Search tips
Search criteria

Results 1-25 (623093)

Clipboard (0)

Related Articles

1.  Targeted Next-generation Sequencing of Advanced Prostate Cancer Identifies Potential Therapeutic Targets and Disease Heterogeneity 
European urology  2012;63(5):920-926.
Most personalized cancer care strategies involving DNA sequencing are highly reliant on acquiring sufficient fresh or frozen tissue. It has been challenging to comprehensively evaluate the genome of advanced prostate cancer (PCa) because of limited access to metastatic tissue.
To demonstrate the feasibility of a novel next-generation sequencing (NGS) based platform that can be used with archival formalin-fixed paraffin-embedded (FFPE) biopsy tissue to evaluate the spectrum of DNA alterations seen in advanced PCa.
Design, setting, and participants
FFPE samples (including archival prostatectomies and prostate needle biopsies) were obtained from 45 patients representing the spectrum of disease: localized PCa, metastatic hormone-naive PCa, and metastatic castration-resistant PCa (CRPC). We also assessed paired primaries and metastases to understand disease heterogeneity and disease progression.
At least 50 ng of tumor DNA was extracted from FFPE samples and used for hybridization capture and NGS using the Illumina HiSeq 2000 platform.
Outcome measurements and statistical analysis
A total of 3320 exons of 182 cancer-associated genes and 37 introns of 14 commonly rearranged genes were evaluated for genomic alterations.
Results and limitations
We obtained an average sequencing depth of >900X. Overall, 44% of CRPCs harbored genomic alterations involving the androgen receptor gene (AR), including AR copy number gain (24% of CRPCs) or AR point mutation (20% of CRPCs). Other recurrent mutations included transmembrane protease, serine 2 gene (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (avian) gene (ERG) fusion (44%); phosphatase and tensin homolog gene (PTEN) loss (44%); tumor protein p53 gene (TP53) mutation (40%); retinoblastoma gene (RB) loss (28%); v-myc myelocytomatosis viral oncogene homolog (avian) gene (MYC) gain (12%); and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α gene (PIK3CA) mutation (4%). There was a high incidence of genomic alterations involving key genes important for DNA repair, including breast cancer 2, early onset gene (BRCA2) loss (12%) and ataxia telangiectasia mutated gene (ATM) mutations (8%); these alterations are potentially targetable with poly(adenosine diphosphate-ribose)polymerase inhibitors. A novel and actionable rearrangement involving the v-raf murine sarcoma viral oncogene homolog B1 gene (BRAF) was also detected.
This first-in-principle study demonstrates the feasibility of performing in-depth DNA analyses using FFPE tissue and brings new insight toward understanding the genomic landscape within advanced PCa.
PMCID: PMC3615043  PMID: 22981675
Next-generation sequencing; Castration-resistant prostate cancer; Prostate cancer genome
2.  The emerging role of histone lysine demethylases in prostate cancer 
Molecular Cancer  2012;11:52.
Early prostate cancer (PCa) is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC). Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3). Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC) self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs) are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a novel perspective in our efforts to prevent and cure advanced PCa.
PMCID: PMC3441810  PMID: 22867098
Prostate cancer; Epigenetics; Tumor-initiating cells; Histone demethylase; Androgen receptor
3.  Cabozantinib Inhibits Growth of Androgen-Sensitive and Castration-Resistant Prostate Cancer and Affects Bone Remodeling 
PLoS ONE  2013;8(10):e78881.
Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa), cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.
PMCID: PMC3808282  PMID: 24205338
4.  An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions 
Asian Journal of Andrology  2013;15(2):231-235.
The skeleton is the most common metastatic organ in patients with prostate cancer (PCa). Non-invasive biomarkers that can facilitate the detection and monitoring of bone metastases are highly desirable. We designed this study to assess the expression patterns of serum miR-141 in patients with bone-metastatic PCa. Serum samples were collected to measure the miR-141 level in 56 patients, including six with benign prostatic hyperplasia (BPH), 20 with localized PCa and 30 with bone-metastatic PCa (10 with hormone-naive PCa, 10 with hormone-sensitive PCa and 10 with hormone-refractory PCa). A bone scan was performed for each patient with PCa to assess the number of bone lesions. The quantification of serum miR-141 levels was assayed by specific TaqMan qRT-PCR. The results showed that serum miR-141 levels were elevated in patients with bone metastasis (P<0.001). There was no statistically significant difference in the serum miR-141 levels between patients with BPH and patients with localized PCa. Using Kendall's bivariate correlation test, both the Gleason score and the number of bone-metastatic lesions were found to correlate with serum miR-141 levels (P=0.012 and P<0.001, respectively). The serum miR-141 level was found to be positively correlated with alkaline phosphatase (ALP) level in patients with skeletal metastasis, using Pearson's bivariate correlation test. No relationship was found between the serum miR-141 level and the serum prostate-specific antigen (PSA) level. We concluded that serum miR-141 levels are elevated in patients with bone-metastatic PCa and that patients with higher levels of serum miR-141 developed more bone lesions. Furthermore, serum miR-141 levels are correlated with serum ALP levels but not serum PSA levels.
PMCID: PMC3739140  PMID: 23377530
alkaline phosphatase (ALP); biological markers; bones; metastasis; microRNAs; miR-141; prostate-specific antigen (PSA); prostatic neoplasms; serum
5.  Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers 
Background: Emerging evidence has suggested that Notch signaling pathway may be involved in the development, progression and metastasis of prostate cancer (PCa). In the present study, we investigated the expression levels of Jagged-1 and Notch-1 in human prostate tumors and their associations with PCa progression and metastasis. Methods: Immunohistochemistry (IHC) for Jagged-1 and Notch-1 was performed on tissue microarray (TMA) slides containing 286 formalin-fixed and paraffin-embedded (FFPE) tissue specimens with various prostatic pathologies, including benign changes, high grade prostatic intraepithelial neoplasia (HGPIN), low- and high-grade PCas as well as metastatic PCa. Results: Cytoplasmic and membranous IHC scores for Jagged-1 in both metastatic PCa and high grade PCa were significantly higher than those in low grade PCa and in benign prostatic tissues. Similarly, cytoplasmic IHC scores of Notch-1 in both metastatic PCa and high grade PCa were significantly elevated compared with those observed in low grade PCa and in benign prostatic tissues. A statistically significant correlation was identified between the expression of Jagged-1 and Notch-1 in human prostatic tissues. Furthermore, significantly more highly expressed Jagged-1 in membrane was observed in Caucasian patients with high-grade or metastatic PCa (vs. African Americans) and in PCa patients with positive surgical margins (vs. negative surgical margins). Conclusion: Our results provide strong evidence that up-regulation of Jagged1-Notch1 signaling plays a role in PCa progression and metastasis and suggest that Jagged-1 and Notch-1 may be useful markers in distinguishing indolent and aggressive PCas.
PMCID: PMC3633979  PMID: 23634247
Prostate cancer (PCa); cancer metastasis; Jagged-1; Notch-1; tissue microarray (TMA); immunohistochemistry (IHC)
6.  The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting 
Cancer Medicine  2013;3(1):14-24.
Dynamin 2 (Dyn2) is essential for intracellular vesicle formation and trafficking, cytokinesis, and receptor endocytosis. In this study, we investigated the implication of Dyn2 as a prognostic marker and therapeutic target for progressive prostate cancer (PCA). We evaluated Dyn2 protein expression by immunohistochemistry in two cohorts: men with localized PCA treated by retropubic radical prostatectomy (n = 226), and men with advanced/castrate-resistant PCA (CRPC) treated by transurethral resection of prostate (TURP) (n = 253). The role of Dyn2 in cell invasiveness was assessed by in vitro and in vivo experiments using androgen-responsive and refractory PCA preclinical models. Dyn2 expression was significantly increased across advanced stages of PCA compared to benign prostate tissue (P < 0.0001). In the CRPC cohort, high Dyn2 was associated with higher Gleason score (P = 0.004) and marginally with cancer-specific mortality (P = 0.052). In preclinical models, Dyn2 gene silencing significantly reduced cell migration and invasion in vitro, as well as tumor size and lymph node metastases in vivo. In isolated PCA cells, Dyn2 was found to regulate focal adhesion turnover, which is critical for cell migration; this mechanism requires full Dyn2 compared to mutants deficient in GTPase activity. In conclusion, Dyn2 overexpression is associated with neoplastic prostate epithelium and is associated with poor prognosis. Inhibition of Dyn2 prevents cell invasiveness in androgen-responsive and -refractory PCA models, supporting the potential benefit of Dyn2 to serve as a therapeutic target for advanced PCA.
PMCID: PMC3930386  PMID: 24402972
Cancer-specific mortality; castration resistance; dynamin; prostate cancer; therapeutic target
7.  MicroRNA let-7c Is Downregulated in Prostate Cancer and Suppresses Prostate Cancer Growth 
PLoS ONE  2012;7(3):e32832.
Prostate cancer (PCa) is characterized by deregulated expression of several tumor suppressor or oncogenic miRNAs. The objective of this study was the identification and characterization of miR-let-7c as a potential tumor suppressor in PCa.
Experimental Design
Levels of expression of miR-let-7c were examined in human PCa cell lines and tissues using qRT-PCR and in situ hybridization. Let-7c was overexpressed or suppressed to assess the effects on the growth of human PCa cell lines. Lentiviral-mediated re-expression of let-7c was utilized to assess the effects on human PCa xenografts.
We identified miR-let-7c as a potential tumor suppressor in PCa. Expression of let-7c is downregulated in castration-resistant prostate cancer (CRPC) cells. Overexpression of let-7c decreased while downregulation of let-7c increased cell proliferation, clonogenicity and anchorage-independent growth of PCa cells in vitro. Suppression of let-7c expression enhanced the ability of androgen-sensitive PCa cells to grow in androgen-deprived conditions in vitro. Reconstitution of Let-7c by lentiviral-mediated intratumoral delivery significantly reduced tumor burden in xenografts of human PCa cells. Furthermore, let-7c expression is downregulated in clinical PCa specimens compared to their matched benign tissues, while the expression of Lin28, a master regulator of let-7 miRNA processing, is upregulated in clinical PCa specimens.
These results demonstrate that microRNA let-7c is downregulated in PCa and functions as a tumor suppressor, and is a potential therapeutic target for PCa.
PMCID: PMC3316551  PMID: 22479342
8.  Aberrant DNA Methylation and Prostate Cancer 
Current Genomics  2011;12(7):486-505.
Prostate cancer (PCa) is the most prevalent cancer, a significant contributor to morbidity and a leading cause of cancer-related death in men in Western industrialized countries. In contrast to genetic changes that vary among individual cases, somatic epigenetic alterations are early and highly consistent events. Epigenetics encompasses several different phenomena, such as DNA methylation, histone modifications, RNA interference, and genomic imprinting. Epigenetic processes regulate gene expression and can change malignancy-associated phenotypes such as growth, migration, invasion, or angiogenesis. Methylations of certain genes are associated with PCa progression. Compared to normal prostate tissues, several hypermethylated genes have also been identified in benign prostate hyperplasia, which suggests a role for aberrant methylation in this growth dysfunction. Global and gene-specific DNA methylation could be affected by environmental and dietary factors. Among other epigenetic changes, aberrant DNA methylation might have a great potential as diagnostic or prognostic marker for PCa and could be tested in tumor tissues and various body fluids (e.g., serum, urine). The DNA methylation markers are simple in nature, have high sensitivity, and could be detected either quantitatively or qualitatively. Availability of genome-wide screening methodologies also allows the identification of epigenetic signatures in high throughput population studies. Unlike irreversible genetic changes, epigenetic alterations are reversible and could be used for PCa targeted therapies.
PMCID: PMC3219844  PMID: 22547956
Epigenetics; Genome; Methylation; Prostate cancer.
9.  Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors 
Cancer research  2012;72(23):6142-6152.
Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPCs), due to several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data from 29 normal prostate tissue samples, 127 primary prostate carcinomas (PCas) and 19 metastatic PCas. Steroidogenic enzyme transcripts were evaluated by qRT-PCR in PCa cell lines and circulating tumor cells (CTCs) from CRPC patients. Metastatic PCas expressed higher transcript levels for AR and several steroidogenic enzymes, including SRD5A1, SRD5A3, and AKR1C3, while expression of SRD5A2, CYP3A4, CYP3A5 and CYP3A7 was decreased. This aberrant expression was rarely associated with CNAs. Instead, our data suggest distinct patterns of coordinated aberrant enzyme expression. Inhibition of AR activity by itself stimulated AKR1C3 expression. The aberrant expression of the steroidogenic enzyme transcripts were detected in CTCs from CRPC patients. In conclusion, our findings identify substantial interpatient heterogeneity and distinct patterns of dysregulated expression of enzymes involved in intratumoral androgen metabolism in PCa. These steroidogenic enzymes represent targets for complete suppression of systemic and intratumoral androgen levels, an objective that is supported by the clinical efficacy of the CYP17 inhibitor abiraterone. A comprehensive AR axis targeting approach via simultaneous, frontline enzymatic blockade and/or transcriptional repression of several steroidogenic enzymes, in combination with GnRH analogs and potent anti-androgens, would represent a powerful future strategy for PCa management.
PMCID: PMC3685485  PMID: 22971343
Prostate cancer; androgen synthesis; testosterone; dihydrotestosterone; CYP17; AKR1C3; abiraterone; MDV3100 (enzalutamide)
10.  Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer 
BMC Genomics  2013;14:898.
Multidrug resistance 1 (MDR1) gene encodes for an ATP binding cassette transporter - P-glycoprotein (P-gp) - involved in chemoresistance to taxanes. MDR1 promoter methylation is frequent in prostate carcinoma (PCa), suggesting an epigenetic regulation but no functional correlation has been established. We aimed to elucidate the epigenetic mechanisms involved in MDR1 deregulation in PCa.
MDR1 promoter methylation and P-gp expression were assessed in 121 PCa, 39 high-grade prostatic intraepithelial neoplasia (HGPIN), 28 benign prostatic hyperplasia (BPH) and 10 morphologically normal prostate tissue (NPT) samples, using quantitative methylation specific PCR and immunohistochemistry, respectively. PCa cell lines were exposed to a DNA methyltransferases inhibitor 5-aza-2′deoxycytidine (DAC) and histone deacetylases inhibitor trichostatin A (TSA). Methylation and histone posttranscriptional modifications status were characterized and correlated with mRNA and protein expression. MDR1 promoter methylation levels and frequency significantly increased from NPTs, to HGPIN and to PCa. Conversely, decreased or absent P-gp immunoexpression was observed in HGPIN and PCa, inversely correlating with methylation levels. Exposure to DAC alone did not alter significantly methylation levels, although increased expression was apparent. However, P-gp mRNA and protein re-expression were higher in cell lines exposed to TSA alone or combined with DAC. Accordingly, histone active marks H3Ac, H3K4me2, H3K4me3, H3K9Ac, and H4Ac were increased at the MDR1 promoter after exposure to TSA alone or combined with DAC.
Our data suggests that, in prostate carcinogenesis, MDR1 downregulation is mainly due to histone post-translational modifications. This occurs concomitantly with aberrant promoter methylation, substantiating the association with P-gp decreased expression.
PMCID: PMC3878566  PMID: 24344919
CpG island hypermethylation; Epigenetic regulation; Histone post-translational activation/repression marks; MDR1; P-gp; Prostate
11.  The prognostic significance of loss of the androgen receptor and neuroendocrine differentiation in prostate biopsy specimens among castration-resistant prostate cancer patients 
Molecular and Clinical Oncology  2013;1(2):257-262.
Prostate cancer (PCa) is a leading cause of mortality, and despite good response to androgen ablation this response is eventually lost. In the present study, androgen receptor (AR) expression and neuroendocrine differentiation (NED) were evaluated in hormone-sensitive (HSPC) and castration-resistant prostate cancers (CRPC). Prostate tissues were obtained from 20 HSPC patients at diagnosis and 28 CRPC patients at castration-resistant progression. AR, chromogranin A (CGA) and neuron-specific enolase (NSE) were evaluated by immunohistochemical staining (IHS) in representative positive cores for PCa. IHS intensity was graded as negative, 0; positive, 1+ and strongly positive, 2+. The proportion of the 1+ and 2+ areas in PCa cells was determined. PCa was considered to be in NED if ≥50% of the tumor cells were 1+ or 2+ for CGA or NSE. The observed IHS intensity (0/1+/2+) for AR, CGA and NSE was 0/4/16, 5/11/4 and 11/4/5 in HSPC patients and 9/3/16, 5/8/15 and 8/4/16 in CRPC patients, respectively. AR expression was positive in all the HSPC and 19/28 CRPC patients (P=0.0049). NED was observed in 9/20 HSPC and 20/28 CRPC patients (P=0.0649). NED was significantly associated with a negative AR expression in CRPC patients (P=0.0292). Multivariate analysis revealed that age, AR expression and strong NED were independent parameters for prognosis following castration-resistant progression. In conclusion, prostate biopsy following castration-resistant progression was necessary. AR was lost in a subset of CRPC. NED was observed more frequently in CRPC vs. HSPC and was associated with a worse prognosis.
PMCID: PMC3915703  PMID: 24649157
androgen deprivation therapy; castration-resistant prostate cancer; neuroendocrine differentiation; prostate cancer
12.  AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression 
Diagnostic Pathology  2014;9:42.
Aldo-keto reductase family 1 member C3 (AKR1C3) is a key steroidogenic enzyme that is overexpressed in prostate cancer (PCa) and is associated with the development of castration-resistant prostate cancer (CRPC). The aim of this study was to investigate the correlation between the expression level of AKR1C3 and the progression of PCa.
Sixty human prostate needle biopsy tissue specimens and ten LNCaP xenografts from intact or castrated male mice were included in the study. The relationship between the level of AKR1C3 expression by immunohistochemistry and evaluation factors for PCa progression, including prostate-specific antigen (PSA), Gleason score (GS) and age, were analyzed.
Low immunoreactivity of AKR1C3 was detected in normal prostate epithelium, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN). Positive staining was gradually increased with an elevated GS in PCa epithelium and LNCaP xenografts in mice after castration. The Spearman’s r values (rs) of AKR1C3 to GS and PSA levels were 0.396 (P = 0.025) and -0.377 (P = 0.036), respectively, in PCa biopsies. The rs of AKR1C3 to age was 0.76 (P = 0.011). No statistically significant difference was found with other variables.
Our study suggests that the level of AKR.
1C3 expression is positively correlated with an elevated GS, indicating that AKR1C3 can serve as a promising biomarker for the progression of PCa.
Virtual slides
The virtual slide(s) for this article can be found here:
PMCID: PMC3939640  PMID: 24571686
AKR1C3; Prostate cancer; Gleason score; PSA; Biomarker
13.  Epigenomic Alterations in Localized and Advanced Prostate Cancer12 
Neoplasia (New York, N.Y.)  2013;15(4):373-383.
Although prostate cancer (PCa) is the second leading cause of cancer death among men worldwide, not all men diagnosed with PCa will die from the disease. A critical challenge, therefore, is to distinguish indolent PCa from more advanced forms to guide appropriate treatment decisions. We used Enhanced Reduced Representation Bisulfite Sequencing, a genome-wide high-coverage single-base resolution DNA methylation method to profile seven localized PCa samples, seven matched benign prostate tissues, and six aggressive castration-resistant prostate cancer (CRPC) samples. We integrated these data with RNA-seq and whole-genome DNA-seq data to comprehensively characterize the PCa methylome, detect changes associated with disease progression, and identify novel candidate prognostic biomarkers. Our analyses revealed the correlation of cytosine guanine dinucleotide island (CGI)-specific hypermethylation with disease severity and association of certain breakpoints (deletion, tandem duplications, and interchromosomal translocations) with DNA methylation. Furthermore, integrative analysis of methylation and single-nucleotide polymorphisms (SNPs) uncovered widespread allele-specific methylation (ASM) for the first time in PCa. We found that most DNA methylation changes occurred in the context of ASM, suggesting that variations in tumor epigenetic landscape of individuals are partly mediated by genetic differences, which may affect PCa disease progression. We further selected a panel of 13 CGIs demonstrating increased DNA methylation with disease progression and validated this panel in an independent cohort of 20 benign prostate tissues, 16 PCa, and 8 aggressive CRPCs. These results warrant clinical evaluation in larger cohorts to help distinguish indolent PCa from advanced disease.
PMCID: PMC3612910  PMID: 23555183
14.  Quality of Life and Sexual Health in the Aging of PCa Survivors 
Prostate cancer (PCa) is the most common malignancy in elderly men. The progressive ageing of the world male population will further increase the need for tailored assessment and treatment of PCa patients. The determinant role of androgens and sexual hormones for PCa growth and progression has been established. However, several trials on androgens and PCa are recently focused on urinary continence, quality of life, and sexual function, suggesting a new point of view on the whole endocrinological aspect of PCa. During aging, metabolic syndrome, including diabetes, hypertension, dyslipidemia, and central obesity, can be associated with a chronic, low-grade inflammation of the prostate and with changes in the sex steroid pathways. These factors may affect both the carcinogenesis processes and treatment outcomes of PCa. Any treatment for PCa can have a long-lasting negative impact on quality of life and sexual health, which should be assessed by validated self-reported questionnaires. In particular, sexual health, urinary continence, and bowel function can be worsened after prostatectomy, radiotherapy, or hormone treatment, mostly in the elderly population. In the present review we summarized the current knowledge on the role of hormones, metabolic features, and primary treatments for PCa on the quality of life and sexual health of elderly Pca survivors.
PMCID: PMC3976934  PMID: 24744780
15.  The Histone Methyltransferase MMSET/WHSC1 Activates TWIST1 to Promote an Epithelial-Mesenchymal Transition and Invasive Properties of Prostate Cancer 
Oncogene  2012;32(23):2882-2890.
Epigenetic deregulation of gene expression plays a role in the initiation and progression of prostate cancer (PCa). The histone methyltransferase MMSET/WHSC1 (Multiple Myeloma Set Domain) is overexpressed in a number of metastatic tumors, but its mechanism of action has not been defined. In this work, we found that PCa cell lines expressed significantly higher levels of MMSET compared to immortalized, non-transformed prostate cells. Knockdown experiments showed that, in metastatic PCa cell lines, dimethylation of lysine 36 and trimethylation of lysine 27 on histone H3 (H3K36me2 and H3K27me3, respectively) depended on MMSET expression, while depletion of MMSET in benign prostatic cells did not affect chromatin modifications. Knockdown of MMSET in DU145 and PC-3 tumor cells decreased cell proliferation, colony formation in soft agar, and strikingly diminished cell migration and invasion. Conversely, overexpression of MMSET in immortalized, non-transformed RWPE-1 cells promoted cell migration and invasion, accompanied by an epithelial to mesenchymal transition (EMT). Among a panel of EMT-promoting genes analyzed, TWIST1 expression was strongly activated in response to MMSET. Chromatin immunoprecipitation analysis demonstrated that MMSET binds to the TWIST1 locus, leading to an increase in H3K36me2, suggesting a direct role of MMSET in the regulation of this gene. Depletion of TWIST1 in MMSET-overexpressing RWPE-1 cells blocked cell invasion and EMT, indicating that TWIST1 was a critical target of MMSET, responsible for the acquisition of an invasive phenotype. Collectively, these data suggest that MMSET plays a role in PCa pathogenesis and progression through epigenetic regulation of metastasis-related genes.
PMCID: PMC3495247  PMID: 22797064
MMSET; histone methylation; epithelial-mesenchymal transition; invasion; prostate cancer
16.  Regulators of gene expression as biomarkers for prostate cancer 
Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa.
PMCID: PMC3512182  PMID: 23226612
Prostate cancer; biomarker; epigenetics; methylation; acetylation; ncRNA; genomics; SNP; transcriptomics; miRNA; lncRNA
17.  Even-skipped homeobox 1 is frequently hypermethylated in prostate cancer and predicts PSA recurrence 
British Journal of Cancer  2012;107(1):100-107.
DNA methylation is an important epigenetic mechanism in prostate cancer (PCa) progression. Given the role of even-skipped homeobox 1 (EVX1) in the regulation of multiple genes during embryogenesis, we postulated that EVX1 methylation is altered in PCa progression.
Bisulphite sequencing and quantitative MethyLight were used to assess methylation in human prostate epithelial cells, four PCa cell lines, liver, lung, spleen, kidney, 35 paired tumour and tumour-associated benign tissues, and 11 normal prostate tissues. Prostate cancer cell lines were treated with 5-azacytidine (AzaC) or trichostatin A (TSA), and expression of EVX1 transcript and variants was assessed by qPCR. Hypermethylation was compared with clinicopathological features in a validation set of 58 patients using microarray.
Even-skipped homeobox 1 hypermethylation was observed in all four PCa cell lines and 57% of tumours. High-grade tumours exhibited increased methylation compared with intermediate-grade tumours. Even-skipped homeobox 1 expression was induced in PCa cell lines after treatment with AzaC or TSA. In the validation set, 83% of tumours were hypermethylated and hypermethylation was associated with worse recurrence-free survival.
In this first evaluation of EVX1 methylation in human cancer, EVX1 is one of the most commonly hypermethylated genes observed in PCa and predicted treatment failure in moderate risk patients.
PMCID: PMC3389415  PMID: 22596233
EVX1; methylation; prostate cancer; PSA; prognosis
18.  Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer 
Epigenetics  2012;7(9):1037-1045.
DNA methylation plays an important role in carcinogenesis and is being recognized as a promising diagnostic and prognostic biomarker for a variety of malignancies including Prostate cancer (PCa). The human kallikrein-related peptidases (KLKs) have emerged as an important family of cancer biomarkers, with KLK3, encoding for Prostate Specific Antigen, being most recognized. However, few studies have examined the epigenetic regulation of KLKs and its implications to PCa. To assess the biological effect of DNA methylation on KLK6 and KLK10 expression, we treated PC3 and 22RV1 PCa cells with a demethylating drug, 5-aza-2′deoxycytidine, and observed increased expression of both KLKs, establishing that DNA methylation plays a role in regulating gene expression. Subsequently, we have quantified KLK6 and KLK10 DNA methylation levels in two independent cohorts of PCa patients operated by radical prostatectomy between 2007–2011 (Cohort I, n = 150) and 1998–2001 (Cohort II, n = 124). In Cohort I, DNA methylation levels of both KLKs were significantly higher in cancerous tissue vs. normal. Further, we evaluated the relationship between DNA methylation and clinicopathological parameters. KLK6 DNA methylation was significantly associated with pathological stage only in Cohort I while KLK10 DNA methylation was significantly associated with pathological stage in both cohorts. In Cohort II, low KLK10 DNA methylation was associated with biochemical recurrence in univariate and multivariate analyses. A similar trend for KLK6 DNA methylation was observed. The results suggest that KLK6 and KLK10 DNA methylation distinguishes organ confined from locally invasive PCa and may have prognostic value.
PMCID: PMC3515013  PMID: 22874102
biomarkers; epigenetics; kallikrein-related peptidases; prostate cancer; quantitative DNA methylation analysis
19.  Mechanisms Mediating Androgen Receptor Reactivation After Castration 
Urologic oncology  2009;27(1):36-41.
Androgen deprivation is still the standard systemic therapy for metastatic prostate cancer (PCa), but patients invariably relapse with a more aggressive form of PCa termed hormone refractory, androgen independent, or castration resistant PCa (CRPC). Significantly, the androgen receptor (AR) is expressed at high levels in most cases of CRPC, and these tumors resume their expression of multiple AR-regulated genes, indicating that AR transcriptional activity becomes reactivated at this stage of the disease. The molecular basis for this AR reactivation remains unclear, but possible mechanisms include increased AR expression, AR mutations that enhance activation by weak androgens and AR antagonists, increased expression of transcriptional coactivator proteins, and activation of signal transduction pathways that can enhance AR responses to low levels of androgens. Recent data indicate that CRPC cells may also carry out intracellular synthesis of testosterone and DHT from weak adrenal androgens and may be able to synthesize androgens from cholesterol. These mechanisms that appear to contribute to AR reactivation after castration are further outlined in this review.
PMCID: PMC3245883  PMID: 19111796
androgen receptor; prostate cancer; testosterone; androgen; androgen deprivation therapy; AR antagonist
20.  Androgen Receptor Variants Occur Frequently in Castration Resistant Prostate Cancer Metastases 
PLoS ONE  2011;6(11):e27970.
Although androgens are depleted in castration resistant prostate cancer (CRPC), metastases still express nuclear androgen receptor (AR) and androgen regulated genes. We recently reported that C-terminal truncated constitutively active AR splice variants contribute to CRPC development. Since specific antibodies detecting all C-terminal truncated AR variants are not available, our aim was to develop an approach to assess the prevalence and function of AR variants in prostate cancer (PCa).
Methodology/Principal Findings
Using 2 antibodies against different regions of AR protein (N- or C-terminus), we successfully showed the existence of AR variant in the LuCaP 86.2 xenograft. To evaluate the prevalence of AR variants in human PCa tissue, we used this method on tissue microarrays including 50 primary PCa and 162 metastatic CRPC tissues. RT-PCR was used to confirm AR variants. We observed a significant decrease in nuclear C-terminal AR staining in CRPC but no difference between N- and C-terminal AR nuclear staining in primary PCa. The expression of the AR regulated proteins PSA and PSMA were marginally affected by the decrease in C-terminal staining in CRPC samples. These data suggest that there is an increase in the prevalence of AR variants in CRPC based on our ability to differentiate nuclear AR expression using N- and C-terminal AR antibodies. These findings were validated using RT-PCR. Importantly, the loss of C-terminal immunoreactivity and the identification of AR variants were different depending on the site of metastasis in the same patient.
We successfully developed a novel immunohistochemical approach which was used to ascertain the prevalence of AR variants in a large number of primary PCa and metastatic CRPC. Our results showed a snapshot of overall high frequency of C-terminal truncated AR splice variants and site specific AR loss in CRPC, which could have utility in stratifying patients for AR targeted therapeutics.
PMCID: PMC3219707  PMID: 22114732
21.  Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells 
Cancer research  2010;70(14):5994-6003.
Patients with advanced prostate cancer (PCa) are initially susceptible to androgen withdrawal (AW), but ultimately develop resistance to this therapy (castration-resistant PCa, CRPC). Here we show that AW can promote CRPC development by increasing the levels of the receptor tyrosine kinase (RTK) ErbB3 in androgen-dependent PCa, resulting in AW-resistant cell cycle progression and increased androgen receptor (AR) transcriptional activity. CRPC cell lines and human prostate cancer tissue overexpressed ErbB3, whereas downregulation of ErbB3 prevented CRPC cell growth. Investigation of the mechanism by which AW augments ErbB3, using normal prostate derived pRNS-1-1 cells, and androgen-dependent PCa lines LNCaP, PC346C and CWR22 mouse xenografts, revealed that the AR suppresses ErbB3 protein levels, while AW relieves this suppression, demonstrating for the first time negative regulation of ErbB3 by AR. We show that AR activation promotes ErbB3 degradation in androgen-dependent cells, and that this effect is mediated by AR-dependent transcriptional upregulation of Nrdp1, an E3 ubiquitin ligase that targets ErbB3 for degradation but whose role in PCa has not been previously examined. Therefore, AW decreases Nrdp1 expression, promoting ErbB3 protein accumulation, and leading to AR-independent proliferation. However, in CRPC sublines of LNCaP and CWR22 which strongly overexpress the AR, ErbB3 levels remain elevated due to constitutive suppression of Nrdp1, which prevents AR regulation of Nrdp1. Our observations point to a model of CRPC development where progression of PCa to castration-resistance is associated with the inability of AR to transcriptionally regulate Nrdp1, and predict that inhibition of ErbB3 during AW may impair CRPC development.
PMCID: PMC2905475  PMID: 20587519
EGFR; HER2; HER3; Androgen Receptor; FLRF; RNF41
22.  Serum Glutamate Levels Correlate with Gleason Score and Glutamate Blockade Decreases Proliferation, Migration, and Invasion and Induces Apoptosis in Prostate Cancer Cells 
During glutaminolysis, glutamine is catabolized to glutamate and incorporated into citric acid cycle and lipogenesis. Serum glutamate levels were measured in patients with primary prostate cancer (PCa) or metastatic castrate-resistant PCa (mCRPCa) to establish clinical relevance. The effect of glutamate-deprivation or blockade by metabotropic glutamate receptor 1 (GRM1)-antagonists was investigated on PCa cells’ growth, migration, and invasion to establish biological relevance.
Experimental Design
Serum glutamate levels were measured in normal men (n = 60) and patients with primary PCa (n = 197) or mCRPCa (n = 109). GRM1 expression in prostatic tissues was examined using immunohistochemistry (IHC). Cell growth, migration, and invasion were determined using cell cytotoxicity and modified Boyden chamber assays, respectively. Apoptosis was detected using immunoblotting against cleaved caspases, PARP and γ-H2AX.
Univariate and multivariate analyses demonstrated significantly higher serum glutamate levels in Gleason score ≥ 8 than in the Gleason sscore ≤ 7 and in African Americans than in the Caucasian Americans. African Americans with mCRPCa significantly higher serum glutamate levels than those with primary PCa or benign prostate. However, in Caucasian Americans, serum glutamate levels were similar in normal research subjects and patients with mCRPC. IHC demonstrated weak or no expression of GRM1 in luminal acinar epithelial cells of normal or hyperplastic glands, but high expression in primary or metastatic PCa tissues. Glutamate deprivation or blockade decreased PCa cells’ proliferation, migration, and invasion and led to apoptotic cell death.
Glutamate expression is mechanistically associated with and may provide a biomarker of PCa aggressiveness.
PMCID: PMC3492499  PMID: 23072969
Glutamate; GRM1; Biomarker; Prostate Cancer; Metastasis; Castrate-resistant
23.  Procoagulant activity may be a marker of the malignant phenotype in experimental prostate cancer. 
British Journal of Cancer  1994;69(2):286-290.
Using a one-stage kinetic chromogenic assay, we studied the procoagulant activity (PCA) of prostatic tissue in an experimental model of prostate cancer in the rat. PCA was present in homogenates of rat prostate glands containing either benign or malignant tumours. The procoagulant activated factor X directly and was provisionally characterised as a tissue factor-factor VIIa complex. There was no significant differences in PCA between control rats and rats exposed to carcinogens that did not develop tumour. Levels in rats that developed tumours were significantly higher (P < 0.01) than all other groups and there was a positive correlation between tumour weight and PCA (r = 0.85, P < 0.001). Furthermore, prostatic PCA levels were higher in the metastasis (P < 0.02). We conclude that PCA reflects the malignant phenotype in this animals, the PCA of the primary tumour was compared with that of the corresponding secondary deposit and levels were higher in the metastasis (P < 0.02). We conclude that PCA reflects the malignant phenotype in this model of experimental prostate cancer and suggest that this parameter is worth evaluating as a potential tumour marker in the human disease.
PMCID: PMC1968672  PMID: 8297726
24.  Enzalutamide as a second generation antiandrogen for treatment of advanced prostate cancer 
Prostate cancer (PCa) is the most common malignancy, and the third leading cancer-related cause of death among men of the Western world. Upon PCa progression into metastatic disease, androgen deprivation therapy is applied as the first-line treatment, and has been shown to be effective in most patients, leading to a decrease in serum prostate-specific antigen and relief of disease-related symptoms. However, advanced PCa almost inevitably progresses to a castration-resistant state, and is currently regarded as incurable. The large body of evidence indicates that PCa cells remain dependent on androgen receptor (AR) signaling even in an androgen-deprived environment. As such, development of drugs that target AR and AR signaling pathways have become one of the major milestones in treatment of castration-resistant PCa (CRPC). Nevertheless, currently available therapies that target AR signaling are still regarded as palliative and more potent therapies are in great need. Over the past few years, a wide range of novel therapies has entered clinical trial for treatment of CRPC, including androgen synthesis inhibitors (abiraterone acetate), chemotherapeutic agents (docetaxel and cabazitaxel), and immunotherapies (sipuleucel-T). In this context, enzalutamide (previously referred to as MDV3100) is a novel second generation antiandrogen that has been demonstrated to significantly improve survival in men with metastatic CRPC in several clinical trials. In this paper we summarize recently completed and ongoing clinical trials of enzalutamide, and briefly discuss the efficacy of the novel antiandrogen therapy and its limitations for treatment of CRPC.
PMCID: PMC3762760  PMID: 24009414
castration resistant prostate cancer; drug resistance; clinical trials
25.  Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal Treatment-Related Neuroendocrine Prostate Cancer1 2 
Neoplasia (New York, N.Y.)  2013;15(1):1-10.
Neuroendocrine prostate cancer (NEPC), also referred to as anaplastic prostate cancer, is a lethal tumor that most commonly arises in late stages of prostate adenocarcinoma (PCA) with predilection to metastasize to visceral organs. In the current study, we explore for evidence that Aurora kinase A (AURKA) and N-myc (MYCN) gene abnormalities are harbingers of treatment-related NEPC (t-NEPC). We studied primary prostate tissue from 15 hormone naïve PCAs, 51 castration-resistant prostate cancers, and 15 metastatic tumors from 72 patients at different stages of disease progression to t-NEPC, some with multiple specimens. Histologic evaluation, immunohistochemistry, and fluorescence in situ hybridization were performed and correlated with clinical variables. AURKA amplification was identified in overall 65% of PCAs (hormone naïve and treated) from patients that developed t-NEPC and in 86% of metastases. Concurrent amplification of MYCN was present in 70% of primary PCAs, 69% of treated PCAs, and 83% of metastases. In contrast, in an unselected PCA cohort, AURKA and MYCN amplifications were identified in only 5% of 169 cases. When metastatic t-NEPC was compared to primary PCA from the same patients, there was 100% concordance of ERG rearrangement, 100% concordance of AURKA amplification, and 60% concordance of MYCN amplification. In tumors with mixed features, there was also 100% concordance of ERG rearrangement and 94% concordance of AURKA and MYCN co-amplification between areas of NEPC and adenocarcinoma. AURKA and MYCN amplifications may be prognostic and predictive biomarkers, as they are harbingers of tumors at risk of progressing to t-NEPC after hormonal therapy.
PMCID: PMC3556934  PMID: 23358695

Results 1-25 (623093)