Search tips
Search criteria

Results 1-25 (809642)

Clipboard (0)

Related Articles

1.  PKD controls mitotic Golgi complex fragmentation through a Raf–MEK1 pathway 
Molecular Biology of the Cell  2013;24(3):222-233.
Protein kinase D (PKD) is known to be involved in the fission of transport carriers at the Golgi complex. This study demonstrates that PKD is important for the cleavage of interstack Golgi connections in G2 of the cell cycle and thus entry of cells into mitosis.
Before entering mitosis, the stacks of the Golgi cisternae are separated from each other, and inhibiting this process delays entry of mammalian cells into mitosis. Protein kinase D (PKD) is known to be involved in Golgi-to–cell surface transport by controlling the biogenesis of specific transport carriers. Here we show that depletion of PKD1 and PKD2 proteins from HeLa cells by small interfering RNA leads to the accumulation of cells in the G2 phase of the cell cycle and prevents cells from entering mitosis. We further provide evidence that inhibition of PKD blocks mitotic Raf-1 and mitogen-activated protein kinase kinase (MEK) activation, and, as a consequence, mitotic Golgi fragmentation, which could be rescued by expression of active MEK1. Finally, Golgi fluorescence recovery after photobleaching analyses demonstrate that PKD is crucial for the cleavage of the noncompact zones of Golgi membranes in G2 phase. Our findings suggest that PKD controls interstack Golgi connections in a Raf-1/MEK1–dependent manner, a process required for entry of the cells into mitosis.
PMCID: PMC3564543  PMID: 23242995
2.  The Small Subunit Processome Is Required for Cell Cycle Progression at G1 
Molecular Biology of the Cell  2004;15(11):5038-5046.
Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.
PMCID: PMC524768  PMID: 15356263
3.  The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway 
Aging (Albany NY)  2010;2(6):344-352.
Transient induction of p53 can cause reversible quiescence and irreversible senescence. Using nutlin-3a (a small molecule that activates p53 without causing DNA damage), we have previously identified cell lines in which nutlin-3a caused quiescence. Importantly, nutlin-3a caused quiescence by actively suppressing the senescence program (while still causing cell cycle arrest). Noteworthy, in these cells nutlin-3a inhibited the mTOR (mammalian Target of Rapamycin) pathway, which is known to be involved in the senescence program. Here we showed that shRNA-mediated knockdown of TSC2, a negative regulator of mTOR, partially converted quiescence into senescence in these nutlin-arrested cells. In accord, in melanoma cell lines and mouse embryo fibroblasts, which easily undergo senescence in response to p53 activation, nutlin-3a failed to inhibit mTOR. In these senescence-prone cells, the mTOR inhibitor rapamycin converted nutlin-3a-induced senescence into quiescence. We conclude that status of the mTOR pathway can determine, at least in part, the choice between senescence and quiescence in p53-arrested cells.
PMCID: PMC2919254  PMID: 20606252
p53; senescence; rapamycin; mTOR; cancer; cell cycle
4.  Ribosome Biogenesis Is Sensed at the Start Cell Cycle Checkpoint 
Molecular Biology of the Cell  2007;18(3):953-964.
In the yeast Saccharomyces cerevisiae it has long been thought that cells must reach a critical cell size, called the “setpoint,” in order to allow the Start cell cycle transition. Recent evidence suggests that this setpoint is lowered when ribosome biogenesis is slowed. Here we present evidence that yeast can sense ribosome biogenesis independently of mature ribosome levels and protein synthetic capacity. Our results suggest that ribosome biogenesis directly promotes passage through Start through Whi5, the yeast functional equivalent to the human tumor suppressor Rb. When ribosome biogenesis is inhibited, a Whi5-dependent mechanism inhibits passage through Start before significant decreases in both the number of ribosomes and in overall translation capacity of the cell become evident. This delay at Start in response to decreases in ribosome biogenesis occurs independently of Cln3, the major known Whi5 antagonist. Thus ribosome biogenesis may be sensed at multiple steps in Start regulation. Ribosome biogenesis may thus both delay Start by increasing the cell size setpoint and independently may promote Start by inactivating Whi5.
PMCID: PMC1805094  PMID: 17192414
5.  Trehalose Is a Key Determinant of the Quiescent Metabolic State That Fuels Cell Cycle Progression upon Return to Growth 
Molecular Biology of the Cell  2010;21(12):1982-1990.
The disaccharide trehalose accumulates as yeast cells enter quiescence. Glucose equivalents in the form of trehalose and glycogen lead to an increase in the apparent density of the cell. Upon exit from quiescence, trehalose stores are initially metabolized in preference over other energy sources to help drive cell cycle progression.
When conditions are unfavorable, virtually all living cells have the capability of entering a resting state termed quiescence or G0. Many aspects of the quiescence program as well as the mechanisms governing the entry and exit from quiescence remain poorly understood. Previous studies using the budding yeast Saccharomyces cerevisiae have shown that upon entry into stationary phase, a quiescent cell population emerges that is heavier in density than nonquiescent cells. Here, we show that total intracellular trehalose and glycogen content exhibits substantial correlation with the density of individual cells both in stationary phase batch cultures and during continuous growth. During prolonged quiescence, trehalose stores are often maintained in favor over glycogen, perhaps to fulfill its numerous stress-protectant functions. Immediately upon exit from quiescence, cells preferentially metabolize trehalose over other fuel sources. Moreover, cells lacking trehalose initiate growth more slowly and frequently exhibit poor survivability. Together, our results support the view that trehalose, which is more stable than other carbohydrates, provides an enduring source of energy that helps drive cell cycle progression upon return to growth.
PMCID: PMC2883942  PMID: 20427572
6.  Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae 
Nucleic Acids Research  2012;41(2):1191-1210.
Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p–Noc1p–Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity.
PMCID: PMC3553968  PMID: 23209026
7.  SURVEY AND SUMMARY: The pre-ribosomal network 
Nucleic Acids Research  2003;31(3):799-804.
Recent achievements in yeast functional proteomics have significantly advanced our knowledge about ribosome biogenesis. Here, we present a program developed to integrate data from various proteome analyses with cell biological data on components present in the ribosome producing factories. This program allows users to attribute factors to certain complexes and to specific steps of ribosome biogenesis. Thus, it helps to gain novel insights into the complex network involved in maturation of ribosomal subunits. The database can be accessed at the URL
PMCID: PMC149187  PMID: 12560474
8.  Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry 
Nature cell biology  2011;13(4):351-360.
The primary cilium is an antenna-like organelle that is dynamically regulated during the cell cycle. Ciliogenesis is initiated as cells enter quiescence, while cilium resorption precedes mitosis. The mechanisms coordinating ciliogenesis with the cell cycle are unknown. Here we identify the centrosomal protein, Nde1, as a negative regulator of ciliary length. Nde1 is expressed at high levels in mitosis, low levels in quiescence and localizes at the mother centriole, which nucleates the primary cilium. Cells depleted of Nde1 show longer cilia and a delay in cell cycle re-entry that correlates with ciliary length. Knockdown of Nde1 in zebrafish embryos results in increased ciliary length, suppression of cell division, reduction of the number of cells forming the Kupffer’s vesicle, and left-right patterning defects. These data suggest that Nde1 is an integral component of a network coordinating ciliary length with cell cycle progression and have implications in the transition from quiescence to a proliferative state.
PMCID: PMC3077088  PMID: 21394081
9.  Attenuation of miR-126 Activity Expands HSC In Vivo without Exhaustion 
Cell Stem Cell  2012;11(6):799-811.
Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks, making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell-cycle entry, leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway, attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function.
Graphical Abstract
► miR-126 is a novel regulator of the HSC quiescence/proliferation equilibrium ► Reduction in miR-126 induces an expansion of long-term HSC without exhaustion ► Constitutive miR-126 expression promotes HSC quiescence and progenitor proliferation ► miR-126 attenuates PI3K/AKT activation in response to cytokine stimulation
miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway to promote HSC quiescence and progenitor proliferation.
PMCID: PMC3517970  PMID: 23142521
10.  Cell Cycle-Regulated Protein Abundance Changes in Synchronously Proliferating HeLa Cells Include Regulation of Pre-mRNA Splicing Proteins 
PLoS ONE  2013;8(3):e58456.
Cell proliferation involves dramatic changes in DNA metabolism and cell division, and control of DNA replication, mitosis, and cytokinesis have received the greatest attention in the cell cycle field. To catalogue a wider range of cell cycle-regulated processes, we employed quantitative proteomics of synchronized HeLa cells. We quantified changes in protein abundance as cells actively progress from G1 to S phase and from S to G2 phase. We also describe a cohort of proteins whose abundance changes in response to pharmacological inhibition of the proteasome. Our analysis reveals not only the expected changes in proteins required for DNA replication and mitosis but also cell cycle-associated changes in proteins required for biological processes not known to be cell-cycle regulated. For example, many pre-mRNA alternative splicing proteins are down-regulated in S phase. Comparison of this dataset to several other proteomic datasets sheds light on global mechanisms of cell cycle phase transitions and underscores the importance of both phosphorylation and ubiquitination in cell cycle changes.
PMCID: PMC3592840  PMID: 23520512
11.  The cellular abundance of the essential transcription termination factor TTF-I regulates ribosome biogenesis and is determined by MDM2 ubiquitinylation 
Nucleic Acids Research  2012;40(12):5357-5367.
The ARF tumour suppressor stabilizes p53 by negatively regulating the E3 ubiquitin ligase MDM2 to promote cell cycle arrest and cell death. However, ARF is also able to arrest cell proliferation by inhibiting ribosome biogenesis. In greater part this is achieved by targeting the transcription termination factor I (TTF-I) for nucleolar export, leading to an inhibition of both ribosomal RNA synthesis and processing. We now show that in the absence of ARF, TTF-I is ubiquitinylated by MDM2. MDM2 interacts directly with TTF-I and regulates its cellular abundance by targeting it for degradation by the proteasome. Enhanced TTF-I levels inhibit ribosome biogenesis by suppressing ribosomal RNA synthesis and processing, strongly suggesting that exact TTF-I levels are critical for efficient ribosome biogenesis. We further show that concomitant with its ability to displace TTF-I from the nucleolus, ARF inhibits MDM2 ubiquitinylation of TTF-I by competitively binding to a site overlapping the MDM2 interaction site. Thus, both the sub-nuclear localization and the abundance of TTF-I are key regulators of ribosome biogenesis.
PMCID: PMC3384320  PMID: 22383580
12.  Control of Cyclin G2 mRNA Expression by Forkhead Transcription Factors: Novel Mechanism for Cell Cycle Control by Phosphoinositide 3-Kinase and Forkhead 
Molecular and Cellular Biology  2004;24(5):2181-2189.
Cyclin G2 is an unconventional cyclin highly expressed in postmitotic cells. Unlike classical cyclins that promote cell cycle progression, cyclin G2 blocks cell cycle entry. Here we studied the mechanisms that regulate cyclin G2 mRNA expression during the cell cycle. Analysis of synchronized NIH 3T3 cell cultures showed elevated cyclin G2 mRNA expression levels at G0, with a considerable reduction as cells enter cell cycle. Downregulation of cyclin G2 mRNA levels requires activation of phosphoinositide 3-kinase, suggesting that this enzyme controls cyclin G2 mRNA expression. Because the phosphoinositide 3-kinase pathway inhibits the FoxO family of forkhead transcription factors, we examined the involvement of these factors in the regulation of cyclin G2 expression. We show that active forms of the forkhead transcription factor FoxO3a (FKHRL1) increase cyclin G2 mRNA levels. Cyclin G2 has forkhead consensus motifs in its promoter, which are transactivated by constitutive active FoxO3a forms. Finally, interference with forkhead-mediated transcription by overexpression of an inactive form decreases cyclin G2 mRNA expression levels. These results show that FoxO genes regulate cyclin G2 expression, illustrating a new role for phosphoinositide 3-kinase and FoxO transcription factors in the control of cell cycle entry.
PMCID: PMC350549  PMID: 14966295
13.  Tuberous sclerosis complex 1 (Tsc1) enforces quiescence of naive T cells to promote immune homeostasis and function 
Nature Immunology  2011;12(9):888-897.
The mechanisms that regulate T cell quiescence are poorly understood. We report that tuberous sclerosis complex 1 (Tsc1) establishes a quiescence program in naive T cells by controlling cell size, cell cycle entry, and responses to T cell receptor stimulation. Loss of quiescence predisposed Tsc1-deficient T cells to apoptosis that resulted in loss of conventional T cells and invariant natural killer T cells. Loss of Tsc1 function dampened in vivo immune responses to bacterial infection. Tsc1-deficient T cells exhibited increased mTORC1 but diminished mTORC2 activities, with mTORC1 activation essential for the disruption of immune homeostasis. Therefore, Tsc1-dependent control of mTOR is crucial in establishing naive T cell quiescence to facilitate adaptive immune function.
PMCID: PMC3158818  PMID: 21765414
naive T cells; quiescence; apoptosis; immune response; mTOR
14.  Regulation of Pol III Transcription by Nutrient and Stress Signaling Pathways 
Biochimica et biophysica acta  2012;1829(3-4):361-375.
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function.
PMCID: PMC3594473  PMID: 23165150
Maf1; rapamycin-sensitive TOR signaling; Sch9; Kns1; Mck1; TFIIIB; protein kinase A; protein kinase CK2
15.  Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway 
PLoS Pathogens  2011;7(3):e1001329.
Influenza A virus (IAV) enters host cells upon binding of its hemagglutinin glycoprotein to sialylated host cell receptors. Whereas dynamin-dependent, clathrin-mediated endocytosis (CME) is generally considered as the IAV infection pathway, some observations suggest the occurrence of an as yet uncharacterized alternative entry route. By manipulating entry parameters we established experimental conditions that allow the separate analysis of dynamin-dependent and -independent entry of IAV. Whereas entry of IAV in phosphate-buffered saline could be completely inhibited by dynasore, a specific inhibitor of dynamin, a dynasore-insensitive entry pathway became functional in the presence of fetal calf serum. This finding was confirmed with the use of small interfering RNAs targeting dynamin-2. In the presence of serum, both IAV entry pathways were operational. Under these conditions entry could be fully blocked by combined treatment with dynasore and the amiloride derivative EIPA, the hallmark inhibitor of macropinocytosis, whereas either drug alone had no effect. The sensitivity of the dynamin-independent entry pathway to inhibitors or dominant-negative mutants affecting actomyosin dynamics as well as to a number of specific inhibitors of growth factor receptor tyrosine kinases and downstream effectors thereof all point to the involvement of macropinocytosis in IAV entry. Consistently, IAV particles and soluble FITC-dextran were shown to co-localize in cells in the same vesicles. Thus, in addition to the classical dynamin-dependent, clathrin-mediated endocytosis pathway, IAV enters host cells by a dynamin-independent route that has all the characteristics of macropinocytosis.
Author Summary
Attachment to and entry into a host cell are the first crucial steps in establishing a successful virus infection and critical factors in determining host cell and species tropism. Influenza A virus (IAV) attaches to host cells by binding of its major surface protein, hemagglutinin, to sialic acids that are omnipresent on the glycolipids and glycoproteins exposed on the surfaces of cells. IAV subsequently enters cells of birds and a wide variety of mammals via receptor-mediated endocytosis using clathrin as well as via (an) alternative uncharacterized route(s). The elucidation of the endocytic pathways taken by IAV has been hampered by their apparent redundancy in establishing a productive infection. By manipulating the entry conditions we have established experimental settings that allow the separate analysis of dynamin-dependent (including clathrin-mediated endocytosis) and independent entry of IAV. Collectively, our results indicate macropinocytosis, the main route for the non-selective uptake of extracellular fluid by cells, as an alternative IAV entry route. As the dynamin-dependent and -independent IAV entry routes are redundant and independent, their separate manipulation was crucial for the identification and characterization of the alternative IAV entry route. A similar strategy might be applicable to the study of endocytic pathways taken by other viruses.
PMCID: PMC3068995  PMID: 21483486
16.  Computer-based fluorescence quantification: a novel approach to study nucleolar biology 
BMC Cell Biology  2011;12:25.
Nucleoli are composed of possibly several thousand different proteins and represent the most conspicuous compartments in the nucleus; they play a crucial role in the proper execution of many cellular processes. As such, nucleoli carry out ribosome biogenesis and sequester or associate with key molecules that regulate cell cycle progression, tumorigenesis, apoptosis and the stress response. Nucleoli are dynamic compartments that are characterized by a constant flux of macromolecules. Given the complex and dynamic composition of the nucleolar proteome, it is challenging to link modifications in nucleolar composition to downstream effects.
In this contribution, we present quantitative immunofluorescence methods that rely on computer-based image analysis. We demonstrate the effectiveness of these techniques by monitoring the dynamic association of proteins and RNA with nucleoli under different physiological conditions. Thus, the protocols described by us were employed to study stress-dependent changes in the nucleolar concentration of endogenous and GFP-tagged proteins. Furthermore, our methods were applied to measure de novo RNA synthesis that is associated with nucleoli. We show that the techniques described here can be easily combined with automated high throughput screening (HTS) platforms, making it possible to obtain large data sets and analyze many of the biological processes that are located in nucleoli.
Our protocols set the stage to analyze in a quantitative fashion the kinetics of shuttling nucleolar proteins, both at the single cell level as well as for a large number of cells. Moreover, the procedures described here are compatible with high throughput image acquisition and analysis using HTS automated platforms, thereby providing the basis to quantify nucleolar components and activities for numerous samples and experimental conditions. Together with the growing amount of information obtained for the nucleolar proteome, improvements in quantitative microscopy as they are described here can be expected to produce new insights into the complex biological functions that are orchestrated by the nucleolus.
PMCID: PMC3126779  PMID: 21639891
17.  Cdc14b regulates mammalian RNA polymerase II and represses cell cycle transcription 
Scientific Reports  2011;1:189.
Cdc14 is an essential phosphatase in yeast but its role in the mammalian cell cycle remains obscure. We report here that Cdc14b-knockout cells display unscheduled induction of multiple cell cycle regulators resulting in early entry into DNA replication and mitosis from quiescence. Cdc14b dephosphorylates Ser5 at the C-terminal domain (CTD) of RNA polymerase II, a major substrate of cyclin-dependent kinases. Lack of Cdc14b results in increased CTD-Ser5 phosphorylation, epigenetic modifications that mark active chromatin, and transcriptional induction of cell cycle regulators. These data suggest a function for mammalian Cdc14 phosphatases in the control of transcription during the cell cycle.
PMCID: PMC3240995  PMID: 22355704
18.  Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation 
PLoS ONE  2013;8(3):e58266.
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
PMCID: PMC3589261  PMID: 23472166
19.  Nucleolar Proteins Suppress Caenorhabditis elegans Innate Immunity by Inhibiting p53/CEP-1 
PLoS Genetics  2009;5(9):e1000657.
The tumor suppressor p53 has been implicated in multiple functions that play key roles in health and disease, including ribosome biogenesis, control of aging, and cell cycle regulation. A genetic screen for negative regulators of innate immunity in Caenorhabditis elegans led to the identification of a mutation in NOL-6, a nucleolar RNA-associated protein (NRAP), which is involved in ribosome biogenesis and conserved across eukaryotic organisms. Mutation or silencing of NOL-6 and other nucleolar proteins results in an enhanced resistance to bacterial infections. A full-genome microarray analysis on animals with altered immune function due to mutation in nol-6 shows increased transcriptional levels of genes regulated by a p53 homologue, CEP-1. Further studies indicate that the activation of innate immunity by inhibition of nucleolar proteins requires p53/CEP-1 and its transcriptional target SYM-1. Since nucleoli and p53/CEP-1 are conserved, our results reveal an ancient immune mechanism by which the nucleolus may regulate immune responses against bacterial pathogens.
Author Summary
Innate immunity comprises a variety of defense mechanisms used by metazoans to prevent microbial infections. These nonspecific defense responses used by the innate immune system are governed by interacting and intersecting pathways that control not only immune responses but also longevity and responses to different stresses. Increasing evidence highlights the plurifunctional nature of the nucleolus, which appears to control various cellular processes involved in health and disease, from ribosome biogenesis to regulation of the cell cycle and the cellular stress response. We provide evidence indicating that the nucleolus suppresses innate immunity against bacteria by preventing the transcriptional activity of the tumor suppressor p53. We found that animals lacking nucleolar proteins are highly resistant to infections by bacterial pathogens. We also found that the activation of innate immunity by inhibition of nucleolar proteins requires potential immune effectors whose expression in response to stress is regulated by p53. Our study links the nucleolus, p53, and innate immunity against bacterial infections for the first time, and highlights a new mechanism that can potentially be exploited to alleviate bacterial infections.
PMCID: PMC2734340  PMID: 19763173
20.  A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3 
Nucleic Acids Research  2010;39(6):2367-2377.
Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target.
PMCID: PMC3064776  PMID: 21071421
21.  Metabolic status rather than cell cycle signals control quiescence entry and exit 
The Journal of Cell Biology  2011;192(6):949-957.
The use of new candidate markers for yeast quiescence reveals that quiescence entry and exit primarily rely on cellular metabolic status and can be uncoupled from the cell cycle.
Quiescence is defined as a temporary arrest of proliferation, yet it likely encompasses various cellular situations. Our knowledge about this widespread cellular state remains limited. In particular, little is known about the molecular determinants that orchestrate quiescence establishment and exit. Here we show that upon carbon source exhaustion, budding yeast can enter quiescence from all cell cycle phases. Moreover, using cellular structures that are candidate markers for quiescence, we found that the first steps of quiescence exit can be triggered independently of cell growth and proliferation by the sole addition of glucose in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Importantly, glucose needs to be internalized and catabolized all the way down to glycolysis to mobilize quiescent cell specific structures, but, strikingly, ATP replenishment is apparently not the key signal. Altogether, these findings strongly suggest that quiescence entry and exit primarily rely on cellular metabolic status and can be uncoupled from the cell cycle.
PMCID: PMC3063145  PMID: 21402786
22.  Is post-transcriptional stabilization, splicing and translation of selective mRNAs a key to the DNA damage response? 
Cell Cycle  2011;10(1):23-27.
In response to DNA damage, cells activate a complex, kinase-based signaling network that consists of two components—a rapid phosphorylation-driven signaling cascade that results in immediate inhibition of Cdk/cyclin complexes to arrest the cell cycle along with recruitment of repair machinery to damaged DNA, followed by a delayed transcriptional response that promotes cell cycle arrest through the induction of Cdk inhibitors, such as p21. In recent years a third layer of complexity has emerged that involves post-transcriptional control of mRNA stability, splicing and translation as a critical part of the DNA damage response. Here, we describe recent work implicating DNA damage-dependent modification of RNA-binding proteins that are responsible for some of these mRNA effects, highlighting recent work on post-transcriptional regulation of the cell cycle checkpoint protein/apoptosis inducer Gadd45α by the checkpoint kinase MAPKAP Kinase-2.
PMCID: PMC3048069  PMID: 21173571
MAPKAP-kinase 2; p38MAPK; HuR; hnRNP A0; TIAR; PARN; DNA damage response; RNA-binding proteins; cell cycle checkpoint
23.  Eukaryotic Initiation Factor 6 is rate-limiting in translation, growth and transformation 
Nature  2008;455(7213):684-688.
Cell growth and proliferation require coordinated ribosomal biogenesis and translation. Eukaryotic Initiation Factors (eIF) control translation at the rate-limiting step of initiation1,2. So far, only two eIFs connect extracellular stimuli to global translation rates3; eIF4E acts in the eIF4F complex and regulates binding of capped mRNA to 40S subunits, downstream of growth factors4; eIF2 controls loading of the ternary complex on the 40S subunit and is inhibited upon stress stimuli5–6. No eIFs have been found to link extracellular stimuli to the activity of the large 60S ribosomal subunit. eIF6 binds 60S ribosomes precluding ribosome joining in vitro7–9. However studies in yeasts showed that eIF6 is required for ribosome biogenesis rather than translation10–13. We show that mammalian eIF6 is required for efficient initiation of translation, in vivo. eIF6 null embryos are lethal at preimplantation. Heterozygous mice have 50% reduction of eIF6 levels in all tissues, and show reduced mass of hepatic and adipose tissues due to a lower number of cells and to impaired G1/S cell cycle progression. eIF6+/− cells retain sufficient nucleolar eIF6 and normal ribosome biogenesis. The liver of eIF6+/− mice displays an increase of 80S in polysomal profiles, indicating a defect in initiation of translation. Consistently, isolated hepatocytes have impaired insulin-stimulated translation. Heterozygous mouse embryonic fibroblasts (MEFs) recapitulate the organism phenotype and have normal ribosome biogenesis, reduced insulin-stimulated translation, and delayed G1/S phase progression. Furthermore, eIF6+/− cells resist to oncogene-induced transformation. Thus, eIF6 is the first eIF associated with the large 60S subunit that regulates translation in response to extracellular signals.
PMCID: PMC2753212  PMID: 18784653
24.  Cell Cycle Quiescence of Early Lymphoid Progenitors in Adult Bone Marrow 
Stem cells (Dayton, Ohio)  2006;24(12):2703-2713.
Lymphocyte production in bone marrow (BM) requires substantial cell division, but the relationship between largely quiescent stem cells and dividing lymphoid progenitors is poorly understood. Therefore, the proliferation and cell cycle status of murine hematopoietic progenitors that have just initiated the lymphoid differentiation program represented the focus of this study. Continuous bromo-2’-deoxyuridine incorporation (BrdU) and DNA/RNA analysis by flow cytometry revealed that a surprisingly large fraction of RAG-1+c-kitHi early lymphoid progenitors (ELP) and RAG-1+c-kitLo pro-lymphocytes (Pro-L) in adult BM were in cell cycle quiescence. In contrast, their counterparts in 14 day fetal liver actively proliferated. Indeed, the growth fraction (cells in G1-S-G2-M phases) of fetal ELP was on average 80% versus only 30% for adult ELP. Following 5-fluorouracil treatment, as many as 60% of the adult ELP-enriched population was in G1-S-G2-M and 34% incorporated BrdU in 6 hours. Transcripts for Bcl-2, p21Cip1/Waf1 and p27 Kip1 cell cycle regulatory genes correlated inversely well with proliferative activity. Interestingly, adult lymphoid progenitors in rebound had the high potential for B lymphopoiesis in culture typical of their fetal counterparts. Thus, lymphocyte production is sustained during adult life by quiescent primitive progenitors that divide intermittently. Some, but not all aspects of the fetal differentiation program are reacquired following chemotherapy.
PMCID: PMC1849950  PMID: 16931772
25.  Selective Pharmacological Targeting of a DEAD Box RNA Helicase 
PLoS ONE  2008;3(2):e1583.
RNA helicases represent a large family of proteins implicated in many biological processes including ribosome biogenesis, splicing, translation and mRNA degradation. However, these proteins have little substrate specificity, making inhibition of selected helicases a challenging problem. The prototypical DEAD box RNA helicase, eIF4A, works in conjunction with other translation factors to prepare mRNA templates for ribosome recruitment during translation initiation. Herein, we provide insight into the selectivity of a small molecule inhibitor of eIF4A, hippuristanol. This coral-derived natural product binds to amino acids adjacent to, and overlapping with, two conserved motifs present in the carboxy-terminal domain of eIF4A. Mutagenesis of amino acids within this region allowed us to alter the hippuristanol-sensitivity of eIF4A and undertake structure/function studies. Our results provide an understanding into how selective targeting of RNA helicases for pharmacological intervention can be achieved.
PMCID: PMC2216682  PMID: 18270573

Results 1-25 (809642)