Search tips
Search criteria

Results 1-25 (1165305)

Clipboard (0)

Related Articles

1.  Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential 
Epigenetic alterations are common in prostate cancer (PCa) and seem to contribute decisively to its initiation and progression. Moreover, aberrant promoter methylation is a promising biomarker for non-invasive screening. Herein, we sought to characterize EFEMP1 as biomarker for PCa, unveiling its biological relevance in prostate carcinogenesis. Microarray analyses of treated PCa cell lines and primary tissues enabled the selection of differentially methylated genes, among which EFEMP1 was further validated by MSP and bisulfite sequencing. Assessment of biomarker performance was accomplished by qMSP. Expression analysis of EFEMP1 and characterization of histone marks were performed in tissue samples and cancer cell lines to determine the impact of epigenetic mechanisms on EFEMP1 transcriptional regulation. Phenotypic assays, using transfected cell lines, permitted the evaluation of EFEMP1’s role in PCa development. EFEMP1 methylation assay discriminated PCa from normal prostate tissue (NPT; P < 0.001, Kruskall–Wallis test) and renal and bladder cancers (96% sensitivity and 98% specificity). EFEMP1 transcription levels inversely correlated with promoter methylation and histone deacetylation, suggesting that both epigenetic mechanisms are involved in gene regulation. Phenotypic assays showed that EFEMP1 de novo expression reduces malignant phenotype of PCa cells. EFEMP1 promoter methylation is prevalent in PCa and accurately discriminates PCa from non-cancerous prostate tissues and other urological neoplasms. This epigenetic alteration occurs early in prostate carcinogenesis and, in association with histone deacetylation, progressively leads to gene down-regulation, fostering cell proliferation, invasion and evasion of apoptosis.
PMCID: PMC4224561  PMID: 25211630
DNA methylation; prostate cancer; EFEMP1; diagnosis; biomarker; histone post-translational modifications
2.  Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment 
Androgen Receptor (AR) signaling is critically important during the development and progression of prostate cancer (PCa). The AR signaling is also important in the development of castrate resistant prostate cancer (CRPC) where AR is functional even after androgen deprivation therapy (ADT); however, little is known regarding the transcriptional and functional regulation of AR in PCa. Moreover, treatment options for primary PCa for preventing the occurrence of CRPC is limited; therefore, novel strategy for direct inactivation of AR is urgently needed. In this study, we found loss of miR-34a, which targets AR, in PCa tissue specimens, especially in patients with higher Gleason grade tumors, consistent with increased expression of AR. Forced overexpression of miR-34a in PCa cell lines led to decreased expression of AR and prostate specific antigen (PSA) as well as the expression of Notch-1, another important target of miR-34a. Most importantly, BR-DIM intervention in PCa patients prior to radical prostatectomy showed re-expression of miR-34a, which was consistent with decreased expression of AR, PSA and Notch-1 in PCa tissue specimens. Moreover, BR-DIM intervention led to nuclear exclusion both in PCa cell lines and in tumor tissues. PCa cells treated with BR-DIM and 5-aza-dC resulted in the demethylation of miR-34a promoter concomitant with inhibition of AR and PSA expression in LNCaP and C4-2B cells. These results suggest, for the first time, epigenetic silencing of miR -34a in PCa, which could be reversed by BR-DIM treatment and, thus BR-DIM could be useful for the inactivation of AR in the treatment of PCa.
PMCID: PMC3275434  PMID: 22347519
BR-DIM; miR-34a; androgen receptor (AR); PSA; methylation
3.  Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment 
Androgen Receptor (AR) signaling is critically important during the development and progression of prostate cancer (PCa). The AR signaling is also important in the development of castrate resistant prostate cancer (CRPC) where AR is functional even after androgen deprivation therapy (ADT); however, little is known regarding the transcriptional and functional regulation of AR in PCa. Moreover, treatment options for primary PCa for preventing the occurrence of CRPC is limited; therefore, novel strategy for direct inactivation of AR is urgently needed. In this study, we found loss of miR-34a, which targets AR, in PCa tissue specimens, especially in patients with higher Gleason grade tumors, consistent with increased expression of AR. Forced over-expression of miR-34a in PCa cell lines led to decreased expression of AR and prostate specific antigen (PSA) as well as the expression of Notch-1, another important target of miR-34a. Most importantly, BR-DIM intervention in PCa patients prior to radical prostatectomy showed reexpression of miR-34a, which was consistent with decreased expression of AR, PSA and Notch-1 in PCa tissue specimens. Moreover, BR-DIM intervention led to nuclear exclusion both in PCa cell lines and in tumor tissues. PCa cells treated with BR-DIM and 5-aza-dC resulted in the demethylation of miR-34a promoter concomitant with inhibition of AR and PSA expression in LNCaP and C4-2B cells. These results suggest, for the first time, epigenetic silencing of miR-34a in PCa, which could be reversed by BR-DIM treatment and, thus BR-DIM could be useful for the inactivation of AR in the treatment of PCa.
PMCID: PMC3853430  PMID: 24349627
BR-DIM; miR-34a; androgen receptor (AR); PSA; methylation
4.  PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: a National Cancer Institute experience 
Prostate cancer (PCa) is the most common male cancer in Europe and the US. The early diagnosis relies on prostate specific antigen (PSA) serum test, even if it showed clear limits. Among the new tests currently under study, one of the most promising is the prostate cancer gene 3 (PCA3), a non-coding mRNA whose level increases up to 100 times in PCa tissues when compared to normal tissues. With the present study we contribute to the validation of the clinical utility of the PCA3 test and to the evaluation of its prognostic potential.
407 Italian men, with two or more PCa risk factors and at least a previous negative biopsy, entering the Urology Unit of Regina Elena National Cancer Institute, were tested for PCA3, total PSA (tPSA) and free PSA (fPSA and f/tPSA) tests. Out of the 407 men enrolled, 195 were positive for PCa and 114 of them received an accurate staging with evaluation of the Gleason score (Gs). Then, the PCA3 score was correlated to biopsy outcome, and the diagnostic and prognostic utility were evaluated.
Out of the 407 biopsies performed after the PCA3 test, 195 (48%) resulted positive for PCa; the PCA3 score was significantly higher in this population (p < 0.0001) differently to tPSA (p = 0.87). Moreover, the PCA3 test outperformed the f/tPSA (p = 0.01). The sensitivity (94.9) and specificity (60.1) of the PCA3 test showed a better balance for a threshold of 35 when compared to 20, even if the best result was achieved considering a cutoff of 51, with sensitivity and specificity of 82.1% and 79.3%, respectively. Finally, comparing values of the PCA3 test between two subgroups with increasing Gs (Gs ≤ 6 versus Gs ≥ 7) a significant association between PCA3 score and Gs was found (p = 0.02).
The PCA3 test showed the best diagnostic performance when compared to tPSA and f/tPSA, facilitating the selection of high-risk patients that may benefit from the execution of a saturation prostatic biopsy. Moreover, the PCA3 test showed a prognostic value, as higher PCA3 score values are associated to a greater tumor aggressiveness.
PMCID: PMC4324853  PMID: 25651917
Prostate cancer; Urine and blood biomarkers; Prostate Specific Antigen; Prostate Cancer gene 3; Tumor aggressiveness
5.  Quantitative analysis of a panel of gene expression in prostate cancer —with emphasis on NPY expression analysis*  
Objective: To investigate molecular alterations associating with prostate carcinoma progression and potentially provide information toward more accurate prognosis/diagnosis. Methods: A set of laser captured microdissected (LCM) specimens from 300 prostate cancer (PCa) patients undergoing radical prostatectomy (RP) were defined. Ten patients representing “aggressive” PCa, and 10 representing “non-aggressive” PCa were selected based on prostate-specific antigen (PSA) recurrence, Gleason score, pathological stage and tumor cell differentiation, with matched patient age and race between the two groups. Normal and neoplastic prostate epithelial cells were collected with LCM from frozen tissue slides obtained from the RP specimens. The expressions of a panel of genes, including NPY, PTEN, AR, AMACR, DD3, and GSTP1, were measured by quantitative real-time RT-PCR (TaqMan), and correlation was analyzed with clinicopathological features. Results: The expressions of AMACR and DD3 were consistently up-regulated in cancer cells compared to benign prostate epithelial cells in all PCa patients, whereas GSTP1 expression was down regulated in each patient. NPY, PTEN and AR exhibited a striking difference in their expression patterns between aggressive and non-aggressive PCas (P=0.0203, 0.0284, and 0.0378, respectively, Wilcoxon rank sum test). The lower expression of NPY showed association with “aggressive” PCas based on a larger PCa patient cohort analysis (P=0.0037, univariate generalized linear model (GLM) analysis). Conclusion: Despite widely noted heterogeneous nature of PCa, gene expression alterations of AMACR, DD3, and GSTP1 in LCM-derived PCa epithelial cells suggest for common underlying mechanisms in the initiation of PCa. Lower NPY expression level is significantly associated with more aggressive clinical behavior of PCa; PTEN and AR may have potential in defining PCa with aggressive clinical behavior. Studies along these lines have potential to define PCa-associated gene expression alterations and likely co-regulation of genes/pathways critical in the biology of PCa onset/progression.
PMCID: PMC2100155  PMID: 18257117
Prostate cancer; NPY expression; Quantitative real-time reverse-transcript polymerase chain reaction (RT-PCR)
6.  AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression 
Diagnostic Pathology  2014;9:42.
Aldo-keto reductase family 1 member C3 (AKR1C3) is a key steroidogenic enzyme that is overexpressed in prostate cancer (PCa) and is associated with the development of castration-resistant prostate cancer (CRPC). The aim of this study was to investigate the correlation between the expression level of AKR1C3 and the progression of PCa.
Sixty human prostate needle biopsy tissue specimens and ten LNCaP xenografts from intact or castrated male mice were included in the study. The relationship between the level of AKR1C3 expression by immunohistochemistry and evaluation factors for PCa progression, including prostate-specific antigen (PSA), Gleason score (GS) and age, were analyzed.
Low immunoreactivity of AKR1C3 was detected in normal prostate epithelium, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN). Positive staining was gradually increased with an elevated GS in PCa epithelium and LNCaP xenografts in mice after castration. The Spearman’s r values (rs) of AKR1C3 to GS and PSA levels were 0.396 (P = 0.025) and -0.377 (P = 0.036), respectively, in PCa biopsies. The rs of AKR1C3 to age was 0.76 (P = 0.011). No statistically significant difference was found with other variables.
Our study suggests that the level of AKR.
1C3 expression is positively correlated with an elevated GS, indicating that AKR1C3 can serve as a promising biomarker for the progression of PCa.
Virtual slides
The virtual slide(s) for this article can be found here:
PMCID: PMC3939640  PMID: 24571686
AKR1C3; Prostate cancer; Gleason score; PSA; Biomarker
7.  Pyrosequencing Analysis of APC Methylation Level in Human Prostate Tissues: A Molecular Marker for Prostate Cancer 
Korean Journal of Urology  2013;54(3):194-198.
Epigenetic alterations such as abnormal DNA methylation are associated with many human cancers. Differences in methylation patterns between neoplastic and normal cells can be used to detect cancer. The aim of the present study was to evaluate the effectiveness of detecting Adenomatous polyposis coli (APC) hypermethylation by quantitative pyrosequencing for discriminating between normal and prostate cancer (PCa) cells and for predicting tumor behaviors.
Materials and Methods
A total of 218 human prostate tissues obtained from our institute were assessed: 106 specimens of benign prostatic hyperplasia (BPH) and 112 specimens of PCa. The methylation status of APC was analyzed by quantitative pyrosequencing. The association between the APC methylation level and clinicopathological parameters was explored.
The level of APC methylation was significantly higher in PCa specimens than in BPH specimens (33.3%±20.7% vs. 1.3%±1.8%, p<0.001). The sensitivity and specificity of APC methylation status in discriminating between PCa and BPH reached 89.3% and 98.1%, respectively. Similar results were obtained after stratification by stage, Gleason score, and prostate-specific antigen level. The APC methylation level correlated positively with Gleason score (p trend=0.016). There was no association between the APC methylation level and the PSA level or staging.
Our results demonstrate that APC methylation is associated with PCa and its aggressive tumor features.
PMCID: PMC3604574  PMID: 23526751
Adenomatous polyposis coli; Biological markers; DNA methylation; Prostatic neoplasms; Sequence analysis
8.  Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer 
BMC Genomics  2013;14:898.
Multidrug resistance 1 (MDR1) gene encodes for an ATP binding cassette transporter - P-glycoprotein (P-gp) - involved in chemoresistance to taxanes. MDR1 promoter methylation is frequent in prostate carcinoma (PCa), suggesting an epigenetic regulation but no functional correlation has been established. We aimed to elucidate the epigenetic mechanisms involved in MDR1 deregulation in PCa.
MDR1 promoter methylation and P-gp expression were assessed in 121 PCa, 39 high-grade prostatic intraepithelial neoplasia (HGPIN), 28 benign prostatic hyperplasia (BPH) and 10 morphologically normal prostate tissue (NPT) samples, using quantitative methylation specific PCR and immunohistochemistry, respectively. PCa cell lines were exposed to a DNA methyltransferases inhibitor 5-aza-2′deoxycytidine (DAC) and histone deacetylases inhibitor trichostatin A (TSA). Methylation and histone posttranscriptional modifications status were characterized and correlated with mRNA and protein expression. MDR1 promoter methylation levels and frequency significantly increased from NPTs, to HGPIN and to PCa. Conversely, decreased or absent P-gp immunoexpression was observed in HGPIN and PCa, inversely correlating with methylation levels. Exposure to DAC alone did not alter significantly methylation levels, although increased expression was apparent. However, P-gp mRNA and protein re-expression were higher in cell lines exposed to TSA alone or combined with DAC. Accordingly, histone active marks H3Ac, H3K4me2, H3K4me3, H3K9Ac, and H4Ac were increased at the MDR1 promoter after exposure to TSA alone or combined with DAC.
Our data suggests that, in prostate carcinogenesis, MDR1 downregulation is mainly due to histone post-translational modifications. This occurs concomitantly with aberrant promoter methylation, substantiating the association with P-gp decreased expression.
PMCID: PMC3878566  PMID: 24344919
CpG island hypermethylation; Epigenetic regulation; Histone post-translational activation/repression marks; MDR1; P-gp; Prostate
9.  DNA Methylation of GSTP1 in Human Prostate Tissues: Pyrosequencing Analysis 
Korean Journal of Urology  2012;53(3):200-205.
DNA methylation is an important epigenetic mechanism of gene regulation and plays essential roles in tumor initiation and progression. Differences in methylation patterns between neoplastic and normal cells can be used to detect the presence of cancer. The aim of the present study was to evaluate the usefulness of glutathione-S-transferase-Pi (GSTP1) hypermethylation in discriminating between normal and prostate cancer (PCa) cells and in predicting tumor characteristics by use of quantitative pyrosequencing analysis.
Materials and Methods
A total of 100 human prostate tissues obtained from our institute were used in this study: 45 for benign prostatic hyperplasia (BPH) and 55 for PCa. The methylation level of GSTP1 was examined by a quantitative pyrosequencing analysis. The associations between GSTP1 methylation level and clinico-pathological parameter were also compared.
The level of GSTP1 methylation was significantly higher in PCa samples than in BPH samples (56.7±32.7% vs. 1.6±2.2%, p<0.001). The sensitivity and specificity of GSTP1 methylation status in discriminating between PCa and BPH reached 85.5% and 100%, respectively. Even after stratification by stage, Gleason score, and prostate-specific antigen (PSA) level, similar results were obtained. A positive correlation between GSTP1 methylation level and serum PSA level was observed (r=0.303, p=0.002). There were no associations between GSTP1 methylation level and age, Gleason score, and staging.
Our study demonstrates that GSTP1 methylation is associated with the presence of PCa and PSA levels. This methylation marker is a potentially useful indicator for the detection and monitoring of PCa.
PMCID: PMC3312070  PMID: 22468217
GSTP1; Methylation; Neoplasms; Prostate
10.  Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells 
Cancer research  2010;70(14):5994-6003.
Patients with advanced prostate cancer (PCa) are initially susceptible to androgen withdrawal (AW), but ultimately develop resistance to this therapy (castration-resistant PCa, CRPC). Here we show that AW can promote CRPC development by increasing the levels of the receptor tyrosine kinase (RTK) ErbB3 in androgen-dependent PCa, resulting in AW-resistant cell cycle progression and increased androgen receptor (AR) transcriptional activity. CRPC cell lines and human prostate cancer tissue overexpressed ErbB3, whereas downregulation of ErbB3 prevented CRPC cell growth. Investigation of the mechanism by which AW augments ErbB3, using normal prostate derived pRNS-1-1 cells, and androgen-dependent PCa lines LNCaP, PC346C and CWR22 mouse xenografts, revealed that the AR suppresses ErbB3 protein levels, while AW relieves this suppression, demonstrating for the first time negative regulation of ErbB3 by AR. We show that AR activation promotes ErbB3 degradation in androgen-dependent cells, and that this effect is mediated by AR-dependent transcriptional upregulation of Nrdp1, an E3 ubiquitin ligase that targets ErbB3 for degradation but whose role in PCa has not been previously examined. Therefore, AW decreases Nrdp1 expression, promoting ErbB3 protein accumulation, and leading to AR-independent proliferation. However, in CRPC sublines of LNCaP and CWR22 which strongly overexpress the AR, ErbB3 levels remain elevated due to constitutive suppression of Nrdp1, which prevents AR regulation of Nrdp1. Our observations point to a model of CRPC development where progression of PCa to castration-resistance is associated with the inability of AR to transcriptionally regulate Nrdp1, and predict that inhibition of ErbB3 during AW may impair CRPC development.
PMCID: PMC2905475  PMID: 20587519
EGFR; HER2; HER3; Androgen Receptor; FLRF; RNF41
11.  Plasma osteopontin as a biomarker of prostate cancer aggression: relationship to risk category and treatment response 
British Journal of Cancer  2012;107(5):840-846.
High plasma osteopontin (OPN) has been linked to tumour hypoxia, metastasis, and poor prognosis. This study aims to assess whether plasma osteopontin was a biomarker of increasing progression within prostate cancer (PCa) prognostic groups and whether it reflected treatment response to local and systemic therapies.
Baseline OPN was determined in men with localised (n=199), locally recurrent (n=9) and castrate-resistant, metastatic PCa (CRPC-MET; n=37). Receiver-operating curves (ROC) were generated to describe the accuracy of OPN for distinguishing between localised risk groups or localised vs metastatic disease. We also measured OPN pre- and posttreatment, following radical prostatectomy, external beam radiotherapy (EBRT), androgen deprivation (AD) or taxane-based chemotherapy.
The CRPC-MET patients had increased baseline values (mean 219; 56–513 ng ml−1; P<0.0001) compared with the localised, non-metastatic group (mean 72; 12–438 ng ml−1). The area under the ROC to differentiate localised vs metastatic disease was improved when OPN was added to prostate-specific antigen (PSA) (0.943–0.969). Osteopontin neither distinguished high-risk PCa from other localised PCa nor correlated with serum PSA at baseline. Osteopontin levels reduced in low-risk patients after radical prostatectomy (P=0.005) and in CRPC-MET patients after chemotherapy (P=0.027), but not after EBRT or AD.
Plasma OPN is as good as PSA at predicting treatment response in CRPC-MET patients after chemotherapy. Our data do not support the use of plasma OPN as a biomarker of increasing tumour burden within localised PCa.
PMCID: PMC3425969  PMID: 22871886
osteopontin; biomarkers; radiotherapy; chemotherapy; surgery; prostate cancer
12.  Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues and its potential role in prostate carcinogenesis and progression of prostate cancer 
Prostate stem cell antigen (PSCA) is a recently defined homologue of the Thy-1/Ly-6 family of glycosylphosphatidylinositol (GPI)-anchored cell surface antigens. The purpose of the present study was to examine the expression status of PSCA protein and mRNA in clinical specimens of human prostate cancer (Pca) and to validate it as a potential molecular target for diagnosis and treatment of Pca.
Materials and Methods
Immunohistochemical (IHC) and in situ hybridization (ISH) analyses of PSCA expression were simultaneously performed on paraffin-embedded sections from 20 benign prostatic hyperplasia (BPH), 20 prostatic intraepithelial neoplasm (PIN) and 48 prostate cancer (Pca) tissues, including 9 androgen-independent prostate cancers. The level of PSCA expression was semiquantitatively scored by assessing both the percentage and intensity of PSCA-positive staining cells in the specimens. Then compared PSCA expression between BPH, PIN and Pca tissues and analysed the correlations of PSCA expression level with pathological grade, clinical stage and progression to androgen-independence in Pca.
In BPH and low grade PIN, PSCA protein and mRNA staining were weak or negative and less intense and uniform than that seen in HGPIN and Pca. There were moderate to strong PSCA protein and mRNA expression in 8 of 11 (72.7%) HGPIN and in 40 of 48 (83.4%) Pca specimens examined by IHC and ISH analyses, with statistical significance compared with BPH (20%) and low grade PIN (22.2%) samples (p < 0.05, respectively). The expression level of PSCA increased with high Gleason grade, advanced stage and progression to androgen-independence (p < 0.05, respectively). In addition, IHC and ISH staining showed a high degree of correlation between PSCA protein and mRNA overexpression.
Our data demonstrate that PSCA as a new cell surface marker is overexpressed by a majority of human Pca. PSCA expression correlates positively with adverse tumor characteristics, such as increasing pathological grade (poor cell differentiation), worsening clinical stage and androgen-independence, and speculatively with prostate carcinogenesis. PSCA protein overexpression results from upregulated transcription of PSCA mRNA. PSCA may have prognostic utility and may be a promising molecular target for diagnosis and treatment of Pca.
PMCID: PMC420493  PMID: 15132743
Prostate; Neoplasm; Prostate stem cell antigen (PSCA)
13.  Androgen Receptor Variants Occur Frequently in Castration Resistant Prostate Cancer Metastases 
PLoS ONE  2011;6(11):e27970.
Although androgens are depleted in castration resistant prostate cancer (CRPC), metastases still express nuclear androgen receptor (AR) and androgen regulated genes. We recently reported that C-terminal truncated constitutively active AR splice variants contribute to CRPC development. Since specific antibodies detecting all C-terminal truncated AR variants are not available, our aim was to develop an approach to assess the prevalence and function of AR variants in prostate cancer (PCa).
Methodology/Principal Findings
Using 2 antibodies against different regions of AR protein (N- or C-terminus), we successfully showed the existence of AR variant in the LuCaP 86.2 xenograft. To evaluate the prevalence of AR variants in human PCa tissue, we used this method on tissue microarrays including 50 primary PCa and 162 metastatic CRPC tissues. RT-PCR was used to confirm AR variants. We observed a significant decrease in nuclear C-terminal AR staining in CRPC but no difference between N- and C-terminal AR nuclear staining in primary PCa. The expression of the AR regulated proteins PSA and PSMA were marginally affected by the decrease in C-terminal staining in CRPC samples. These data suggest that there is an increase in the prevalence of AR variants in CRPC based on our ability to differentiate nuclear AR expression using N- and C-terminal AR antibodies. These findings were validated using RT-PCR. Importantly, the loss of C-terminal immunoreactivity and the identification of AR variants were different depending on the site of metastasis in the same patient.
We successfully developed a novel immunohistochemical approach which was used to ascertain the prevalence of AR variants in a large number of primary PCa and metastatic CRPC. Our results showed a snapshot of overall high frequency of C-terminal truncated AR splice variants and site specific AR loss in CRPC, which could have utility in stratifying patients for AR targeted therapeutics.
PMCID: PMC3219707  PMID: 22114732
14.  The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting 
Cancer Medicine  2013;3(1):14-24.
Dynamin 2 (Dyn2) is essential for intracellular vesicle formation and trafficking, cytokinesis, and receptor endocytosis. In this study, we investigated the implication of Dyn2 as a prognostic marker and therapeutic target for progressive prostate cancer (PCA). We evaluated Dyn2 protein expression by immunohistochemistry in two cohorts: men with localized PCA treated by retropubic radical prostatectomy (n = 226), and men with advanced/castrate-resistant PCA (CRPC) treated by transurethral resection of prostate (TURP) (n = 253). The role of Dyn2 in cell invasiveness was assessed by in vitro and in vivo experiments using androgen-responsive and refractory PCA preclinical models. Dyn2 expression was significantly increased across advanced stages of PCA compared to benign prostate tissue (P < 0.0001). In the CRPC cohort, high Dyn2 was associated with higher Gleason score (P = 0.004) and marginally with cancer-specific mortality (P = 0.052). In preclinical models, Dyn2 gene silencing significantly reduced cell migration and invasion in vitro, as well as tumor size and lymph node metastases in vivo. In isolated PCA cells, Dyn2 was found to regulate focal adhesion turnover, which is critical for cell migration; this mechanism requires full Dyn2 compared to mutants deficient in GTPase activity. In conclusion, Dyn2 overexpression is associated with neoplastic prostate epithelium and is associated with poor prognosis. Inhibition of Dyn2 prevents cell invasiveness in androgen-responsive and -refractory PCA models, supporting the potential benefit of Dyn2 to serve as a therapeutic target for advanced PCA.
PMCID: PMC3930386  PMID: 24402972
Cancer-specific mortality; castration resistance; dynamin; prostate cancer; therapeutic target
15.  The emerging role of histone lysine demethylases in prostate cancer 
Molecular Cancer  2012;11:52.
Early prostate cancer (PCa) is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC). Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3). Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC) self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs) are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a novel perspective in our efforts to prevent and cure advanced PCa.
PMCID: PMC3441810  PMID: 22867098
Prostate cancer; Epigenetics; Tumor-initiating cells; Histone demethylase; Androgen receptor
16.  Epigenomic Alterations in Localized and Advanced Prostate Cancer12 
Neoplasia (New York, N.Y.)  2013;15(4):373-383.
Although prostate cancer (PCa) is the second leading cause of cancer death among men worldwide, not all men diagnosed with PCa will die from the disease. A critical challenge, therefore, is to distinguish indolent PCa from more advanced forms to guide appropriate treatment decisions. We used Enhanced Reduced Representation Bisulfite Sequencing, a genome-wide high-coverage single-base resolution DNA methylation method to profile seven localized PCa samples, seven matched benign prostate tissues, and six aggressive castration-resistant prostate cancer (CRPC) samples. We integrated these data with RNA-seq and whole-genome DNA-seq data to comprehensively characterize the PCa methylome, detect changes associated with disease progression, and identify novel candidate prognostic biomarkers. Our analyses revealed the correlation of cytosine guanine dinucleotide island (CGI)-specific hypermethylation with disease severity and association of certain breakpoints (deletion, tandem duplications, and interchromosomal translocations) with DNA methylation. Furthermore, integrative analysis of methylation and single-nucleotide polymorphisms (SNPs) uncovered widespread allele-specific methylation (ASM) for the first time in PCa. We found that most DNA methylation changes occurred in the context of ASM, suggesting that variations in tumor epigenetic landscape of individuals are partly mediated by genetic differences, which may affect PCa disease progression. We further selected a panel of 13 CGIs demonstrating increased DNA methylation with disease progression and validated this panel in an independent cohort of 20 benign prostate tissues, 16 PCa, and 8 aggressive CRPCs. These results warrant clinical evaluation in larger cohorts to help distinguish indolent PCa from advanced disease.
PMCID: PMC3612910  PMID: 23555183
17.  Correlation between CT Perfusion and Clinico-Pathological Features in Prostate Cancer: A Prospective Study 
The aim of the study was to assess the correlation between computed tomography perfusion (PCT) parameters and PSA levels, Gleason score, and pTNM stage in patients with prostate cancer (PCa).
One hundred twenty-five patients with localized PCa were prospectively enrolled in the study. All patients were diagnosed due to suspicious prostate findings and elevated PSA serum levels and underwent PCT followed by core biopsy and radical prostatectomy. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability-surface (PS) area product were computed in the suspected PCa area and normal prostatic tissue. Core biopsy followed by prostatectomy was performed 2–4 weeks after PCT. Correlation between PCT findings and PSA levels, Gleason score, and pTNM stage were analyzed.
The mean age of patients was 64 years. All patients had elevated PSA levels (mean value 6.2 ng/ml). Nineteen patients (15.9%) were at low risk of recurrence, 91 (76.5%) were at moderate risk, and 9 (7.6%) were at high risk according to National Comprehensive Cancer Network criteria. PCa was visible on PCT as focal peripheral CT enhancement in 119 out of 125 patients (sensitivity 95.2%). Significant correlations between BV, BF, and PS values and PSA level were found (p<0.05), as well as a trend for difference between BV, BF, and PS in poorly and moderately differentiated tumors (according to Gleason score) in comparison with highly differentiated PCa (p<0.08). The analysis also revealed a correlation between mean perfusion values and BV, MTT, PS, and pTNM cancer stage (p<0.04).
Our study suggests that in low- and intermediate- risk patients, PCT parameters correlate with PSA values, Gleason score, and pTNM stage and can be useful for initial tumor staging.
PMCID: PMC4301468  PMID: 25582437
Multidetector Computed Tomography; Perfusion Imaging; Prostatic Neoplasms
18.  An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions 
Asian Journal of Andrology  2013;15(2):231-235.
The skeleton is the most common metastatic organ in patients with prostate cancer (PCa). Non-invasive biomarkers that can facilitate the detection and monitoring of bone metastases are highly desirable. We designed this study to assess the expression patterns of serum miR-141 in patients with bone-metastatic PCa. Serum samples were collected to measure the miR-141 level in 56 patients, including six with benign prostatic hyperplasia (BPH), 20 with localized PCa and 30 with bone-metastatic PCa (10 with hormone-naive PCa, 10 with hormone-sensitive PCa and 10 with hormone-refractory PCa). A bone scan was performed for each patient with PCa to assess the number of bone lesions. The quantification of serum miR-141 levels was assayed by specific TaqMan qRT-PCR. The results showed that serum miR-141 levels were elevated in patients with bone metastasis (P<0.001). There was no statistically significant difference in the serum miR-141 levels between patients with BPH and patients with localized PCa. Using Kendall's bivariate correlation test, both the Gleason score and the number of bone-metastatic lesions were found to correlate with serum miR-141 levels (P=0.012 and P<0.001, respectively). The serum miR-141 level was found to be positively correlated with alkaline phosphatase (ALP) level in patients with skeletal metastasis, using Pearson's bivariate correlation test. No relationship was found between the serum miR-141 level and the serum prostate-specific antigen (PSA) level. We concluded that serum miR-141 levels are elevated in patients with bone-metastatic PCa and that patients with higher levels of serum miR-141 developed more bone lesions. Furthermore, serum miR-141 levels are correlated with serum ALP levels but not serum PSA levels.
PMCID: PMC3739140  PMID: 23377530
alkaline phosphatase (ALP); biological markers; bones; metastasis; microRNAs; miR-141; prostate-specific antigen (PSA); prostatic neoplasms; serum
19.  Targeted Next-generation Sequencing of Advanced Prostate Cancer Identifies Potential Therapeutic Targets and Disease Heterogeneity 
European urology  2012;63(5):920-926.
Most personalized cancer care strategies involving DNA sequencing are highly reliant on acquiring sufficient fresh or frozen tissue. It has been challenging to comprehensively evaluate the genome of advanced prostate cancer (PCa) because of limited access to metastatic tissue.
To demonstrate the feasibility of a novel next-generation sequencing (NGS) based platform that can be used with archival formalin-fixed paraffin-embedded (FFPE) biopsy tissue to evaluate the spectrum of DNA alterations seen in advanced PCa.
Design, setting, and participants
FFPE samples (including archival prostatectomies and prostate needle biopsies) were obtained from 45 patients representing the spectrum of disease: localized PCa, metastatic hormone-naive PCa, and metastatic castration-resistant PCa (CRPC). We also assessed paired primaries and metastases to understand disease heterogeneity and disease progression.
At least 50 ng of tumor DNA was extracted from FFPE samples and used for hybridization capture and NGS using the Illumina HiSeq 2000 platform.
Outcome measurements and statistical analysis
A total of 3320 exons of 182 cancer-associated genes and 37 introns of 14 commonly rearranged genes were evaluated for genomic alterations.
Results and limitations
We obtained an average sequencing depth of >900X. Overall, 44% of CRPCs harbored genomic alterations involving the androgen receptor gene (AR), including AR copy number gain (24% of CRPCs) or AR point mutation (20% of CRPCs). Other recurrent mutations included transmembrane protease, serine 2 gene (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (avian) gene (ERG) fusion (44%); phosphatase and tensin homolog gene (PTEN) loss (44%); tumor protein p53 gene (TP53) mutation (40%); retinoblastoma gene (RB) loss (28%); v-myc myelocytomatosis viral oncogene homolog (avian) gene (MYC) gain (12%); and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α gene (PIK3CA) mutation (4%). There was a high incidence of genomic alterations involving key genes important for DNA repair, including breast cancer 2, early onset gene (BRCA2) loss (12%) and ataxia telangiectasia mutated gene (ATM) mutations (8%); these alterations are potentially targetable with poly(adenosine diphosphate-ribose)polymerase inhibitors. A novel and actionable rearrangement involving the v-raf murine sarcoma viral oncogene homolog B1 gene (BRAF) was also detected.
This first-in-principle study demonstrates the feasibility of performing in-depth DNA analyses using FFPE tissue and brings new insight toward understanding the genomic landscape within advanced PCa.
PMCID: PMC3615043  PMID: 22981675
Next-generation sequencing; Castration-resistant prostate cancer; Prostate cancer genome
20.  Comprehensive Study of Gene and microRNA Expression Related to Epithelial-Mesenchymal Transition in Prostate Cancer 
PLoS ONE  2014;9(11):e113700.
Prostate cancer is the most common cancer in men, and most patients have localized disease at the time of diagnosis. However, 4% already present with metastatic disease. Epithelial-mesenchymal transition is a fundamental process in carcinogenesis that has been shown to be involved in prostate cancer progression. The main event in epithelial-mesenchymal transition is the repression of E-cadherin by transcription factors, but the process is also regulated by microRNAs. The aim of this study was to analyze gene and microRNA expression involved in epithelial-mesenchymal transition in localized prostate cancer and metastatic prostate cancer cell lines and correlate with clinicopathological findings. We studied 51 fresh frozen tissue samples from patients with localized prostate cancer (PCa) treated by radical prostatectomy and three metastatic prostate cancer cell lines (LNCaP, DU145, PC3). The expression of 10 genes and 18 miRNAs were assessed by real-time PCR. The patients were divided into groups according to Gleason score, pathological stage, preoperative PSA, biochemical recurrence, and risk group for correlation with clinicopathological findings. The majority of localized PCa cases showed an epithelial phenotype, with overexpression of E-cadherin and underexpression of the mesenchymal markers. MiRNA-200 family members and miRNAs 203, 205, 183, 373, and 21 were overexpressed, while miRNAs 9, 495, 29b, and 1 were underexpressed. Low-expression levels of miRNAs 200b, 30a, and 1 were significantly associated with pathological stage. Lower expression of miR-200b was also associated with a Gleason score ≥8 and shorter biochemical recurrence-free survival. Furthermore, low-expression levels of miR-30a and high-expression levels of Vimentin and Twist1 were observed in the high-risk group. Compared with the primary tumor, the metastatic cell lines showed significantly higher expression levels of miR-183 and Twist1. In summary, miRNAs 200b, 30a, 1, and 183 and the genes Twist1 and Vimentin might play important roles in the progression of prostate cancer and may eventually become important prognostic markers.
PMCID: PMC4237496  PMID: 25409297
21.  Plasma miRNAs as Biomarkers to Identify Patients with Castration-Resistant Metastatic Prostate Cancer 
MicroRNAs (miRNAs) have emerged as key regulators of numerous biological processes, and increasing evidence suggests that circulating miRNAs may be useful biomarkers of clinical disease. In this study, we sought to identify plasma miRNAs that differentiate patients with metastatic castration resistant prostate cancer (mCRPC) from those with localized prostate cancer (PCa). Pooled plasma samples from patients with localized PCa or mCRPC (25 per group) were assayed using the Exiqon miRNA qPCR panel, and the differential expression of selected candidates was validated using qRT-PCR. We identified 63 miRNAs upregulated in mCRPC versus localized PCa, while only four were downregulated. Pearson’s correlation analysis revealed two highly correlated groups: one consisting of miR-141, miR375 and miR-200c and the other including miR151-3p, miR423-3p, miR-126, miR152 and miR-21. A third group, containing miR-16 and miR-205, showed less correlation. One miRNA from each group (miR-141, miR151-3p and miR-16) was used for logistic regression analysis and proved to increase the sensitivity of the prostate-specific antigen (PSA) test alone. While no miRNA alone differentiated localized PCa and mCRPC, combinations had greater sensitivity and specificity. The expression of these 10 candidates was assayed for association with clinical parameters of disease progression through the cBio portal. Our results demonstrate that plasma levels of selected miRNAs are potential biomarkers to differentiate localized PCa and mCRPC.
PMCID: PMC3645714  PMID: 23574937
microRNA; prostate cancer; metastasis; PSA; castration resistant
22.  Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer 
Epigenetics  2012;7(9):1037-1045.
DNA methylation plays an important role in carcinogenesis and is being recognized as a promising diagnostic and prognostic biomarker for a variety of malignancies including Prostate cancer (PCa). The human kallikrein-related peptidases (KLKs) have emerged as an important family of cancer biomarkers, with KLK3, encoding for Prostate Specific Antigen, being most recognized. However, few studies have examined the epigenetic regulation of KLKs and its implications to PCa. To assess the biological effect of DNA methylation on KLK6 and KLK10 expression, we treated PC3 and 22RV1 PCa cells with a demethylating drug, 5-aza-2′deoxycytidine, and observed increased expression of both KLKs, establishing that DNA methylation plays a role in regulating gene expression. Subsequently, we have quantified KLK6 and KLK10 DNA methylation levels in two independent cohorts of PCa patients operated by radical prostatectomy between 2007–2011 (Cohort I, n = 150) and 1998–2001 (Cohort II, n = 124). In Cohort I, DNA methylation levels of both KLKs were significantly higher in cancerous tissue vs. normal. Further, we evaluated the relationship between DNA methylation and clinicopathological parameters. KLK6 DNA methylation was significantly associated with pathological stage only in Cohort I while KLK10 DNA methylation was significantly associated with pathological stage in both cohorts. In Cohort II, low KLK10 DNA methylation was associated with biochemical recurrence in univariate and multivariate analyses. A similar trend for KLK6 DNA methylation was observed. The results suggest that KLK6 and KLK10 DNA methylation distinguishes organ confined from locally invasive PCa and may have prognostic value.
PMCID: PMC3515013  PMID: 22874102
biomarkers; epigenetics; kallikrein-related peptidases; prostate cancer; quantitative DNA methylation analysis
23.  Serum Glutamate Levels Correlate with Gleason Score and Glutamate Blockade Decreases Proliferation, Migration, and Invasion and Induces Apoptosis in Prostate Cancer Cells 
During glutaminolysis, glutamine is catabolized to glutamate and incorporated into citric acid cycle and lipogenesis. Serum glutamate levels were measured in patients with primary prostate cancer (PCa) or metastatic castrate-resistant PCa (mCRPCa) to establish clinical relevance. The effect of glutamate-deprivation or blockade by metabotropic glutamate receptor 1 (GRM1)-antagonists was investigated on PCa cells’ growth, migration, and invasion to establish biological relevance.
Experimental Design
Serum glutamate levels were measured in normal men (n = 60) and patients with primary PCa (n = 197) or mCRPCa (n = 109). GRM1 expression in prostatic tissues was examined using immunohistochemistry (IHC). Cell growth, migration, and invasion were determined using cell cytotoxicity and modified Boyden chamber assays, respectively. Apoptosis was detected using immunoblotting against cleaved caspases, PARP and γ-H2AX.
Univariate and multivariate analyses demonstrated significantly higher serum glutamate levels in Gleason score ≥ 8 than in the Gleason sscore ≤ 7 and in African Americans than in the Caucasian Americans. African Americans with mCRPCa significantly higher serum glutamate levels than those with primary PCa or benign prostate. However, in Caucasian Americans, serum glutamate levels were similar in normal research subjects and patients with mCRPC. IHC demonstrated weak or no expression of GRM1 in luminal acinar epithelial cells of normal or hyperplastic glands, but high expression in primary or metastatic PCa tissues. Glutamate deprivation or blockade decreased PCa cells’ proliferation, migration, and invasion and led to apoptotic cell death.
Glutamate expression is mechanistically associated with and may provide a biomarker of PCa aggressiveness.
PMCID: PMC3492499  PMID: 23072969
Glutamate; GRM1; Biomarker; Prostate Cancer; Metastasis; Castrate-resistant
24.  Prostate calculi in cancer and BPH in a cohort of Korean men: presence of calculi did not correlate with cancer risk 
Asian Journal of Andrology  2009;12(2):215-220.
Prostatic calculi are common and are associated with inflammation of the prostate. Recently, it has been suggested that this inflammation may be associated with prostate carcinogenesis. The aim of this study was to investigate the relationship between prostatic calculi and prostate cancer (PCa) in prostate biopsy specimens. We retrospectively analyzed 417 consecutive patients who underwent transrectal ultrasonography (TRUS) and prostate biopsies between January 2005 and January 2008. Based on the biopsy findings, patients were divided into benign prostatic hyperplasia and PCa groups. TRUS was used to detect prostatic calculi and to measure prostate volume. The correlations between PCa risk and age, serum total PSA levels, prostate volume, and prostatic calculi were analyzed. Patient age and PSA, as well as the frequency of prostatic calculi in the biopsy specimens, differed significantly between both the groups (P < 0.05). In the PCa group, the Gleason scores (GSs) were higher in patients with prostatic calculi than in patients without prostatic calculi (P = 0.023). Using multivariate logistic regression analysis, we found that patient age, serum total PSA and prostate volume were risk factors for PCa (P = 0.001), but that the presence of prostatic calculi was not associated with an increased risk of PCa (P = 0.13). In conclusion, although the presence of prostatic calculi was not shown to be a risk factor for PCa, prostatic calculi were more common in patients with PCa and were associated with a higher GS among these men.
PMCID: PMC3739099  PMID: 20037598
calculi; prostate; prostatic neoplasms; risk factors
25.  Loss of Let-7 Up-Regulates EZH2 in Prostate Cancer Consistent with the Acquisition of Cancer Stem Cell Signatures That Are Attenuated by BR-DIM 
PLoS ONE  2012;7(3):e33729.
The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3′UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3′-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.
PMCID: PMC3307758  PMID: 22442719

Results 1-25 (1165305)