in the vegetations for the MRSA strains (0 [interquartile range, 0 to 1.5] versus 2 [interquartile range, 0 to 5.6] log CFU/g vegetation; P = 0.02) and GISA strains (2 [interquartile range, 0 to 2] versus 6.6 [interquartile range, 2.0 to 6.9] log CFU/g vegetation; P < 0.01) studied. In addition, daptomycin sterilized more MRSA vegetations than the vancomycin RD (13/18 [72%] versus 7/20 [35%]; P = 0.02) and sterilized more GISA vegetations than either vancomycin regimen (12/19 [63%] versus 4/20 [20%]; P < 0.01). No statistically significant difference between the vancomycin HD and the vancomycin RD for MRSA treatment was noted. These results support the use of daptomycin for the treatment of aortic valve endocarditis caused by GISA and MRSA.
PMCID: PMC2443906  PMID: 18426900

Results 1-25 (581386)