Search tips
Search criteria

Results 1-25 (695957)

Clipboard (0)

Related Articles

1.  TAK1 Expression in the Cochlea: A Specific Marker for Adult Supporting Cells 
Transforming growth factor-β-activated kinase-1 (TAK1) is a mitogen activated protein kinase kinase kinase that is involved in diverse biological roles across species. Functioning downstream of TGF-β and BMP signaling, TAK1 mediates the activation of the c-Jun N-terminal kinase signaling pathway, serves as the target of pro-inflammatory cytokines, such as TNF-α, mediates NF-κβ activation, and plays a role in Wnt/Fz signaling in mesenchymal stem cells. Expression of TAK1 in the cochlea has not been defined. Data mining of previously published murine cochlear gene expression databases indicated that TAK1, along with TAK1 interacting proteins 1 (TAB1), and 2 (TAB2), is expressed in the developing and adult cochlea. The expression of TAK1 in the developing cochlea was confirmed using RT-PCR and immunohistochemistry. Immunolabeling of TAK1 in embryonic, neonatal, and mature cochleas via DAB chromogenic and fluorescent immunohistochemistry indicated that TAK1 is broadly expressed in both the developing otocyst and periotic mesenchyme at E12.5 but becomes more restricted to specific types of supporting cells as the organ of Corti matures. By P1, TAK1 immunolabeling is found in cells of the stria vascularis, hair cells, supporting cells, and Kölliker’s organ. By P16, TAK1 labeling is limited to cochlear supporting cells. In the adult cochlea, TAK1 immunostaining is only present in the cytoplasm of Deiters’ cells, pillar cells, inner phalangeal cells, and inner border cells, with no expression in any other cochlear cell types. While the role of TAK1 in the inner ear is unclear, TAK1 expression may be used as a novel marker for specific sub-populations of supporting cells.
PMCID: PMC3123448  PMID: 21472480
cochlea; Deiters’ cell; phalangeal cell; pillar cell; development; gene expression
The Journal of biological chemistry  2006;282(6):3918-3928.
Transforming growth factor-βactivated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the TGF beta-signaling pathway, but recent evidence has emerged implicating TAK1 in the IL-1 and TNF pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors linking TAK1 to the upstream adaptors TRAFs. However, it remains unclear whether the interaction between TAB2/TAB3 and TAK1 is necessary for its kinase activation and subsequent activation of the IKK and MAPK pathways. Here, we characterized the TAB2/TAB3-binding domain in TAK1 and further examined the requirement of this interaction for IL-1, TNF, and RANKL signaling. Through deletion mapping experiments, we demonstrated that the binding motif for TAB2/TAB2 is a non-contiguous region located within the last C-terminal 100 residues of TAK1. However, residues 479–553 of TAK1 appear to be necessary and sufficient for TAB2/TAB3 interaction. Conversely, residues 574–693 of TAB2 were shown to interact with TAK1. A green fluorescent protein (GFP) fusion protein containing the last 100 residues of TAK1 (TAK1-C100) abolished the interaction of endogenous TAB2/TAB3 with TAK1, the phosphorylation of TAK1 and prevented the activation of IKK and MAPK induced by IL-1, TNF, and RANKL. Furthermore, TAK1-C100 blocked RANKL-induced nuclear accumulation of NFATc1 and consequently osteoclast differentiation consistent with the ability of a catalytically inactive TAK1 to block RANKL-mediated signaling. Significantly, our study provides evidence that the TAB2/TAB3 interaction with TAK1 is crucial for the activation of signaling cascades mediated by IL-1, TNF, and RANKL.
PMCID: PMC3197015  PMID: 17158449
3.  TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway 
TAK1 mitogen-activated protein kinase kinase kinase participates in the Interleukin-1 (IL-1) signaling pathway by mediating activation of JNK, p38, and NF-κB. TAK1-binding protein 2 (TAB2) was previously identified as an adaptor that links TAK1 to an upstream signaling intermediate, tumor necrosis factor receptor-associated factor 6 (TRAF6). Recently, ubiquitination of TRAF6 was shown to play an essential role in the activation of TAK1. However, the mechanism by which IL-1 induces TRAF6 ubiquitination remains to be elucidated. Here we report that TAB2 functions to facilitate TRAF6 ubiquitination and thereby mediates IL-1-induced cellular events. A conserved ubiquitin binding domain in TAB2, the CUE domain, is important for this function. We also found that TAB2 promotes the assembly of TRAF6 with a downstream kinase, IκB kinase (IKK). These results show that TAB2 acts as a multifunctional signaling molecule, facilitating both IL-1-dependent TRAF6 ubiquitination and assembly of the IL-1 signaling complex.
PMCID: PMC1224749  PMID: 15836773
4.  Generation of a conditional mutant allele for Tab1 in mouse 
Genesis (New York, N.Y. : 2000)  2008;46(8):431-439.
TAK1 binding protein1 (TAB1) binds and induces autophosphrylation of TGF-β activating kinase (TAK1). TAK1, a mitogen activated kinase kinase kinase, is involving in several distinct signaling pathways including non-Smad pathways for TGF-β superfamily members and inflammatory responses caused by cytokines. Conventional disruption of the murine Tab1 gene results in late gestation lethality showing intraventricular septum defects and under developed lung alveoli. To gain a better understanding of the roles of TAB1 in different tissues at different stages of development and in pathological conditions, we generated Tab1 floxed mice in which loxP sites flank exons 9 and 10 to remove the C-terminal region of TAB1 protein necessary for activation of TAK1. We demonstrate that Cre-mediated recombination using Sox2-Cre, a Cre line expressed in the epiblast during early embryogenesis, results in deletion of the gene and protein. These homozygous Cre-recombined null embryos display an identical phenotype to conventional null embryos. This animal model will be useful to reveal distinct roles of TAB1 in different tissues at different stages.
PMCID: PMC2637350  PMID: 18693278
5.  USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation 
Cell Death and Differentiation  2011;18(10):1547-1560.
Lys63-linked polyubiquitination of transforming growth factor-β-activated kinase 1 (TAK1) has an important role in tumor necrosis factor-α (TNFα)-induced NF-κB activation. Using a functional genomic approach, we have identified ubiquitin-specific peptidase 4 (USP4) as a deubiquitinase for TAK1. USP4 deubiquitinates TAK1 in vitro and in vivo. TNFα induces association of USP4 with TAK1 to deubiquitinate TAK1 and downregulate TAK1-mediated NF-κB activation. Overexpression of USP4 wild type, but not deuibiquitinase-deficient C311A mutant, inhibits both TNFα- and TAK1/TAB1 co-overexpression-induced TAK1 polyubiquitination and NF-κB activation. Notably, knockdown of USP4 in HeLa cells enhances TNFα-induced TAK1 polyubiquitination, IκB kinase phosphorylation, IκBα phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Moreover, USP4 negatively regulates IL-1β-, LPS- and TGFβ-induced NF-κB activation. Together, our results demonstrate that USP4 serves as a critical control to downregulate TNFα-induced NF-κB activation through deubiquitinating TAK1.
PMCID: PMC3136563  PMID: 21331078
TAK1; NF-κB; USP4; deubiquitination; TNFα
6.  TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling 
Molecular and Cellular Biology  2003;23(4):1231-1238.
The proinflammatory cytokine interleukin-1 (IL-1) transmits a signal via several critical cytoplasmic proteins such as MyD88, IRAKs and TRAF6. Recently, serine/threonine kinase TAK1 and TAK1 binding protein 1 and 2 (TAB1/2) have been identified as molecules involved in IL-1-induced TRAF6-mediated activation of AP-1 and NF-κB via mitogen-activated protein (MAP) kinases and IκB kinases, respectively. However, their physiological functions remain to be clarified. To elucidate their roles in vivo, we generated TAB2-deficient mice. The TAB2 deficiency was embryonic lethal due to liver degeneration and apoptosis. This phenotype was similar to that of NF-κB p65-, IKKβ-, and NEMO/IKKγ-deficient mice. However, the IL-1-induced activation of NF-κB and MAP kinases was not impaired in TAB2-deficient embryonic fibroblasts. These findings demonstrate that TAB2 is essential for embryonic development through prevention of liver apoptosis but not for the IL-1 receptor-mediated signaling pathway.
PMCID: PMC141141  PMID: 12556483
7.  Interleukin-1 (IL-1) Receptor-Associated Kinase Leads to Activation of TAK1 by Inducing TAB2 Translocation in the IL-1 Signaling Pathway 
Molecular and Cellular Biology  2001;21(7):2475-2484.
Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-κB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.
PMCID: PMC86880  PMID: 11259596
8.  O-GlcNAcylation-Inducing Treatments Inhibit Estrogen Receptor α Expression and Confer Resistance to 4-OH-Tamoxifen in Human Breast Cancer-Derived MCF-7 Cells 
PLoS ONE  2013;8(7):e69150.
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine residues) is a post-translational modification that regulates stability, activity or localization of cytosolic and nuclear proteins. O-linked N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent evidences suggest that O-GlcNAcylation may affect the growth of cancer cells. However, the consequences of O-GlcNAcylation on anti-cancer therapy have not been evaluated. In this work, we studied the effects of O-GlcNAcylation on tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells. Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT expression by siRNA potentiated the effect of tamoxifen on cell death. Since the PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to evaluate the effect of PUGNAc+glucosamine on PIP3 production. We observed that these treatments stimulated PIP3 production in MCF-7 cells. This effect was associated with an increase in Akt phosphorylation. However, the PI-3 kinase inhibitor LY294002, which abolished the effect of PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects of PUGNAc+glucosamine against tamoxifen-induced cell death. These results suggest that the protective effects of O-GlcNAcylation are independent of the PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine on the expression of this receptor. We observed that O-GlcNAcylation-inducing treatment significantly reduced the expression of ERα mRNA and protein, suggesting a potential mechanism for the decreased tamoxifen sensitivity induced by these treatments. Therefore, our results suggest that inhibition of O-GlcNAcylation may constitute an interesting approach to improve the sensitivity of breast cancer to anti-estrogen therapy.
PMCID: PMC3730543  PMID: 23935944
9.  Receptor Activator of NF-κB Ligand (RANKL) Activates TAK1 Mitogen-Activated Protein Kinase Kinase Kinase through a Signaling Complex Containing RANK, TAB2, and TRAF6 
Molecular and Cellular Biology  2002;22(4):992-1000.
The receptor activator of NF-κB (RANK) and its ligand RANKL are key molecules for differentiation and activation of osteoclasts. RANKL stimulates transcription factors AP-1 through mitogen-activated protein kinase (MAPK) activation, and NF-κB through IκB kinase (IKK) activation. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is essential for activation of these kinases. In the interleukin-1 signaling pathway, TAK1 MAPK kinase kinase (MAPKKK) mediates MAPK and IKK activation via interaction with TRAF6, and TAB2 acts as an adapter linking TAK1 and TRAF6. Here, we demonstrate that TAK1 and TAB2 participate in the RANK signaling pathway. Dominant negative forms of TAK1 and TAB2 inhibit NF-κB activation induced by overexpression of RANK. In 293 cells stably transfected with full-length RANK, RANKL stimulation facilitates the formation of a complex containing RANK, TRAF6, TAB2, and TAK1, leading to the activation of TAK1. Furthermore, in murine monocyte RAW 264.7 cells, dominant negative forms of TAK1 and TAB2 inhibit NF-κB activation induced by RANKL and endogenous TAK1 is activated in response to RANKL stimulation. These results suggest that the formation of the TRAF6-TAB2-TAK1 complex is involved in the RANK signaling pathway and may regulate the development and function of osteoclasts.
PMCID: PMC134634  PMID: 11809792
10.  TAK1 (MAP3K7) Signaling Regulates Hematopoietic Stem Cells through TNF-Dependent and -Independent Mechanisms 
PLoS ONE  2012;7(11):e51073.
A cytokine/stress signaling kinase Tak1 (Map3k7) deficiency is known to impair hematopoietic progenitor cells. However, the role of TAK1 signaling in the stem cell function of the hematopoietic system is not yet well defined. Here we characterized hematopoietic stem cells (HSCs) harboring deletion of Tak1 and its activators, Tak1 binding proteins 1 and 2 (Tab1 and Tab2) using a competitive transplantation assay in a mouse model. Tak1 single or Tab1/Tab2 double deletions completely eliminated the reconstitution activity of HSCs, whereas Tab1 or Tab2 single deletion did not cause any abnormality. Tak1 single or Tab1/Tab2 double deficient lineage-negative, Sca-1+, c-Kit+ (LSK) cells did not proliferate and underwent cell death. We found that Tnfr1 deficiency restored the reconstitution activity of Tak1 deficient bone marrow cells for 6–18 weeks. However, the reconstitution activity of Tak1- and Tnfr1-double deficient bone marrow cells declined over the long term, and the number of phenotypically identified long-term hematopoietic stem cells were diminished. Our results indicate that TAB1- or TAB2-dependent activation of TAK1 is required for maintenance of the hematopoietic system through two mechanisms: one is prevention of TNF-dependent cell death and the other is TNF-independent maintenance of long-term HSC.
PMCID: PMC3511369  PMID: 23226465
11.  In Vivo Knockdown of TAK1 Accelerates Bone Marrow Proliferation/Differentiation and Induces Systemic Inflammation 
PLoS ONE  2013;8(3):e57348.
TAK1 (TGF-β Activated Kinase 1) is a MAPK kinase kinase, which activates the p38- and JNK-MAPK and NF-κB pathways downstream of receptors such as Toll-Like-, cytokine- and T-cell and B-cell receptors. Representing such an important node in the pro-inflammatory signal-transduction network, the function of TAK1 has been studied extensively. TAK1 knock-out mice are embryonic lethal, while conditional knock-out mice demonstrated either a pro- or anti-inflammatory function. To study the function of TAK1 protein in the adult immune system, we generated and characterized a transgenic mouse expressing TAK1 shRNA under the control of a doxycycline-inducible promoter. Following treatment of TAK-1 shRNA transgenic mice with doxycycline an effective knockdown of TAK1 protein levels was observed in lymphoid organs and cells in the peritoneal cavity (>50% down regulation). TAK1 knockdown resulted in significant changes in leukocyte populations in blood, bone marrow, spleen and peritoneal cavity. Upon TAK1 knockdown mice demonstrated splenomegaly, signs of systemic inflammation (increased levels of circulating cytokines and increase in cellularity of the B-cell areas and in germinal center development in the follicles) and degenerative changes in heart, kidneys and liver. Not surprisingly, TAK1-Tg mice treated with LPS or anti-CD3 antibodies showed enhanced cytokine/chemokine secretion. Finally, analysis of progenitor cells in the bone marrow upon doxycycline treatment showed increased proliferation and differentiation of myeloid progenitor cells. Given the similarity of the phenotype with TGF-β genetic models, our data suggest that in our model the function of TAK1 in TGF-β signal-transduction is overruling its function in pro-inflammatory signaling.
PMCID: PMC3591390  PMID: 23505428
12.  dbOGAP - An Integrated Bioinformatics Resource for Protein O-GlcNAcylation 
BMC Bioinformatics  2011;12:91.
Protein O-GlcNAcylation (or O-GlcNAc-ylation) is an O-linked glycosylation involving the transfer of β-N-acetylglucosamine to the hydroxyl group of serine or threonine residues of proteins. Growing evidences suggest that protein O-GlcNAcylation is common and is analogous to phosphorylation in modulating broad ranges of biological processes. However, compared to phosphorylation, the amount of protein O-GlcNAcylation data is relatively limited and its annotation in databases is scarce. Furthermore, a bioinformatics resource for O-GlcNAcylation is lacking, and an O-GlcNAcylation site prediction tool is much needed.
We developed a database of O-GlcNAcylated proteins and sites, dbOGAP, primarily based on literature published since O-GlcNAcylation was first described in 1984. The database currently contains ~800 proteins with experimental O-GlcNAcylation information, of which ~61% are of humans, and 172 proteins have a total of ~400 O-GlcNAcylation sites identified. The O-GlcNAcylated proteins are primarily nucleocytoplasmic, including membrane- and non-membrane bounded organelle-associated proteins. The known O-GlcNAcylated proteins exert a broad range of functions including transcriptional regulation, macromolecular complex assembly, intracellular transport, translation, and regulation of cell growth or death. The database also contains ~365 potential O-GlcNAcylated proteins inferred from known O-GlcNAcylated orthologs. Additional annotations, including other protein posttranslational modifications, biological pathways and disease information are integrated into the database. We developed an O-GlcNAcylation site prediction system, OGlcNAcScan, based on Support Vector Machine and trained using protein sequences with known O-GlcNAcylation sites from dbOGAP. The site prediction system achieved an area under ROC curve of 74.3% in five-fold cross-validation. The dbOGAP website was developed to allow for performing search and query on O-GlcNAcylated proteins and associated literature, as well as for browsing by gene names, organisms or pathways, and downloading of the database. Also available from the website, the OGlcNAcScan tool presents a list of predicted O-GlcNAcylation sites for given protein sequences.
dbOGAP is the first public bioinformatics resource to allow systematic access to the O-GlcNAcylated proteins, and related functional information and bibliography, as well as to an O-GlcNAcylation site prediction tool. The resource will facilitate research on O-GlcNAcylation and its proteomic identification.
PMCID: PMC3083348  PMID: 21466708
13.  TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development 
Molecular and Cellular Biology  2000;20(9):3015-3026.
Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPKKK superfamily and has been characterized as a component of the TGF-β/bone morphogenetic protein signaling pathway. TAK1 function has been extensively studied in cultured cells, but its in vivo function is not fully understood. In this study, we isolated a Drosophila homolog of TAK1 (dTAK1) which contains an extensively conserved NH2-terminal kinase domain and a partially conserved COOH-terminal domain. To learn about possible endogenous roles of TAK1 during animal development, we generated transgenic flies which express dTAK1 or the mouse TAK1 (mTAK1) gene in the fly visual system. Ectopic activation of TAK1 signaling leads to a small eye phenotype, and genetic analysis reveals that this phenotype is a result of ectopically induced apoptosis. Genetic and biochemical analyses also indicate that the c-Jun amino-terminal kinase (JNK) signaling pathway is specifically activated by TAK1 signaling. Expression of a dominant negative form of dTAK during embryonic development resulted in various embryonic cuticle defects including dorsal open phenotypes. Our results strongly suggest that in Drosophila melanogaster, TAK1 functions as a MAPKKK in the JNK signaling pathway and participates in such diverse roles as control of cell shape and regulation of apoptosis.
PMCID: PMC85571  PMID: 10757786
14.  Human OGA binds substrates in a conserved peptide recognition groove 
Biochemical Journal  2010;432(Pt 1):1-7.
Modification of cellular proteins with O-GlcNAc (O-linked N-acetylglucosamine) competes with protein phosphorylation and regulates a plethora of cellular processes. O-GlcNAcylation is orchestrated by two opposing enzymes, O-GlcNAc transferase and OGA (O-GlcNAcase or β-N-acetylglucosaminidase), which recognize their target proteins via as yet unidentified mechanisms. In the present study, we uncovered the first insights into the mechanism of substrate recognition by human OGA. The structure of a novel bacterial OGA orthologue reveals a putative substrate-binding groove, conserved in metazoan OGAs. Guided by this structure, conserved amino acids lining this groove in human OGA were mutated and the activity on three different substrate proteins [TAB1 (transforming growth factor-β-activated protein kinase 1-binding protein 1), FoxO1 (forkhead box O1) and CREB (cAMP-response-element-binding protein)] was tested in an in vitro deglycosylation assay. The results provide the first evidence that human OGA may possess a substrate-recognition mechanism that involves interactions with O-GlcNAcylated proteins beyond the GlcNAc-binding site, with possible implications for differential regulation of cycling of O-GlcNAc on different proteins.
PMCID: PMC2973230  PMID: 20863279
β-N-acetylglucosaminidase; O-linked N-acetylglucosamine (O-GlcNAc); peptide recognition groove; protein glycosylation; CpNagJ, Clostridium perfringens NagJ; CREB, cAMP-response-element-binding protein; Fmoc, fluoren-9-ylmethoxycarbonyl; FoxO1, forkhead box O1; GST, glutathione transferase; HAT, histone acetyltransferase; HEK, human embryonic kidney; LC, liquid chromatography; 4MU-GlcNAc, 4-methylumbelliferyl-β-N-acetylglucosamine; OGA, O-GlcNAcase or β-N-acetylglucosaminidase; hOGA, human OGA; OgOGA, Oceanicola granulosus OGA; OGT, O-GlcNAc transferase; O-GlcNAc, O-linked N-acetylglucosamine; pNP-GlcNAc, p-nitrophenyl-β-N-acetylglucosamine; PUGNAc, O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate; RMSD, root mean square deviation; TAB1, transforming growth factor-β-activated protein kinase 1-binding protein 1
15.  TAK1 Regulates Cartilage and Joint Development via the MAPK and BMP Signaling Pathways 
Journal of Bone and Mineral Research  2010;25(8):1784-1797.
The importance of canonical transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling during cartilage and joint development is well established, but the necessity for noncanonical (SMAD-independent) signaling during these processes is largely unknown. TGF-β activated kinase 1 (TAK1) is a MAP3K activated by TGF-β, BMP, and other mitogen-activated protein kinase (MAPK) signaling components. We set out to define the potential role for noncanonical, TAK1-mediated signaling in cartilage and joint development via deletion of Tak1 in chondrocytes (Col2Cre;Tak1f/f) and the developing limb mesenchyme (Prx1Cre;Tak1f/f). Deletion of Tak1 in chondrocytes resulted in novel embryonic developmental cartilage defects including decreased chondrocyte proliferation, reduced proliferating chondrocyte survival, delayed onset of hypertrophy, reduced Mmp13 expression, and a failure to maintain interzone cells of the elbow joint, which were not observed previously in another Col2Cre;Tak1f/f model. Deletion of Tak1 in limb mesenchyme resulted in widespread joint fusions likely owing to the differentiation of interzone cells to the chondrocyte lineage. The Prx1Cre;Tak1f/f model also allowed us to identify novel columnar chondrocyte organization and terminal maturation defects owing to the interplay between chondrocytes and the surrounding mesenchyme. Furthermore, both our in vivo models and in vitro cell culture studies demonstrate that loss of Tak1 results in impaired activation of the downstream MAPK target p38, as well as diminished activation of the BMP/SMAD signaling pathway. Taken together, these data demonstrate that TAK1 is a critical regulator of both MAPK and BMP signaling and is necessary for proper cartilage and joint development. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153349  PMID: 20213696
TAK1; MAPK; BMP; cartilage; joint
16.  TAK1 lysine 158 is required for TGF-β-induced TRAF6-mediated Smad-independent IKK/NF-κB and JNK/AP-1 activation 
Cellular signalling  2010;23(1):222-227.
Lys63-linked TAK1 polyubiquitination plays an essential role in the regulation of TAK1 activation. TRAF6-mediated Lys63-linked polyubiquitilation of TAK1 has been shown to be required for TGF-β-induced TAK1 activation. However, it remains unclear which lysine residue on TAK1 is TRAF6-mediated TAK1 polyubiquitination acceptor site in TGF-β-signaling pathway. Here we report that lysine 158 on TAK1 is required for TGF-β-induced TRAF6-mediated TAK1 polyubiquitination and TAK1-mediated IKK, JNK and p38 activation. Notably, in contrast to TAK1 wild-type and K34R mutant, TAK1 K158R mutant co-overexpression with TAB1 failed to induce Lys63-linked TAK1 polyubiquitination. TRAF6-induced K63-linked TAK1 polyubiquitination was blocked by TAK1 K158R mutation, but not by K34R mutation. Furthermore, TGF-β-induced TAK1 polyubiqutination was inhibited by TAK1 K158R mutation, but not by K34R mutation in HeLa cells. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild-type, K158R mutant, or K34R mutant reveals that TAK1 lysine 158 residue is required for TGF-β-induced IKK, p38 and JNK activation.
PMCID: PMC2956842  PMID: 20837137
TGF-β; TAK1; polyubiquitination; Lysine 158
17.  O-GlcNAc signalling: implications for cancer cell biology 
Nature Reviews. Cancer  2011;11(9):678-684.
O-GlcNAcylation is the covalent attachment of β-D-N-acetylglucosamine (GlcNAc) sugars to serine or threonine residues of nuclear and cytoplasmic proteins, and it is involved in extensive crosstalk with other post-translational modifications, such as phosphorylation. O-GlcNAcylation is becoming increasing realized as having important roles in cancer-relevant processes, such as cell signalling, transcription, cell division, metabolism and cytoskeletal regulation. However, currently little is known about the specific roles of aberrant O-GlcNAcylation in cancer. In this Opinion article, we summarize the current understanding of O-GlcNAcylation in cancer and its emerging functions in transcriptional regulation at the level of chromatin and transcription factors.
PMCID: PMC3291174  PMID: 21850036
18.  O-GlcNAcylation of Kinases 
Recent evidence indicates that site-specific crosstalk between O-GlcNAcylation and phosphorylation and the O-GlcNAcylation of kinases play an important role in regulating cell signaling. However, relatively few kinases have been analyzed for O-GlcNAcylation. Here, we identify additional kinases that are substrates for O-GlcNAcylation using an in vitro OGT assay on a functional kinase array. Forty-two kinases were O-GlcNAcylated in vitro, representing 39% of the kinases on the array. In addition, we confirmed the in vivo O-GlcNAcylation of three identified kinases. Our results suggest that O-GlcNAcylation may directly regulate a substantial number of kinases and illustrates the increasingly complex relationship between O-GlcNAcylation and phosphorylation in cellular signaling.
PMCID: PMC3387735  PMID: 22564745
O-GlcNAcylation; phosphorylation; protein array; kinases; OGT; signaling
19.  Helicobacter pylori activates NF-κB by inducing Ubc13-mediated ubiquitination of lysine 158 of TAK1 
Journal of cellular biochemistry  2013;114(10):2284-2292.
The Helicobacter pylori virulence factor CagA targets a variety of host proteins to alter different cellular responses, including the induction of pro-inflammatory cytokines. We have previously shown that CagA-facilitated lysine 63-linked ubiquitination of TAK1 is essential for the H. pylori-induced NF-κB activation and the expression of proinflammatory cytokines. However, the molecular mechanism for TAK1 ubiquitination and activation in H. pylori-mediated NF-κB activation remains elusive. Here, we identify lysine 158 of TAK1 as the key residue undergoing lysine 63-linked ubiquitination in response to H. pylori infection. Mutation of lysine 158 to arginine prevents the ubiquitination of TAK1 and impairs H. pylori-induced TAK1 and NF-κB activation. Moreover, we demonstrate that E2 ubiquitin conjugating enzyme Ubc13 is involved in H. pylori-mediated TAK1 ubiquitination. Suppressing the activity of Ubc13 by a dominant-negative mutant or siRNA abolishes CagA-facilitated and H. pylori-induced TAK1 and NF-κB activation. These findings further underscore the importance of lysine 63-linked ubiquitination of TAK1 in H. pylori-induced NF-κB activation and NF-κB-mediated inflammatory response.
PMCID: PMC3909677  PMID: 23606331
CagA; NF-κB; TAK1; Ubc13; ubiquitination
20.  O-GlcNAcylation: A New Cancer Hallmark? 
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification consisting in the addition of a sugar moiety to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase, this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology. As a nutrient sensor, O-GlcNAcylation can relay the effects of excessive nutritional intake, an important cancer risk factor, on protein activities and cellular functions. Indeed, O-GlcNAcylation has been shown to play a significant role in cancer development through different mechanisms. O-GlcNAcylation and OGT levels are increased in different cancers (breast, prostate, colon…) and vary during cell cycle progression. Modulating their expression or activity can alter cancer cell proliferation and/or invasion. Interestingly, major oncogenic factors have been shown to be directly O-GlcNAcylated (p53, MYC, NFκB, β-catenin…). Furthermore, chromatin dynamics is modulated by O-GlcNAc. DNA methylation enzymes of the Tet family, involved epigenetic alterations associated with cancer, were recently found to interact with and target OGT to multi-molecular chromatin-remodeling complexes. Consistently, histones are subjected to O-GlcNAc modifications which regulate their function. Increasing number of evidences point out the central involvement of O-GlcNAcylation in tumorigenesis, justifying the attention received as a potential new approach for cancer treatment. However, comprehension of the underlying mechanism remains at its beginnings. Future challenge will be to address directly the role of O-GlcNAc-modified residues in oncogenic-related proteins to eventually propose novel strategies to alter cancer development and/or progression.
PMCID: PMC3740238  PMID: 23964270
O-glycosylation; O-GlcNAc; post-translational modification; cancer; metastasis; cell cycle; epigenetics; transcription factors
21.  TAK1 MAPKKK mediates TGF-β signaling by targeting SnoN oncoprotein for degradation 
The Journal of biological chemistry  2007;282(13):9475-9481.
Transforming growth factor-β (TGF-β) regulates a variety of physiologic processes through essential intracellular mediators Smads. The SnoN oncoprotein is an inhibitor of TGF-β signaling. SnoN recruits transcriptional repressor complex to block Smad-dependent transcriptional activation of TGF-β-responsive genes. Following TGF-β stimulation, SnoN is rapidly degraded, thereby allowing the activation of TGF-β target genes. Here, we report the role of TAK1 as a SnoN protein kinase. TAK1 interacts with and phosphorylates SnoN, and this phosphorylation regulates the stability of SnoN. Inactivation of TAK1 prevents TGF-β-induced SnoN degradation, and impairs induction of the TGF-β-responsive genes. These data suggest that TAK1 modulates TGF-β dependent cellular responses by targeting SnoN for degradation.
PMCID: PMC2175395  PMID: 17276978
22.  Phosphorylation and Polyubiquitination of Transforming Growth Factor β-Activated Kinase 1 Are Necessary for Activation of NF-κB by the Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor▿  
Journal of Virology  2010;85(5):1980-1993.
Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) protein has been shown to induce several signaling pathways leading to the modulation of host gene expression. The hijacking of these pathways facilitates the viral life cycle and leads to tumorigenesis. In the present work, we show that transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is an important player in NF-κB activation induced by vGPCR. We observed that the expression of an inactive TAK1 kinase mutant (TAK1M) reduces vGPCR-induced NF-κB nuclear translocation and transcriptional activity. Consequently, the expression of several NF-κB target genes normally induced by vGPCR was blocked by TAK1M expression, including interleukin 8 (IL-8), Gro1, IκBα, COX-2, cIAP2, and Bcl2 genes. Similar results were obtained after downregulation of TAK1 by small interfering RNA (siRNA) technology. The expression of vGPCR recruited TAK1 to the plasma membrane, and vGPCR interacts with TAK1. vGPCR expression also induced TAK1 phosphorylation and lysine 63-linked polyubiquitination, the two markers of the kinase's activation. Finally, inhibition of TAK1 by celastrol inhibited vGPCR-induced NF-κB activation, indicating this natural compound could be used as a potential therapeutic drug against KSHV malignancies involving vGPCR.
PMCID: PMC3067774  PMID: 21159881
23.  Cross Talk Between O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription, and Chronic Disease 
Annual Review of Biochemistry  2011;80:825-858.
O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
PMCID: PMC3294376  PMID: 21391816
O-GlcNAc; translation; diabetes; Alzheimer’s disease; cancer
24.  Protection from Cerebral Ischemia by Inhibition of TGFβ-activated kinase 
Experimental neurology  2012;237(1):238-245.
Transforming growth factor-β-activated kinase (TAK1) is a member of the mitogen-activated protein kinase family that plays important roles in apoptosis and inflammatory signaling, both of which are critical components of stroke pathology. TAK1 has recently been identified as a major upstream kinase that phosphorylates and activates adenosine monophosphate-activated protein kinase (AMPK), a major mediator of neuronal injury after experimental cerebral ischemia. We studied the functional role of TAK1 and its mechanistic link with AMPK after stroke.
Male mice were subjected to transient middle cerebral artery occlusion (MCAO). The TAK1 inhibitor 5Z-7-oxozeaenol was injected either intracerebroventricularly or intraperitoneally at various doses and infarct size and functional outcome after long term survival was assessed. Mice with deletion of the AMPK α2 isoform were utilized to assess the contribution of downstream AMPK signaling to stroke outcomes. Levels of pTAK1, pAMPK, and other TAK1 targets including the pro-apoptotic molecule c-Jun-N-terminal kinase (JNK)/c-Jun and the pro-inflammatory protein cyclooxygenase-2 were also examined.
TAK1 is critical in stroke pathology. Delayed treatment with a TAK1 inhibitor reduced infarct size and improved behavioral outcome even when given several hours after stroke onset. This protective effect may be independent of AMPK activation but was associated with a reduction in JNK and c-Jun signaling.
Enhanced TAK1 signaling, via activation of JNK, contributes to cell death in ischemic stroke. TAK1 inhibition is a novel therapeutic approach for stroke as it is neuroprotective with systemic administration, has a delayed therapeutic window, and demonstrates sustained neuroprotective effects.
PMCID: PMC3418439  PMID: 22683931
TAK1; AMPK; stroke; JNK
25.  O-GlcNAc Modification: Friend or Foe in Diabetic Cardiovascular Disease 
Korean Diabetes Journal  2010;34(4):211-219.
O-Linked β-N-acetyl glucosaminylation (O-GlcNAcylation) is a dynamic post-translational modification that occurs on serine and threonine residues of cytosolic and nuclear proteins in all cell types, including those involved in the cardiovascular system. O-GlcNAcylation is thought to act in a manner analogous to protein phosphorylation. O-GlcNAcylation rapidly cycles on/off proteins in a time scale similar to that for phosphorylation/dephosphorylation of proteins. Several studies indicate that O-GlcNAc might induce nuclear localization of some transcription factors and may affect their DNA binding activities. However, at the cellular level, it has been shown that O-GlcNAc levels increase in response to stress and augmentation of this response suppresses cell survival. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are major hallmarks of type 2 diabetes and diabetes-related cardiovascular complications. Thus, O-GlcNAc and its metabolic functions are not yet well-understood; focusing on the role of O-GlcNAc in the cardiovascular system is a viable target for biomedical investigation. In this review, we summarize our current understanding of the role of O-GlcNAc on the regulation of cell function and survival in the cardiovascular system.
PMCID: PMC2932889  PMID: 20835337
Acetylglucosaminidase; Diabetes mellitus, type 2; Glycosyltransferase; Vascular diseases

Results 1-25 (695957)