Search tips
Search criteria

Results 1-25 (712215)

Clipboard (0)

Related Articles

1.  AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential 
Nanoscale Research Letters  2011;6(1):185.
Thiol self-assembled monolayers (SAMs) are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV), revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.
PMCID: PMC3211238  PMID: 21711703
2.  Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification 
Twisted few layer graphene (FLG) is highly attractive from an application point of view, due to its extraordinary electronic properties. In order to study its properties, we demonstrate and discuss three different routes to in situ create and identify (twisted) FLG. Single layer graphene (SLG) sheets mechanically exfoliated under ambient conditions on 6H-SiC(0001) are modified by (i) swift heavy ion (SHI) irradiation, (ii) by a force microscope tip and (iii) by severe heating. The resulting surface topography and the surface potential are investigated with non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). SHI irradiation results in rupture of the SLG sheets, thereby creating foldings and bilayer graphene (BLG). Applying the other modification methods creates enlarged (twisted) graphene foldings that show rupture along preferential edges of zigzag and armchair type. Peeling at a folding over an edge different from a low index crystallographic direction can result in twisted BLG, showing a similar height as Bernal (or AA-stacked) BLG in NC-AFM images. The rotational stacking can be identified by a significant contrast in the local contact potential difference (LCPD) measured by KPFM.
PMCID: PMC3817683  PMID: 24205456
graphene; Kelvin probe force microscopy (KPFM), local contact potential difference (LCPD); non-contact atomic force microscopy (NC-AFM); SiC
3.  Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy 
Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.
PMCID: PMC3045939  PMID: 21977410
aluminum oxide; charge state; contact potential; defects; domain boundaries; dynamic force microscopy; frequency modulation atomic force microscopy; Kelvin probe force microscopy; magnesium oxide; non-contact atomic force microscopy; scanning tunneling microscopy; thin films; work function
4.  Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices 
Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.
Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.
PMCID: PMC4734346  PMID: 26885461
copper alloy; electrostatic force microscopy; high-voltage device; Kelvin probe force microscopy; silicon carbide (SiC); surface photo voltage
5.  Observing Optical Plasmons on a Single Nanometer Scale 
Scientific Reports  2014;4:4096.
The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales.
PMCID: PMC3930893  PMID: 24556874
6.  Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination 
The most outstanding feature of scanning force microscopy (SFM) is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample.
PMCID: PMC3190625  PMID: 22003461
electrostatic interaction; focused electron beam induced deposition; Kelvin probe force microscopy; magnetic force microscopy; magnetic nanostructures
7.  Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes 
Nanoscale Research Letters  2013;8(1):532.
In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements.
PMCID: PMC3895793  PMID: 24350866
Heterodyne amplitude modulation; Frequency modulation; Kelvin probe force microscopy
8.  Crystallographic order and decomposition of [MnIII6CrIII]3+ single-molecule magnets deposited in submonolayers and monolayers on HOPG studied by means of molecular resolved atomic force microscopy (AFM) and Kelvin probe force microscopy in UHV 
Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations.
PMCID: PMC3917421  PMID: 24495692
AFM; KPFM; Single-molecule magnet; HOPG; Ordered monolayer; Decomposition; UHV
9.  Impacts of Hematite Nanoparticle Exposure on Biomechanical, Adhesive, and Surface Electrical Properties of Escherichia coli Cells 
Applied and Environmental Microbiology  2012;78(11):3905-3915.
Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P < 0.01) than that of the untreated cells (approximately 400 nm). The spring constant of hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from −4 ± 2 mV to −27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials.
PMCID: PMC3346382  PMID: 22467500
10.  Electrospray deposition of organic molecules on bulk insulator surfaces 
Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules.
PMCID: PMC4660929  PMID: 26665062
adsorption; electrospray; insulating surface; large molecules; non-contact AFM; ultra-high vacuum (UHV)
11.  Correlation between Desorption Force Measured by Atomic Force Microscopy and Adsorption Free Energy Measured by Surface Plasmon Resonance Spectroscopy for Peptide–Surface Interactions 
Surface Plasmon resonance (SPR) spectroscopy is a useful technique for thermodynamically characterizing peptide–surface interactions; however, its usefulness is limited to the types of surfaces that can readily be formed as thin layers in nanometer scale on metallic biosensor substrates. Atomic force microscopy (AFM), on the other hand, can be used with any microscopically flat surface, thus making it more versatile for studying peptide–surface interactions. AFM, however, has the drawback of data interpretation due to questions regarding peptide-to-probe–tip density. This problem could be overcome if results from a standardized AFM method could be correlated with SPR results for a similar set of peptide–surface interactions so that AFM studies using the standardized method could be extended to characterize peptide–surface interactions for surfaces that are not amenable for characterization by SPR. In this paper, we present the development and application of an AFM method to measure adsorption forces for host–guest peptides sequence on surfaces consisting of alkanethiol self–assembled monolayers (SAMs) with different functionality. The results from these studies show that a linear correlation exists between these data and the adsorption free energy (ΔG°ads) values associated with a similar set of peptide–surface systems available from SPR measurements. These methods will be extremely useful to thermodynamically characterize the adsorption behavior for peptides on a much broader range of surfaces than can be used with SPR to provide information related to understanding protein adsorption behavior to these surfaces and to provide an experimental database that can be used for the evaluation, modification, and validation of force field parameters that are needed to accurately represent protein adsorption behavior for molecular simulations.
PMCID: PMC3006061  PMID: 21073182
12.  Plasmon-Enhanced Surface Photovoltage of ZnO/Ag Nanogratings 
Scientific Reports  2015;5:16727.
We investigated the surface photovoltage (SPV) behaviors of ZnO/Ag one-dimensional (1D) nanogratings using Kelvin probe force microscopy (KPFM). The grating structure could couple surface plasmon polaritons (SPPs) with photons, giving rise to strong light confinement at the ZnO/Ag interface. The larger field produced more photo-excited carriers and increased the SPV. SPP excitation influenced the spatial distribution of the photo-excited carriers and their recombination processes. As a result, the SPV relaxation time clearly depended on the wavelength and polarization of the incident light. All of these results suggested that SPV measurement using KPFM should be very useful for studying the plasmonic effects in nanoscale metal/semiconductor hybrid structures.
PMCID: PMC4645158  PMID: 26567529
13.  Kelvin probe force microscopy in liquid using electrochemical force microscopy 
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.
PMCID: PMC4311590  PMID: 25671164
diffuse charge dynamics; double layer charging; electrochemical force microscopy; electrochemistry; Kelvin probe force microscopy
14.  Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces 
We investigated the adsorption of 4-methoxy-4′-(3-sulfonatopropyl)stilbazolium (MSPS) on different ionic (001) crystal surfaces by means of noncontact atomic force microscopy. MSPS is a zwitterionic molecule with a strong electric dipole moment. When deposited onto the substrates at room temperature, MSPS diffuses to step edges and defect sites and forms disordered assemblies of molecules. Subsequent annealing induces two different processes: First, at high coverage, the molecules assemble into a well-organized quadratic lattice, which is perfectly aligned with the <110> directions of the substrate surface (i.e., rows of equal charges) and which produces a Moiré pattern due to coincidences with the substrate lattice constant. Second, at low coverage, we observe step edges decorated with MSPS molecules that run along the <110> direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge.
PMCID: PMC3323918  PMID: 22497002
alkali halide surface; noncontact atomic force microscopy; organic molecule; self-organization; zwitterion
15.  Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM 
The growth of molecular assemblies at room temperature on insulating surfaces is one of the main goals in the field of molecular electronics. Recently, the directed growth of porphyrin-based molecular wires on KBr(001) was presented. The molecule–surface interaction associated with a strong dipole moment of the molecules was sufficient to bind them to the surface; while a stabilization of the molecular assemblies was reached due to the intermolecular interaction by π–π binding. Here, we show that the atomic structure of the substrate can control the direction of the wires and consequently, complex molecular assemblies can be formed. The electronic decoupling of the molecules by one or two monolayers of KBr from the Cu(111) substrate is found to be insufficient to enable comparable growth conditions to bulk ionic materials.
PMCID: PMC3045942  PMID: 21977413
directed growth; KBr; molecular wires; NaCl; nc-AFM; porphyrin; self assembly
16.  Changes in Plasma Membrane Surface Potential of PC12 Cells as Measured by Kelvin Probe Force Microscopy 
PLoS ONE  2012;7(4):e33849.
The plasma membrane of a cell not only works as a physical barrier but also mediates the signal relay between the extracellular milieu and the cell interior. Various stimulants may cause the redistribution of molecules, like lipids, proteins, and polysaccharides, on the plasma membrane and change the surface potential (Φs). In this study, the Φss of PC12 cell plasma membranes were measured by atomic force microscopy in Kelvin probe mode (KPFM). The skewness values of the Φss distribution histogram were found to be mostly negative, and the incorporation of negatively charged phosphatidylserine shifted the average skewness values to positive. After being treated with H2O2, dopamine, or Zn2+, phosphatidylserine was found to be translocated to the membrane outer leaflet and the averaged skewness values were changed to positive values. These results demonstrated that KPFM can be used to monitor cell physiology status in response to various stimulants with high spatial resolution.
PMCID: PMC3323603  PMID: 22506008
17.  Core charge distribution and self assembly of columnar phases: the case of triphenylenes and azatriphenylenes 
The relation betweeen the structure of discotic molecules and columnar properties, a crucial point for the realization of new advanced materials, is still largely unknown. A paradigmatic case is that hexa-alkyl-thio substituted triphenylenes present mesogenic behavior while the corresponding azatriphenylenes, similar in shape and chemical structure, but with a different core charge distribution, do not form any liquid crystalline mesophase. This study is aimed at investigating, with the help of computer simulations techniques, the effects on phase behaviour of changes of the charge distribution in the discotic core.
We described the shape and the pair, dispersive and electrostatic, interactions of hexa alkyl triphenylenes by uniaxial Gay-Berne discs with embedded point charges. Gay-Berne parameters were deduced by fitting the dispersive energies obtained from an atomistic molecular dynamics simulation of a small sample of hexa-octyl-thio triphenylene molecules in columnar phase, while a genetic algorithm was used to get a minimal set of point charges that properly reproduces the ab anitio electrostatic potential. We performed Monte Carlo simulations of three molecular models: the pure Gay-Berne disc, used as a reference, the Gay-Berne disc with hexa-thio triphenylene point charges, the Gay-Berne disc with hexa-thio azatriphenylene point charges. The phase diagram of the pure model evidences a rich polymorphism, with isotropic, columnar and crystalline phases at low pressure, and the appearance of nematic phase at higher pressure.
We found that the intermolecular electrostatic potential among the cores is fundamental in sta-bilizing/destabilizing columnar phases; in particular the triphenylene charge distribution stabilizes the columnar structure, while the azatriphenylene distribution suppresses its formation in favor of the nematic phase. We believe the present model could be successfully employed as the basis for coarse-grained level simulations of a wider class of triphenylene derivatives.
PMCID: PMC1994060  PMID: 17880748
18.  The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces 
Journal of structural biology  2009;169(3):266-276.
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein–surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH3, and NH2 end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.
PMCID: PMC3084684  PMID: 19850130
Amelogenin; LRAP; Adsorption; Quaternary structure
19.  Standardization of surface potential measurements of graphene domains 
Scientific Reports  2013;3:2597.
We compare the three most commonly used scanning probe techniques to obtain a reliable value of the work function in graphene domains of different thickness. The surface potential (SP) of graphene is directly measured in Hall bar geometry via a combination of electrical functional microscopy and spectroscopy techniques, which enables calibrated work function measurements of graphene domains in ambient conditions with values Φ1LG ~4.55 ± 0.02 eV and Φ2LG ~ 4.44 ± 0.02 eV for single- and bi-layer, respectively. We demonstrate that frequency-modulated Kelvin probe force microscopy (FM-KPFM) provides more accurate measurement of the SP than amplitude-modulated (AM)-KPFM. The discrepancy between experimental results obtained by different techniques is discussed. In addition, we use FM-KPFM for contactless measurements of the specific components of the device resistance. We show a strong non-Ohmic behavior of the electrode-graphene contact resistance and extract the graphene channel resistivity.
PMCID: PMC3764438  PMID: 24008915
20.  Electrochemical Characterization of Globotriose-Containing Self-Assembled Monolayers on Nanoporous Gold and their Binding of Soybean Agglutinin 
Carbohydrate research  2012;373:9-17.
Self-assembled monolayers (SAMs) of α-D-Gal-(1→4)-β-D-Gal-(1→4)-β-D-Glc-mercaptooctane (globotriose, Gb3-C8-SH) were prepared both as single-component SAMs and as mixed SAMs with either octanethiol (OCT) or 8-mercapto-3,6-dioxaoctanol (HO-PEG2-SH), on flat gold and on nanoporous gold (NPG) electrodes. The binding of soybean agglutinin (SBA) to the globotriose (Gb3) unit in the SAMs was then studied using electrochemical impedance spectroscopy (EIS), which is a label free method found to be quite sensitive to SAM composition and to the differences in SAM structure on NPG versus on flat Au. The affinity of SBA to the mixed SAM of HO-PEG2-SH and Gb3-C8-SH on NPG is found to be greater on NPG than on flat gold, and indicates a potential advantage for NPG as a substrate. The SAMs of HO-PEG2-SH were found to resist protein adsorption on either NPG or flat gold. The non-specific adsorption of SBA to OCT SAMs on flat Au was observed in EIS by the increase in charge transfer resistance; whereas, the increase seen on the NPG surface was smaller, and suggests that EIS measurements on NPG are less affected by non-specific protein adsorption. Atomic force microscopy (AFM) images of the SBA binding to mixed SAM of HO-PEG2-SH and Gb3-C8-SH on NPG showed a greater number of proteins on top of the OCT containing SAMs.
PMCID: PMC3615452  PMID: 23545324
21.  Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces 
The journal of physical chemistry. B  2009;113(7):1833-1842.
The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres”, spherical aggregates of monomers that are 20−60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality and single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, X-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces, and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. Although the small structures may be present in solution even though they are not detected by DLS, we also propose that amelogenin may adsorb by the “shedding” or disassembling of substructures from the nanospheres onto the substrates. This work suggests that amelogenin may have a range of possible quaternary structures that interact with surfaces.
PMCID: PMC2659662  PMID: 19199690
22.  Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements 
Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.
PMCID: PMC3323917  PMID: 22497001
buffer layer; Cu3BiS3; Kelvin probe force microscopy; solar cells
23.  Fractal Nature of Metallic and Insulating Domain Configurations in a VO2 Thin Film Revealed by Kelvin Probe Force Microscopy 
Scientific Reports  2015;5:10417.
We investigated the surface work function (WS) and its spatial distribution for epitaxial VO2/TiO2 thin films using Kelvin probe force microscopy (KPFM). Nearly grain-boundary-free samples allowed observation of metallic and insulating domains with distinct WS values, throughout the metal–insulator transition. The metallic fraction, estimated from WS maps, describes the evolution of the resistance based on a two-dimensional percolation model. The KPFM measurements also revealed the fractal nature of the domain configuration.
PMCID: PMC4434847  PMID: 25982229
24.  Determination of Peptide–Surface Adsorption Free Energy for Material Surfaces Not Conducive to SPR or QCM using AFM 
Langmuir  2012;28(13):5687-5694.
The interactions between peptides and proteins with material surfaces are of primary importance in many areas of biotechnology. While surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance (QCM) methods have proven to be very useful in measuring fundamental properties characterizing adsorption behavior, such as the free energy of adsorption for peptide–surface interactions, these methods are largely restricted to use for materials that can readily form nanoscale–thick films over the respective sensor surfaces. Many materials including most polymers, ceramics, and inorganic glasses, however, are not readily suitable for use with SPR or QCM methods. To overcome these limitations, we recently showed that desorption forces (Fdes) obtained using a standardized AFM method linearly correlate to standard state adsorption free energy values (ΔGoads) measured from SPR in phosphate buffered saline (PBS: phosphate buffered 140 mM NaCl, pH 7.4). This approach thus provides a means to determine ΔGoads for peptide adsorption using AFM that can be applied to any flat material surface. In this present study, we investigated the Fdes: ΔGoads correlation between AFM and SPR data in PBS for a much broader range of systems including eight different types of peptides on a set of eight different alkanethiol self–assembled monolayer (SAM) surfaces. The resulting correlation was then used to estimate ΔGoads from Fdes determined by AFM for selected bulk polymer and glass/ceramic materials such as the poly(methyl–methacrylate) (PMMA), high–density polyethylene (HDPE), fused silica glass (SiO2), and a quartz (100) surface. The results of these studies support our previous findings regarding the strong correlation between Fdes measured by AFM and ΔGoads determined by SPR, and provides a means to estimate ΔGoads for peptide adsorption on macroscopically thick samples of materials that are not conducive for use with SPR or QCM.
PMCID: PMC3319500  PMID: 22397583
25.  Modeling noncontact atomic force microscopy resolution on corrugated surfaces 
Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid). The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.
PMCID: PMC3323912  PMID: 22496996
graphene; model; noncontact atomic force microscopy; SiO2; van der Waals

Results 1-25 (712215)