Search tips
Search criteria

Results 1-25 (444466)

Clipboard (0)

Related Articles

1.  Improved atomic force microscopy cantilever performance by partial reflective coating 
Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.
PMCID: PMC4505110  PMID: 26199849
cantilever; force noise; partial coating; Q-factor
2.  Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup 
Micron (Oxford, England : 1993)  2012;43(12):1399-1407.
► Development of small cantilever. ► Speed increase by a factor of ten using small cantilevers on a commercial AFM. ► Force sensitivity increase by a factor of five using small cantilever prototypes for force spectroscopy measurements.
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants.
PMCID: PMC3430863  PMID: 22721963
Small cantilever; High resolution imaging; Fast AFM imaging; Ultra-sensitive molecular recognition force spectroscopy
3.  Measurement of Mechanical Properties of Cantilever Shaped Materials 
Sensors (Basel, Switzerland)  2008;8(5):3497-3541.
Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties.
PMCID: PMC3675557
Microcantilever; mechanics; ageing; environment; stress; gas; materials; sensor; pressure; temperature
4.  Determining cantilever stiffness from thermal noise 
We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n, quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.
PMCID: PMC3628876  PMID: 23616942
AFM; cantilever; noncontact atomic force microscopy (NC-AFM); Q-factor; thermal excitation; resonance; spectral analysis; stiffness
5.  Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging 
ACS nano  2010;4(12):7141-7150.
We have batch-fabricated cantilevers with ~100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 kelvin. The magnetic nanorods were engineered to overhang the leading edge of the cantilever and, consequently, the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ≤ 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a non-uniform tip magnetization at an applied field near 0.6 T.
PMCID: PMC4472333  PMID: 21082863
6.  Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy 
The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.
PMCID: PMC3566860  PMID: 23400758
Cantilever; feedback loop; filter; noncontact atomic force microscopy (NC-AFM); noise
7.  CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers 
Scientific Reports  2015;5:10674.
Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of the resonance frequency measurements for the different adsorbed gas molecules are almost identical when the frequency changes are normalized by the molecular weights of the gases. In contrast, the deflection measurements show that only CO2 adsorption induces substantial bending of the MIL53-AAO cantilevers. This selective deflection of the cantilevers is attributed to the strong interactions between CO2 and the hydroxyl groups in MIL-53, which induce structural changes in the MIL-53 layers. Simultaneous measurements of the resonance frequency and the deflection are performed to show that the diffusion of CO2 into the nanoporous MIL-53 layers occurs very rapidly, whereas the binding of CO2 to hydroxyl groups occurs relatively slowly, which indicates that the adsorption of CO2 onto the MIL-53 layers and the desorption of CO2 from the MIL-53 layers are reaction limited.
PMCID: PMC4451844  PMID: 26035805
8.  Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors 
Sensors (Basel, Switzerland)  2009;9(8):6046-6057.
This study presents the deflection, resonant frequency and stress results of rectangular, triangular, and step profile microcantilevers subject to surface stress. These cantilevers can be used as the sensing element in microcantilever biosensors. To increase the overall sensitivity of microcantilever biosensors, both the deflection and the resonant frequency of the cantilever should be increased. The effect of the cantilever profile change and the cantilever cross-section shape change is first investigated separately and then together. A finite element code ANSYS Multiphysics is used and solid finite elements cantilever models are solved. A surface stress of 0.05 N/m was applied to the top surface of the cantilevers. The cantilevers are made of silicon with elastic modulus 130 GPa and Poisson’s ratio 0.28. To show the conformity of this study, the numerical results are compared against their analytical ones. Results show that triangular and step cantilevers have better deflection and frequency characteristics than rectangular ones.
PMCID: PMC3312429  PMID: 22454571
biosensor; surface stress; microcantilever; resonant frequency; deflection
9.  Interpreting motion and force for narrow-band intermodulation atomic force microscopy 
Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip–surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip–surface force that are in-phase with the tip motion (F I) and quadrature to the motion (F Q). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that F I and F Q actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of F I and F Q from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components F I and F Q, providing deeper insight into the tip–surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.
PMCID: PMC3566785  PMID: 23400552
atomic force microscopy; AFM; frequency combs; force spectroscopy; high-quality-factor resonators; intermodulation; multifrequency
10.  Step-Height Measurement of Surface Functionalized Micromachined Microcantilever Using Scanning White Light Interferometry 
Micro-cantilever arrays with different dimensions are fabricated by micromachining technique onto silicon <1 0 0> substrate. These sputtered Gold-Coated micro-cantilevers were later surface functionalized. Scanning Electron Microscopy, Atomic Force Microscopy and Optical SWLI using LASER probe are employed to characterize the morphology and image measurement of the micro-cantilever arrays, respectively. Compared with conventional AFM and SPM measurement technique, the proposed method has demonstrated sufficient flexibility and reliability. The experimental results have been analyzed and presented in this paper for MEMS Micro-cantilevers. The scanning White Light Interferometry based two point high resolution optical method is presented for characterizing Micro-cantilevers and other MEMS micro-structures. The repeatable error and the repeatable precision produced in the proposed image measurement method is nanometre confirmable. In this piece of work, we investigate the micro-structure fabrication and image measurement of Length, Width and Step-Height of micro-cantilever arrays fabricated using bulk micromachining technique onto Silicon <100> substrate.
PMCID: PMC3790309  PMID: 24098867
Scanning Electron Microscopy; Atomic Force Microscopy; Micro-cantilever; Optics; Image Measurement; Silicon (100), Scanning White Light Interferometry
11.  Visualization of Recombinant DNA and Protein Complexes Using Atomic Force Microscopy 
Atomic force microscopy (AFM) allows for the visualizing of individual proteins, DNA molecules, protein-protein complexes, and DNA-protein complexes. On the end of the microscope's cantilever is a nano-scale probe, which traverses image areas ranging from nanometers to micrometers, measuring the elevation of macromolecules resting on the substrate surface at any given point. Electrostatic forces cause proteins, lipids, and nucleic acids to loosely attach to the substrate in random orientations and permit imaging. The generated data resemble a topographical map, where the macromolecules resolve as three-dimensional particles of discrete sizes (Figure 1) 1,2. Tapping mode AFM involves the repeated oscillation of the cantilever, which permits imaging of relatively soft biomaterials such as DNA and proteins. One of the notable benefits of AFM over other nanoscale microscopy techniques is its relative adaptability to visualize individual proteins and macromolecular complexes in aqueous buffers, including near-physiologic buffered conditions, in real-time, and without staining or coating the sample to be imaged.
The method presented here describes the imaging of DNA and an immunoadsorbed transcription factor (i.e. the glucocorticoid receptor, GR) in buffered solution (Figure 2). Immunoadsorbed proteins and protein complexes can be separated from the immunoadsorbing antibody-bead pellet by competition with the antibody epitope and then imaged (Figure 2A). This allows for biochemical manipulation of the biomolecules of interest prior to imaging. Once purified, DNA and proteins can be mixed and the resultant interacting complex can be imaged as well. Binding of DNA to mica requires a divalent cation 3,such as Ni2+ or Mg2+, which can be added to sample buffers yet maintain protein activity. Using a similar approach, AFM has been utilized to visualize individual enzymes, including RNA polymerase 4 and a repair enzyme 5, bound to individual DNA strands. These experiments provide significant insight into the protein-protein and DNA-protein biophysical interactions taking place at the molecular level. Imaging individual macromolecular particles with AFM can be useful for determining particle homogeneity and for identifying the physical arrangement of constituent components of the imaged particles. While the present method was developed for visualization of GR-chaperone protein complexes 1,2 and DNA strands to which the GR can bind, it can be applied broadly to imaging DNA and protein samples from a variety of sources.
PMCID: PMC3196170  PMID: 21788938
12.  An AFM-Based Stiffness Clamp for Dynamic Control of Rigidity 
PLoS ONE  2011;6(3):e17807.
Atomic force microscopy (AFM) has become a powerful tool for measuring material properties in biology and imposing mechanical boundary conditions on samples from single molecules to cells and tissues. Constant force or constant height can be maintained in an AFM experiment through feedback control of cantilever deflection, known respectively as a ‘force clamp’ or ‘position clamp’. However, stiffness, the third variable in the Hookean relation F = kx that describes AFM cantilever deflection, has not been dynamically controllable in the same way. Here we present and demonstrate a ‘stiffness clamp’ that can vary the apparent stiffness of an AFM cantilever. This method, employable on any AFM system by modifying feedback control of the cantilever, allows rapid and reversible tuning of the stiffness exposed to the sample in a way that can decouple the role of stiffness from force and deformation. We demonstrated the AFM stiffness clamp on two different samples: a contracting fibroblast cell and an expanding polyacrylamide hydrogel. We found that the fibroblast, a cell type that secretes and organizes the extracellular matrix, exhibited a rapid, sub-second change in traction rate (dF/dt) and contraction velocity (dx/dt) in response to step changes in stiffness between 1–100 nN/µm. This response was independent of the absolute contractile force and cell height, demonstrating that cells can react directly to changes in stiffness alone. In contrast, the hydrogel used in our experiment maintained a constant expansion velocity (dx/dt) over this range of stiffness, while the traction rate (dF/dt) changed with stiffness, showing that passive materials can also behave differently in different stiffness environments. The AFM stiffness clamp presented here, which is applicable to mechanical measurements on both biological and non-biological samples, may be used to investigate cellular mechanotransduction under a wide range of controlled mechanical boundary conditions.
PMCID: PMC3050926  PMID: 21408137
13.  Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization 
IEEE transactions on magnetics  2013;49(7):3528-3532.
Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide’s electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal’s dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients.
PMCID: PMC4474500  PMID: 26097251
14.  Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers 
Sensors (Basel, Switzerland)  2015;15(3):5865-5883.
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.
PMCID: PMC4435172  PMID: 25763650
AFM cantilever; normal spring constant; calibration; balance; uncertainty estimation
15.  Intrinsically High-Q Dynamic AFM Imaging in Liquid with a Significantly Extended Needle Tip 
Nanotechnology  2012;23(23):235704.
Atomic force microscope (AFM) probe with a long and rigid needle tip was fabricated and studied for high Q factor dynamic (tapping mode) AFM imaging of samples submersed in liquid. The extended needle tip over a regular commercially-available tapping mode AFM cantilever was sufficiently long to keep the AFM cantilever from submersed in liquid, which significantly minimized the hydrodynamic damping involved in dynamic AFM imaging of samples in liquid. Dynamic AFM imaging of samples in liquid at an intrinsic Q factor of over 100 and an operation frequency of over 200 kHz was demonstrated. The method has the potential to be extended to acquire viscoelastic materials properties and provide truly gentle imaging of soft biological samples in physiological environments.
PMCID: PMC3401635  PMID: 22595833
16.  Characterization of Films with Thickness Less than 10 nm by Sensitivity-Enhanced Atomic Force Acoustic Microscopy 
We present a method for characterizing ultrathin films using sensitivity-enhanced atomic force acoustic microscopy, where a concentrated-mass cantilever having a flat tip was used as a sensitive oscillator. Evaluation was aimed at 6-nm-thick and 10-nm-thick diamond-like carbon (DLC) films deposited, using different methods, on a hard disk for the effective Young's modulus defined as E/(1 - ν2), where E is the Young's modulus, and ν is the Poisson's ratio. The resonant frequency of the cantilever was affected not only by the film's elasticity but also by the substrate even at an indentation depth of about 0.6 nm. The substrate effect was removed by employing a theoretical formula on the indentation of a layered half-space, together with a hard disk without DLC coating. The moduli of the 6-nm-thick and 10-nm-thick DLC films were 392 and 345 GPa, respectively. The error analysis showed the standard deviation less than 5% in the moduli.
PMCID: PMC3211417
Atomic force acoustic microscopy; Thin film; Elastic modulus; Diamond-like carbon; Concentrated-mass cantilever
17.  High-Gradient Nanomagnets on Cantilevers for Sensitive Detection of Nuclear Magnetic Resonance 
ACS nano  2012;6(11):9637-9645.
Detection of magnetic resonance as a force between a magnetic tip and nuclear spins has previously been shown to enable sub-10 nm resolution 1H imaging. Maximizing the spin force in such a magnetic resonance force microscopy (MRFM) experiment demands a high field gradient. In order to study a wide range of samples, it is equally desirable to locate the magnetic tip on the force sensor. Here we report the development of attonewton-sensitivity cantilevers with high gradient cobalt nanomagnet tips. The damage layer thickness and saturation magnetization of the magnetic material were characterized by X-ray photoelectron spectroscopy and superconducting quantum interference device magnetometry. The coercive field and saturation magnetization of an individual tip were quantified in situ using frequency-shift cantilever magnetometry. Measurements of cantilever dissipation versus magnetic field and tip-sample separation were conducted. MRFM signals from protons in a polystyrene film were studied versus rf irradiation frequency and tip-sample separation, and from this data the tip field and tip-field gradient were evaluated. Magnetic tip performance was assessed by numerically modeling the frequency dependence of the magnetic resonance signal. We observed a tip-field gradient ∂Bztip∕∂z estimated to be between 4.4 and 5.4 MT m−1, which is comparable to the gradient used in recent 4 nm resolution 1H imaging experiments and larger by nearly an order of magnitude than the gradient achieved in prior magnet-on-cantilever MRFM experiments.
PMCID: PMC3535834  PMID: 23033869
nanofabrication; magnetic resonance force microscopy; magnetometry; X-ray photoelectron spectroscopy; superconducting quantum interference device; surface-induced dissipation
18.  Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy 
The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k * are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α′- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.
PMCID: PMC4419657  PMID: 25977847
atomic force acoustic microscopy; contact resonances; damping; indentation modulus; Ti-6Al-4V
19.  Label-Free Glucose Detection Using Cantilever Sensor Technology Based on Gravimetric Detection Principles 
Efficient maintenance of glucose homeostasis is a major challenge in diabetes therapy, where accurate and reliable glucose level detection is required. Though several methods are currently used, these suffer from impaired response and often unpredictable drift, making them unsuitable for long-term therapeutic practice. In this study, we demonstrate a method that uses a functionalized atomic force microscope (AFM) cantilever as the sensor for reliable glucose detection with sufficient sensitivity and selectivity for clinical use. We first modified the AFM tip with aminopropylsilatrane (APS) and then adsorbed glucose-specific lectin concanavalin A (Con A) onto the surface. The Con A/APS-modified probes were then used to detect glucose by monitoring shifts in the cantilever resonance frequency. To confirm the molecule-specific interaction, AFM topographical images were acquired of identically treated silicon substrates which indicated a specific attachment for glucose-Con A and not for galactose-Con A. These results demonstrate that by monitoring the frequency shift of the AFM cantilever, this sensing system can detect the interaction between Con A and glucose, one of the biomolecule recognition processes, and may assist in the detection and mass quantification of glucose for clinical applications with very high sensitivity.
PMCID: PMC3747413  PMID: 23984191
20.  ‘Living cantilever arrays’ for characterization of mass of single live cells in fluids† 
Lab on a chip  2008;8(7):1034-1041.
The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of ‘living cantilever arrays’, an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells.
PMCID: PMC3804646  PMID: 18584076
21.  Influence of spurious resonances on the interaction force in dynamic AFM 
The quantification of the tip–sample interaction in amplitude modulation atomic force microscopy is challenging, especially when measuring in liquid media. Here, we derive formulas for the tip–sample interactions and investigate the effect of spurious resonances on the measured interaction. Highlighting the differences between measuring directly the tip position or the cantilever deflection, and considering both direct and acoustic excitation, we show that the cantilever behavior is insensitive to spurious resonances as long as the measured signal corresponds to the tip position, or if the excitation force is correctly considered. Since the effective excitation force may depend on the presence of such spurious resonances, only the case in which the frequency is kept constant during the measurement is considered. Finally, we show the advantages that result from the use of a calibration method based on the acquisition of approach–retract curves.
PMCID: PMC4362509  PMID: 25821682
acoustic excitation; amplitude modulation; atomic force microscopy; fluid borne excitation; interferometric detection; laser-beam detection; spurious resonances
22.  Atomic force microscopy measurements of lens elasticity in monkey eyes 
Molecular Vision  2007;13:504-510.
To demonstrate the feasibility of measuring the elasticity of intact crystalline lenses using atomic force microscopy (AFM).
AFM elasticity measurements were performed on intact lenses from 18 fresh cynomolgus monkey cadaver eyes (4-10 years old, <1 day postmortem) that had been left attached to their zonule-ciliary body-sclera framework. The eyes were prepared by bonding a plastic ring on the sclera after removal of the conjunctival, adipose, and muscle tissues. The posterior pole was sectioned, with the excess vitreous removed, and the eye's anterior section was placed on a Teflon slide to protect the posterior pole of the lens. The cornea and iris were then sectioned. The lens-zonule-ciliary body-sclera section was then placed in a Petri dish filled with balanced salt solution in an AFM system designed for force measurements. Next, the central pole of the anterior surface of the intact lens was probed with the AFM cantilever tip. The recorded AFM cantilever deflection-indentation curves were used to derive force-indentation curves for the lens after factoring out the deflection of the cantilever on a hard surface. Young's modulus of the lens was calculated from the force-indentation relation using the Hertz model.
Young's modulus was 1,720±880 Pa (range: 409-3,210 Pa) in the 18 cynomolgus monkey lenses.
AFM can be used to provide measurements of the elasticity of the whole lens including the capsule. Values obtained using AFM on cynomolgus monkey lenses are similar to published values obtained using dynamic mechanical analysis on young human lenses.
PMCID: PMC2649306  PMID: 17417612
23.  Dissipation signals due to lateral tip oscillations in FM-AFM 
We study the coupling of lateral and normal tip oscillations and its effect on the imaging process of frequency-modulated dynamic atomic force microscopy. The coupling is induced by the interaction between tip and surface. Energy is transferred from the normal to the lateral excitation, which can be detected as damping of the cantilever oscillation. However, energy can be transferred back into the normal oscillation, if not dissipated by the usually uncontrolled mechanical damping of the lateral excitation. For certain cantilevers, this dissipation mechanism can lead to dissipation rates larger than 0.01 eV per period. The mechanism produces an atomic contrast for ionic crystals with two maxima per unit cell in a line scan.
PMCID: PMC4273252  PMID: 25551032
atomic force microscopy (AFM); frequency-modulated atomic force microscopy (FM-AFM); energy dissipation
24.  Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments 
Sensors (Basel, Switzerland)  2015;15(8):18381-18401.
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
PMCID: PMC4570326  PMID: 26225979
atomic force microscope; pressure; vorticity; semi-analytical method
25.  Atomic force microscopy with sub-picoNewton force stability for biological applications 
Methods (San Diego, Calif.)  2013;60(2):131-141.
Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip.
PMCID: PMC3669665  PMID: 23562681
Atomic force microscopy; scanning probe microscopy; single molecule force spectroscopy; drift; overstretching DNA; cantilever; imaging

Results 1-25 (444466)