Search tips
Search criteria

Results 1-25 (1468394)

Clipboard (0)

Related Articles

1.  Differences in Brain Activity during a Verbal Associative Memory Encoding Task in High- and Low-fit Adolescents 
Journal of cognitive neuroscience  2012;25(4):595-612.
Aerobic fitness is associated with better memory performance as well as larger volumes in memory-related brain regions in children, adolescents, and elderly. It is unclear if aerobic exercise also influences learning and memory functional neural circuitry. Here, we examine brain activity in 17 high-fit (HF) and 17 low-fit (LF) adolescents during a subsequent memory encoding paradigm using fMRI. Despite similar memory performance, HF and LF youth displayed a number of differences in memory-related and default mode (DMN) brain regions during encoding later remembered versus forgotten word pairs. Specifically, HF youth displayed robust deactivation in DMN areas, including the ventral medial PFC and posterior cingulate cortex, whereas LF youth did not show this pattern. Furthermore, LF youth showed greater bilateral hippocampal and right superior frontal gyrus activation during encoding of later remembered versus forgotten word pairs. Follow-up task-dependent functional correlational analyses showed differences in hippocampus and DMN activity coupling during successful encoding between the groups, suggesting aerobic fitness during adolescents may impact functional connectivity of the hippocampus and DMN during memory encoding. To our knowledge, this study is the first to examine the influence of aerobic fitness on hippocampal function and memory-related neural circuitry using fMRI. Taken together with previous research, these findings suggest aerobic fitness can influence not only memory-related brain structure, but also brain function.
PMCID: PMC3786681  PMID: 23249350
2.  How Well Do Clinical Pain Assessment Tools Reflect Pain in Infants? 
PLoS Medicine  2008;5(6):e129.
Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing.
Methods and Findings
Cortical haemodynamic activity was measured in infants, aged 25–43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP) score in the same infant to the same stimulus (n = 12, 33 test occasions). Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32–1.11, p = 0.001; correlation coefficient = 0.57). Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84–1.67, p < 0.0001; correlation coefficient = 0.74) (n = 12, 33 test occasions). Cortical pain responses were still recorded in some infants who did not display a change in facial expression.
While painful stimulation generally evokes parallel cortical and behavioural responses in infants, pain may be processed at the cortical level without producing detectable behavioural changes. As a result, an infant with a low pain score based on behavioural assessment tools alone may not be pain free.
Rebeccah Slater and colleagues show that although painful stimulation generally evokes parallel cortical and behavioral responses in infants, pain may produce cortical responses without detectable behavioral changes.
Editors' Summary
Pain is a sensory and emotional experience. It is normally triggered by messages transmitted from specialized receptors (nociceptors) in the body to integrative centers in the spinal cord and brainstem and on to the brain, where it undergoes higher sensory and cognitive analysis, allowing the body to respond appropriately to the stimuli. While the experience of pain may be considered to be unpleasant, it is a useful tool in communicating to us and to others that there is something wrong with our bodies. Ultimately, these responses help restrict further damage to the body and start the process of healing.
In a clinical setting, the ability to communicate about pain allows an individual to seek strategies to ease the pain, such as taking analgesics. Being unable to effectively communicate one's experience of pain leaves the individual vulnerable to prolonged suffering. One such vulnerable group is infants.
Ignored and untreated pain in infants has been shown to have immediate and long-term effects as a result of structural and physiological changes within the nervous system. For example, the body responds to untreated pain by increased release of stress hormones, which may be associated with increased morbidity and mortality in the short term. Long-term effects of pain may include altered pain perception, chronic pain syndromes, and somatic complaints such as sleep disturbances, feeding problems, and inability to self-regulate in response to internal and external stressors. It has been proposed that attention deficit disorders, learning disorders, and behavioral problems in later childhood may be linked to repetitive pain in the preterm infant.
Why Was This Study Done?
Until as recently as the 1990s, newborns in some clinical centres underwent surgery with minimal anesthesia. Also, newborns received little or no pain management postoperatively or for painful procedures such as lumbar punctures or circumcisions. Since then, there has been growing awareness amongst clinicians that pain may be experienced from the earliest stages of postnatal life and that inadequate analgesia may lead to the type of long-term consequences mentioned above. However, gauging how much pain infants and young children are experiencing remains a substantial challenge. The researchers in this study wanted to assess the association between cortical pain responses in young infants and currently used tools for the assessment of pain in these infants. These current tools are based on behavioral and physiological measures, such as change in facial expression, and it is possible that these tools do not give an adequate measure of pain especially in infants born preterm.
What Did the Researchers Do and Find?
Twelve clinically stable infants were studied on 33 occasions when they required a heel lance to obtain a blood sample for a clinical reason. The researchers examined the relationship between brain activity and a clinical pain score, calculated using the premature infant pain profile (PIPP) in response to a painful event. Activity in the somatosensory cortex was measured noninvasively by near-infrared spectroscopy, which measures brain regional changes in oxygenated and deoxygenated hemoglobin concentration. The PIPP is a well-established pain score that ascribes a value to infant behavior such as change in facial expression.
They found that changes in brain activity in response to a painful stimulus were related to the PIPP scores. These changes were more strongly linked to the behavioral components of the PIPP, e.g., facial expression, than physiological components, e.g., heart rate. They also found that a positive brain response could occur in the absence of any facial expression.
What Do These Findings Mean?
Behaviors to communicate pain require motor responses to sensory and emotional stimuli. The maturity of this complex system in infants is not clearly understood. The results of this study raise further awareness of the ability of infants to experience pain and highlight the possibility that pain assessment based on behavioral tools alone may underestimate the pain response in infants.
Additional Information.
Please access these Web sites via the online version of this summary at
Important papers on pain in human neonates are discussed in the open access Paediatric Pain Letter with links to original articles
The Institute of Child Health in London has a Web site describing a three-year international project on improving the assessment of pain in hospitalized children, with many useful links
The International Association for the Study of Pain (IASP) provides accurate and up-to-date information and links about pain mechanisms and treatment
PMCID: PMC2504041  PMID: 18578562
3.  Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents 
Behavioural Brain Research  2012;233(2):517-525.
In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory.
PMCID: PMC3403721  PMID: 22610054
exercise; adolescence; neuroimaging; spatial memory; hippocampus
4.  Temporal structure in associative retrieval 
eLife  null;4:e04919.
Electrophysiological data disclose rich dynamics in patterns of neural activity evoked by sensory objects. Retrieving objects from memory reinstates components of this activity. In humans, the temporal structure of this retrieved activity remains largely unexplored, and here we address this gap using the spatiotemporal precision of magnetoencephalography (MEG). In a sensory preconditioning paradigm, 'indirect' objects were paired with 'direct' objects to form associative links, and the latter were then paired with rewards. Using multivariate analysis methods we examined the short-time evolution of neural representations of indirect objects retrieved during reward-learning about direct objects. We found two components of the evoked representation of the indirect stimulus, 200 ms apart. The strength of retrieval of one, but not the other, representational component correlated with generalization of reward learning from direct to indirect stimuli. We suggest the temporal structure within retrieved neural representations may be key to their function.
eLife digest
Seeing an object triggers a complex and carefully orchestrated dance of brain activity. The spatial pattern of the brain activity encoding the object can change multiple times even within the first second of seeing the object. These rapid changes appear to be a core feature of how the brain understands and processes objects.
Yet little is known about how these patterns unfold through time when we remember an object. Remembering, or retrieving information about objects, is how we use our knowledge of the world to make good decisions. It is not clear whether, during remembering, there are rapid changes in the patterns similar to those that happen when directly seeing an object. Mapping brain activity during remembering could help us understand how stored information can guide decisions.
Using recently developed methods in brain imaging and statistics, Kurth-Nelson et al. found that two distinct patterns of brain activity appeared when viewing particular objects. One occurred around 200 milliseconds after viewing an object, and the other appeared a bit later, by about 400 milliseconds. Later, when remembering the object, these patterns reappeared in the brain, but at different points in time. Furthermore, these two patterns had distinct roles in learning associated with the objects to guide later decisions.
This work shows that rapid changes in the pattern of neuronal activity are central to how stored information is retrieved and used to make decisions.
PMCID: PMC4303761  PMID: 25615722
representation; MEG; multivariate; memory; retrieval; model; Human
5.  Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble 
PLoS Computational Biology  2015;11(2):e1004036.
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.
Author Summary
The brain has remarkable information processing capacity, yet is also very energy efficient. How this metabolic efficiency is achieved given the spatial and metabolic constraints inherent to the designs and energy requirements of brain cells is a fundamental question in neurobiology. The major cell classes in mammalian nervous systems include neurons, glia and the microvasculature that supplies the molecular substrates of energy and metabolism. Together, this neuron-glia-vasculature (NGV) ensemble constitutes the functional unit that underlies the cost infrastructure of computation. In spite of its importance, a comprehensive understanding of this dynamic system remains elusive. While it is well established that glucose feeds the brain, few of the details regarding the destiny of glucose intermediates in metabolic pathways are known. Controversy remains regarding the degree of cooperativity between glia and neurons in sharing lactate, the product of aerobic glycolysis (Warburg effect) and one of the substrates for further energy extraction by oxidative processes. Specifically, while experimental data support the occurrence of a flow of lactate from glia to neurons, the astrocyte-neuron lactate shuttle (ANLS), some theoretical considerations have been proposed to support the occurrence of lactate transport in the other direction (NALS). Our computational model is the first to integrate multiple timescales of the NGV unit. It provides a quantitative mathematical description of metabolic activation in neurons and astrocytes, and of the macroscopic measurements obtained during brain imaging that uses metabolism as a proxy for neuronal activity.
PMCID: PMC4342167  PMID: 25719367
6.  Basic Regulatory Principles of Escherichia coli's Electron Transport Chain for Varying Oxygen Conditions 
PLoS ONE  2014;9(9):e107640.
For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
PMCID: PMC4182436  PMID: 25268772
7.  A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children 
Brain research  2010;1358:172-183.
Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether higher- and lower-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, higher-fit children showed greater bilateral hippocampal volumes and superior relational memory task performance compared to lower-fit children. Hippocampal volume was also positively associated with performance on the relational but not the item memory task. Furthermore, bilateral hippocampal volume was found to mediate the relationship between fitness level (VO2 max) and relational memory. No relationship between aerobic fitness, nucleus accumbens volume, and memory was reported, which strengthens the hypothesized specific effect of fitness on the hippocampus. The findings are the first to indicate that aerobic fitness may relate to the structure and function of the preadolescent human brain.
PMCID: PMC3953557  PMID: 20735996
Brain; Children; Exercise; Hippocampus; MRI; Physical activity
8.  Learning Multisensory Integration and Coordinate Transformation via Density Estimation 
PLoS Computational Biology  2013;9(4):e1003035.
Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned—but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations.
Author Summary
Over the first few years of their lives, humans (and other animals) appear to learn how to combine signals from multiple sense modalities: when to “integrate” them into a single percept, as with visual and proprioceptive information about one's body; when not to integrate them (e.g., when looking somewhere else); how they vary over longer time scales (e.g., where in physical space my hand tends to be); as well as more complicated manipulations, like subtracting gaze angle from the visually-perceived position of an object to compute the position of that object with respect to the head—i.e., “coordinate transformation.” Learning which sensory signals to integrate, or which to manipulate in other ways, does not appear to require an additional supervisory signal; we learn to do so, rather, based on structure in the sensory signals themselves. We present a biologically plausible artificial neural network that learns all of the above in just this way, but by training it for a much more general statistical task: “density estimation”—essentially, learning to be able to reproduce the data on which it was trained. This also links coordinate transformation and multisensory integration to other cortical operations, especially in early sensory areas, that have have been modeled as density estimators.
PMCID: PMC3630212  PMID: 23637588
9.  Muscle-Strengthening and Conditioning Activities and Risk of Type 2 Diabetes: A Prospective Study in Two Cohorts of US Women 
PLoS Medicine  2014;11(1):e1001587.
Anders Grøntved and colleagues examined whether women who perform muscle-strengthening and conditioning activities have an associated reduced risk of type 2 diabetes mellitus.
Please see later in the article for the Editors' Summary
It is well established that aerobic physical activity can lower the risk of type 2 diabetes (T2D), but whether muscle-strengthening activities are beneficial for the prevention of T2D is unclear. This study examined the association of muscle-strengthening activities with the risk of T2D in women.
Methods and Findings
We prospectively followed up 99,316 middle-aged and older women for 8 years from the Nurses' Health Study ([NHS] aged 53–81 years, 2000–2008) and Nurses' Health Study II ([NHSII] aged 36–55 years, 2001–2009), who were free of diabetes, cancer, and cardiovascular diseases at baseline. Participants reported weekly time spent on resistance exercise, lower intensity muscular conditioning exercises (yoga, stretching, toning), and aerobic moderate and vigorous physical activity (MVPA) at baseline and in 2004/2005. Cox regression with adjustment for major determinants for T2D was carried out to examine the influence of these types of activities on T2D risk. During 705,869 person years of follow-up, 3,491 incident T2D cases were documented. In multivariable adjusted models including aerobic MVPA, the pooled relative risk (RR) for T2D for women performing 1–29, 30–59, 60–150, and >150 min/week of total muscle-strengthening and conditioning activities was 0.83, 0.93, 0.75, and 0.60 compared to women reporting no muscle-strengthening and conditioning activities (p<0.001 for trend). Furthermore, resistance exercise and lower intensity muscular conditioning exercises were each independently associated with lower risk of T2D in pooled analyses. Women who engaged in at least 150 min/week of aerobic MVPA and at least 60 min/week of muscle-strengthening activities had substantial risk reduction compared with inactive women (pooled RR = 0.33 [95% CI 0.29–0.38]). Limitations to the study include that muscle-strengthening and conditioning activity and other types of physical activity were assessed by a self-administered questionnaire and that the study population consisted of registered nurses with mostly European ancestry.
Our study suggests that engagement in muscle-strengthening and conditioning activities (resistance exercise, yoga, stretching, toning) is associated with a lower risk of T2D. Engagement in both aerobic MVPA and muscle-strengthening type activity is associated with a substantial reduction in the risk of T2D in middle-aged and older women.
Please see later in the article for the Editors' Summary
Editors' Summary
Worldwide, more than 370 million people have diabetes mellitus, a disorder characterized by poor glycemic control—dangerously high amounts of glucose (sugar) in the blood. Blood sugar levels are normally controlled by insulin, a hormone released by the pancreas. In people with type 2 diabetes (the commonest form of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes, which was previously known as adult-onset diabetes, can often initially be controlled with diet and exercise, and with antidiabetic drugs such as metformin and sulfonylureas. However, as the disease progresses, the pancreatic beta cells, which make insulin, become impaired and patients may eventually need insulin injections. Long-term complications of diabetes, which include an increased risk of cardiovascular problems such as heart disease and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is becoming increasingly common worldwide so better preventative strategies are essential. It is well-established that regular aerobic exercise—physical activity in which the breathing and heart rate increase noticeably such as jogging, brisk walking, and swimming—lowers the risk of type 2 diabetes. The World Health Organization currently recommends that adults should do at least 150 min/week of moderate-to-vigorous aerobic physical activity to reduce the risk of diabetes and other non-communicable diseases. It also recommends that adults should undertake muscle-strengthening and conditioning activities such as weight training and yoga on two or more days a week. However, although studies have shown that muscle-strengthening activity improves glycemic control in people who already have diabetes, it is unclear whether this form of exercise prevents diabetes. In this prospective cohort study (a study in which disease development is followed up over time in a group of people whose characteristics are recorded at baseline), the researchers investigated the association of muscle-strengthening activities with the risk of type 2 diabetes in women.
What Did the Researchers Do and Find?
The researchers followed up nearly 100,000 women enrolled in the Nurses' Health Study (NHS) and the Nurses' Health Study II (NHSII), two prospective US investigations into risk factors for chronic diseases in women, for 8 years. The women provided information on weekly participation in muscle-strengthening exercise (for example, weight training), lower intensity muscle-conditioning exercises (for example, yoga and toning), and aerobic moderate and vigorous physical activity (aerobic MVPA) at baseline and 4 years later. During the study 3,491 women developed diabetes. After allowing for major risk factors for type 2 diabetes (for example, diet and a family history of diabetes) and for aerobic MVPA, compared to women who did no muscle-strengthening or conditioning exercise, the risk of developing type 2 diabetes among women declined with increasing participation in muscle-strengthening and conditioning activity. Notably, women who did more than 150 min/week of these types of exercise had 40% lower risk of developing diabetes as women who did not exercise in this way at all. Muscle-strengthening and muscle-conditioning exercise were both independently associated with reduced diabetes risk, and women who engaged in at least 150 min/week of aerobic MVPA and at least 60 min/week of muscle-strengthening exercise were a third as likely to develop diabetes as inactive women.
What Do These Findings Mean?
These findings show that, among the women enrolled in NHS and NHSII, engagement in muscle-strengthening and conditioning activities lowered the risk of type 2 diabetes independent of aerobic MVPA. That is, non-aerobic exercise provided protection against diabetes in women who did no aerobic exercise. Importantly, they also show that doing both aerobic exercise and muscle-strengthening exercise substantially reduced the risk of type 2 diabetes. Because nearly all the participants in NHS and NHSII were of European ancestry, these results may not be generalizable to women of other ethnic backgrounds. Moreover, the accuracy of these findings may be limited by the use of self-administered questionnaires to determine how much exercise the women undertook. Nevertheless, these findings support the inclusion of muscle-strengthening and conditioning exercises in strategies designed to prevent type 2 diabetes in women, a conclusion that is consistent with current guidelines for physical activity among adults.
Additional Information
Please access these websites via the online version of this summary at
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and explains the benefits of regular physical activity
The World Health Organization provides information about diabetes and about physical activity and health (in several languages); its 2010 Global Recommendations on Physical Activity for Health are available in several languages
The US Centers for Disease Control and Prevention provides information on physical activity for different age groups; its Physical Activity for Everyone web pages include guidelines, instructional videos and personal success stories
More information about the Nurses Health Study and the Nurses Health Study II is available
The UK charity Healthtalkonline has interviews with people about their experiences of diabetes
MedlinePlus provides links to further resources and advice about diabetes and about physical exercise and fitness (in English and Spanish)
PMCID: PMC3891575  PMID: 24453948
10.  Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation 
Neurobiology of learning and memory  2013;105:10.1016/j.nlm.2013.07.008.
“Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but also in the aging population.
PMCID: PMC3855019  PMID: 23871744
learning; memory; metaplasticity; intrinsic excitability; aging; memory modulation; memory allocation
11.  A theory of cortical responses 
This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modern-day statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts.
It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain's free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain’s attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models of how sensory input is caused. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of cortical organization and responses. The aim of this article is to encompass many apparently unrelated anatomical, physiological and psychophysical attributes of the brain within a single theoretical perspective.
In terms of cortical architectures, the theoretical treatment predicts that sensory cortex should be arranged hierarchically, that connections should be reciprocal and that forward and backward connections should show a functional asymmetry (forward connections are driving, whereas backward connections are both driving and modulatory). In terms of synaptic physiology, it predicts associative plasticity and, for dynamic models, spike-timing-dependent plasticity. In terms of electrophysiology, it accounts for classical and extra classical receptive field effects and long-latency or endogenous components of evoked cortical responses. It predicts the attenuation of responses encoding prediction error with perceptual learning and explains many phenomena such as repetition suppression, mismatch negativity (MMN) and the P300 in electroencephalography. In psychophysical terms, it accounts for the behavioural correlates of these physiological phenomena, for example, priming and global precedence. The final focus of this article is on perceptual learning as measured with the MMN and the implications for empirical studies of coupling among cortical areas using evoked sensory responses.
PMCID: PMC1569488  PMID: 15937014
cortical; inference; predictive coding; generative models; Bayesian; hierarchical
12.  On Aerobic Exercise and Behavioral and Neural Plasticity 
Brain Sciences  2012;2(4):709-744.
Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging.
PMCID: PMC4061809  PMID: 24961267
experience-dependent plasticity; brain; angiogenesis; neurogenesis; depression; anxiety; learning and memory
13.  Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. 
Despite striking advances in functional brain imaging, the cellular and molecular mechanisms that underlie the signals detected by these techniques are still largely unknown. The basic physiological principle of functional imaging is represented by the tight coupling existing between neuronal activity and the associated local increase in both blood flow and energy metabolism. Positron emission tomography (PET) signals detect blood flow, oxygen consumption and glucose use associated with neuronal activity; the degree of blood oxygenation is currently thought to contribute to the signal detected with functional magnetic resonance imaging, while magnetic resonance spectroscopy (MRS) identifies the spatio-temporal pattern of the activity-dependent appearance of certain metabolic intermediates such as glucose or lactate. Recent studies, including those of neurotransmitter-regulated metabolic fluxes in purified preparations and analyses of the cellular localization of enzymes and transporters involved in energy metabolism, as well as in vivo microdialysis and MRS approaches have identified the neurotransmitter glutamate and astrocytes, a specific type of glial cell, as pivotal elements in the coupling of synaptic activity with energy metabolism. Astrocytes are ideally positioned to sense increases in synaptic activity and to couple them with energy metabolism. Indeed they possess specialized processes that cover the surface of intraparenchymal capillaries, suggesting that astrocytes may be a likely site of prevalent glucose uptake. Other astrocyte processes are wrapped around synaptic contacts which possess receptors and reuptake sites for neurotransmitters. Glutamate stimulates glucose uptake into astrocytes. This effect is mediated by specific glutamate transporters present on these cells. The activity of these transporters, which is tightly coupled to the synaptic release of glutamate and operates the clearance of glutamate from the extracellular space, is driven by the electrochemical gradient of Na+. This Na(+)-dependent uptake of glutamate into astrocytes triggers a cascade of molecular events involving the Na+/K(+)-ATPase leading to the glycolytic processing of glucose and the release of lactate by astrocytes. The stoichiometry of this process is such that for one glutamate molecule taken up with three Na+ ions, one glucose molecule enters an astrocyte, two ATP molecules are produced through aerobic glycolysis and two lactate molecules are released. Within the astrocyte, one ATP molecule fuels one 'turn of the pump' while the other provides the energy needed to convert glutamate to glutamine by glutamine synthase. Evidence has been accumulated from structural as well as functional studies indicating that, under aerobic conditions, lactate may be the preferred energy substrate of activated neurons. Indeed, in the presence of oxygen, lactate is converted to pyruvate, which can be processed through the tricarboxylic acid cycle and the associated oxidative phosphorylation, to yield 17 ATP molecules per lactate molecule. These data suggest that during activation the brain may transiently resort to aerobic glycolysis occurring in astrocytes, followed by the oxidation of lactate by neurons. The proposed model provides a direct mechanism to couple synaptic activity with glucose use and is consistent with the notion that the signals detected during physiological activation with 18F-deoxyglucose (DG)-PET may reflect predominantly uptake of the tracer into astrocytes. This conclusion does not question the validity of the 2-DG-based techniques, rather it provides a cellular and molecular basis for these functional brain imaging techniques.
PMCID: PMC1692634  PMID: 10466143
14.  Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest 
eLife  null;4:e04585.
Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity.
eLife digest
When a person has their brain scanned, the resulting images show that regions with similar roles tend to be active at the same time. These coordinated patterns of activity are often altered in the brains of patients with neurological or psychiatric disorders. However, relatively little is known about how the patterns are generated.
The degree to which brain regions are active at the same time is thought to depend partly on how well they are connected by brain cells. However, it is also possible that the coordinated activity reflects the extent to which one brain region is able to influence the activity of another. More than 50 years ago, it was demonstrated that this is the case between individual brain cells. If one brain cell repeatedly helps to activate another, the connection between the two cells will be strengthened. This process—known as synaptic plasticity—is thought to support learning and memory.
Now, Johnen, Neubert et al. have shown that the same process can also act between different brain regions. A technique called transcranial magnetic stimulation—in which magnetic fields are applied to specific areas of the scalp to excite brain tissue—was used on human volunteers to activate two regions involved in producing grasping movements with their hands.
If the first region of the brain was repeatedly activated a few milliseconds before the second region as the volunteers reached towards objects, the ability of the first region to activate the second increased. Notably, the effect was not seen when the interval between the activation of the regions was increased to 500 milliseconds: a delay long enough to ensure that brain cells in the first region were no longer active when the second region was stimulated.
This suggests that coordinated changes in the activity of brain regions might reflect the same plasticity processes as changes in activity seen between individual brain cells. This finding raises the possibility that, by deliberately altering the degree of coordinated activity between specific brain regions, it might be possible to recover abilities that have been lost as a result of disorders such as stroke.
PMCID: PMC4353194  PMID: 25664941
plasticity; resting-state connectivity; functional connectivity; premotor cortex; motor system; TMS; human
15.  Arterial Baroreflex Control of Cardiac Vagal Outflow in Older Individuals Can Be Enhanced by Aerobic Exercise Training 
Hypertension  2009;53(5):826-832.
Maintained cardiac vagal function is critical to cardiovascular health in human aging. Aerobic exercise training has been thought an attractive intervention to increase cardiovagal baroreflex function however, the data are equivocal. Moreover, if regular exercise does reverse the age-related decline in cardiovagal baroreflex function, it is unknown how this might be achieved. Therefore, we assessed the effects of a 6-month aerobic training program on baroreflex gain and its mechanical and neural components in older individuals (5 women and 7 men, aged 55–71 years).
We assessed baroreflex function using pharmacologic pressure changes (bolus nitroprusside followed by bolus phenylephrine) and estimated the integrated gain (ΔR-R interval/Δsystolic blood pressure) and mechanical (Δ diameter/Δ pressure) and neural (ΔR-R interval/Δ diameter) components via measurements of carotid artery diameter in previously sedentary older individuals before and after 6-months of aerobic training. There was a significant 26% increase in baroreflex gain that was directly related to the amount of exercise performed and that derived mainly from an increase in the neural component of the arterial baroreflex (p<0.05). We did find changes in the mechanical component but unlike integrated gain and the neural component, these were not related to the magnitude of the exercise stimulus.
These results suggest that exercise training can have a powerful effect on cardiovagal baroreflex function, but a sufficient stimulus is necessary to produce the effect. Moreover, adaptations in the afferent efferent baroreflex control of cardiac vagal outflow may be crucial for the improvement in arterial baroreflex function in older humans.
PMCID: PMC2696114  PMID: 19332656
baroreflex; aging; exercise; nervous system; autonomic; carotid arteries
16.  Is the auditory evoked P2 response a biomarker of learning? 
Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography (EEG) and magnetoencephalography (MEG) have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP), as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects are retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN) wave 600–900 ms post-stimulus onset, post-training exclusively for the group that learned to identify the pre-voiced contrast.
PMCID: PMC3929834  PMID: 24600358
auditory; training; ERP; P2; exposure; learning; rehabilitation; electrophysiology
17.  Decreased Brain Volume in Adults with Childhood Lead Exposure 
PLoS Medicine  2008;5(5):e112.
Although environmental lead exposure is associated with significant deficits in cognition, executive functions, social behaviors, and motor abilities, the neuroanatomical basis for these impairments remains poorly understood. In this study, we examined the relationship between childhood lead exposure and adult brain volume using magnetic resonance imaging (MRI). We also explored how volume changes correlate with historic neuropsychological assessments.
Methods and Findings
Volumetric analyses of whole brain MRI data revealed significant decreases in brain volume associated with childhood blood lead concentrations. Using conservative, minimum contiguous cluster size and statistical criteria (700 voxels, unadjusted p < 0.001), approximately 1.2% of the total gray matter was significantly and inversely associated with mean childhood blood lead concentration. The most affected regions included frontal gray matter, specifically the anterior cingulate cortex (ACC). Areas of lead-associated gray matter volume loss were much larger and more significant in men than women. We found that fine motor factor scores positively correlated with gray matter volume in the cerebellar hemispheres; adding blood lead concentrations as a variable to the model attenuated this correlation.
Childhood lead exposure is associated with region-specific reductions in adult gray matter volume. Affected regions include the portions of the prefrontal cortex and ACC responsible for executive functions, mood regulation, and decision-making. These neuroanatomical findings were more pronounced for males, suggesting that lead-related atrophic changes have a disparate impact across sexes. This analysis suggests that adverse cognitive and behavioral outcomes may be related to lead's effect on brain development producing persistent alterations in structure. Using a simple model, we found that blood lead concentration mediates brain volume and fine motor function.
Using magnetic resonance imaging to assess brain volumes, Kim Cecil and colleagues find that inner-city children with higher blood lead levels showed regions of decreased gray matter as adults.
Editors' Summary
Lead is a highly toxic metal that is present throughout the environment because of various human activities. In particular, for many years, large amounts of lead were used in paint, in solder for water pipes, in gasoline, and in ceramic glazes. But, as the harmful health effects of lead have become clear, its use in these and other products has been gradually phased out. Breathing air, drinking water, or eating food that contains lead can damage almost every organ in the human body. The organ that is most sensitive to lead exposure is the brain, and children's brains are particularly vulnerable because they are still developing. Children who swallow large amounts of lead can develop widespread brain damage that causes convulsions and sometimes death. Children who are repeatedly exposed to low to moderate amounts of lead (e.g., through accidentally swallowing residues of old lead paint or contaminated soil) can develop learning or behavioral problems.
Why Was This Study Done?
Lead exposure has been linked with various types of brain damage. These include problems with thinking (cognition); difficulties with organizing actions, decisions, and behaviors (executive functions); abnormal social behavior (including aggression); and difficulties in coordinating fine movements, such as picking up small objects (fine motor control). However, we know little about how lead damages the brain in this way and little about which brain regions are affected by exposure to low to moderate levels of lead during childhood. In this study, the researchers wanted to test the possibility that childhood lead exposure might lead to shrinking (“volume loss”) parts of the brain, particularly the parts that are crucial to cognition and behavior. They therefore studied the relationship between childhood lead exposure and adult brain volume. They also explored whether there is a relationship between brain volume and measures of brain functioning, such as fine motor control, memory, and learning assessed during adolescence.
What Did the Researchers Do and Find?
Between 1979 and 1984, the researchers recruited babies born in poor areas of Cincinnati, where there were many old, lead-contaminated houses, into the Cincinnati Lead Study. They measured their blood lead levels regularly from birth until they were 78 months old and calculated each child's average blood lead level over this period. They then used brain scans (known as magnetic resonance imaging, or MRI) to measure the brain volumes of the participants when they were 19–24 years old. The researchers found that exposure to lead as a child was linked with brain volume loss in adulthood, particularly in men. There was a “dose-response” effect—in other words, the greatest brain volume loss was seen in participants with the greatest lead exposure in childhood. The brain volume loss was most noticeable in a part of the brain called the prefrontal cortex—especially a region called the “anterior cingulate cortex.” When they examined the relationship between brain volume and measures of brain functioning, they found a link between brain volume and fine motor control, but not with the other measures.
What Do These Findings Mean?
These findings indicate that childhood lead exposure is associated with brain volume loss in adults, in specific regions of the brain. These brain regions are responsible for executive functions, regulating behavior, and fine motor control. Lead exposure has a larger effect on brain volumes in men than in women, which might help to explain the higher incidence of antisocial behaviors among men than women. Overall, these findings may explain why children and adults who have a history of lead exposure have behavioral and other problems, and support ongoing efforts to reduce childhood lead exposure in the US and other countries.
Additional Information.
Please access these Web sites via the online version of this summary at
A PLoS Medicine Perspective article by David Bellinger further discusses this study and a related paper on child exposure to lead and criminal arrests in adulthood
Toxtown, an interactive site from the US National Library of Medicine, provides information on environmental health concerns including exposure to lead (in English and Spanish)
The US Environmental Protection Agency provides information on lead in paint, dust, and soil and on protecting children from lead poisoning (in English and Spanish)
Medline Plus and the US National Library of Medicine Specialized Information Services provide lists of links to information on lead and human health (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about its Childhood Lead Poisoning Prevention Program
The UK Health Protection Agency also provides information about lead and its health hazards
PMCID: PMC2689675  PMID: 18507499
18.  Neuronal and Cognitive Plasticity: A Neurocognitive Framework for Ameliorating Cognitive Aging 
What is the neurocognitive basis for the considerable individual differences observed in functioning of the adult mind and brain late in life? We review the evidence that in healthy old age the brain remains capable of both neuronal and cognitive plasticity, including in response to environmental and experiential factors. Neuronal plasticity (e.g., neurogenesis, synaptogenesis, cortical re-organization) refers to neuron-level changes that can be stimulated by experience. Cognitive plasticity (e.g., increased dependence on executive function) refers to adaptive changes in patterns of cognition related to brain activity. We hypothesize that successful cognitive aging requires interactions between these two forms of plasticity. Mechanisms of neural plasticity underpin cognitive plasticity and in turn, neural plasticity is stimulated by cognitive plasticity. We examine support for this hypothesis by considering evidence that neural plasticity is stimulated by learning and novelty and enhanced by both dietary manipulations (low-fat, dietary restriction) and aerobic exercise. We also examine evidence that cognitive plasticity is affected by education and training. This is a testable hypothesis which could be assessed in humans in randomized trials comparing separate and combined effects of cognitive training, exercise, and diet on measures of cognitive and brain integrity. Greater understanding of the factors influencing the course of cognitive aging and of the mechanisms underlying those factors could provide information on which people could base choices that improve their ability to age successfully.
PMCID: PMC2999838  PMID: 21151819
aging; cognition; adaptation; plasticity; diet; exercise; cortex
19.  Unlocking the Barriers to Improved Functional Capacity in the Elderly: Rationale and Design for the “Fit for Life Trial” 
Contemporary clinical trials  2013;36(1):266-275.
Advancing age is associated with an increase in physical impairment, functional limitations, disability, and loss of independence. Regular physical activity conveys health benefits, but the yield on physical function in the elderly, is less clear. Current exercise guidelines are focused predominantly on aerobic programs despite evidence that age-associated declines are mediated by peripheral tissue changes. The Fit for Life trial proposes a new paradigm of exercise training for the elderly that uses a low-mass high-repetition training regimen specifically focused on peripheral tissue beds or body regions (Regional Specific Training Stimulus-RSTS). RSTS is designed to deliver a localized stimulus to the peripheral vasculature, bone and muscle, without imposing a significant central cardiorespiratory strain.
The purpose of this study is three-fold; 1) derive effect sizes from the RSTS intervention by which to power a subsequent larger, confirmatory trial; 2) assess fidelity of the RSTS intervention; 3) to assess the interrelationship of the primary endpoints of physical impairment/fitness (VO2peak, 1 repetition maximal contraction) and function (Senior Fitness Test scores) following two versions of a 4 + 8 week protocol
Men and women over 70 years, at risk for losing independence will be randomized to either 4 weeks of RSTS or “aerobic” exercise, followed by an identical 8 weeks of progressive whole-body training (aerobic plus resistance). The guiding hypothesis is that the magnitude of adaptation after 12 weeks will be greatest in those initially randomized to RSTS. Possible mediators of the intervention effect - physical impairment/fitness and function relationship, including vascular function, muscle mass, strength, and physiology will also be assessed.
PMCID: PMC3785077  PMID: 23900005
Aging; Functional Capacity; Exercise Independence; Peripheral Adaptations; Vascular
20.  A Model for Integrating Elementary Neural Functions into Delayed-Response Behavior 
PLoS Computational Biology  2006;2(4):e25.
It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.
Before we do anything, our brain must construct neural representations of the operations required. Imaging and recording techniques are indeed providing ever more detailed insight into how different regions of the brain contribute to behavior. However, it has remained elusive exactly how these various regions then come to cooperate with each other, thus organizing the brain-scale activity patterns needed for even the simplest planned tasks. In the present work, the authors propose a neural network model built around the hypothesis of a modular organization of brain activity, where relatively autonomous basic neural functions useful at a given moment are recruited and integrated into actual behavior. At the heart of the model are regulating structures that restrain information from flowing freely between the different cortical areas involved, releasing it instead in a controlled fashion able to produce the appropriate response. The dynamics of the network, simulated on a computer, enables it to pass simple cognitive tests while reproducing data gathered on primates carrying out these same tasks. This suggests that the model might constitute an appropriate framework for studying the neural basis of more general behavior.
PMCID: PMC1428791  PMID: 16604158
21.  The hidden side of drug action: Brain temperature changes induced by neuroactive drugs 
Psychopharmacology  2012;225(4):765-780.
Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions.
Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs.
By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39°C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40°C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells.
The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity
PMCID: PMC3558565  PMID: 23274506
metabolism; cerebral blood flow; behavioral activation; general anesthesia; dopamine agonists and antagonists; cocaine; psychomotor stimulants; blood-brain barrier; brain edema; neurotoxicity
22.  Spatial Learning and Action Planning in a Prefrontal Cortical Network Model 
PLoS Computational Biology  2011;7(5):e1002045.
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates.
Author Summary
We study spatial cognition, a high-level brain function based upon the ability to elaborate mental representations of the environment supporting goal-oriented navigation. Spatial cognition involves parallel information processing across a distributed network of interrelated brain regions. Depending on the complexity of the spatial navigation task, different neural circuits may be primarily involved, corresponding to different behavioral strategies. Navigation planning, one of the most flexible strategies, is based on the ability to prospectively evaluate alternative sequences of actions in order to infer optimal trajectories to a goal. The hippocampal formation and the prefrontal cortex are two neural substrates likely involved in navigation planning. We adopt a computational modeling approach to show how the interactions between these two brain areas may lead to learning of topological representations suitable to mediate action planning. Our model suggests plausible neural mechanisms subserving the cognitive spatial capabilities attributed to rodents. We provide a functional framework for interpreting the activity of prefrontal and hippocampal neurons recorded during navigation tasks. Akin to integrative neuroscience approaches, we illustrate the link from single unit activity to behavioral responses while solving spatial learning tasks.
PMCID: PMC3098199  PMID: 21625569
23.  Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging 
Physical exercise, particularly aerobic exercise, is documented as providing a low cost regimen to counter well-documented cognitive declines including memory, executive function, visuospatial skills, and processing speed in normally aging adults. Prior aging studies focused largely on the effects of medium to long term (>6 months) exercise training; however, the shorter term effects have not been studied. In the present study, we examined changes in brain blood flow, cognition, and fitness in 37 cognitively healthy sedentary adults (57–75 years of age) who were randomized into physical training or a wait-list control group. The physical training group received supervised aerobic exercise for 3 sessions per week 1 h each for 12 weeks. Participants' cognitive, cardiovascular fitness and resting cerebral blood flow (CBF) were assessed at baseline (T1), mid (T2), and post-training (T3). We found higher resting CBF in the anterior cingulate region in the physical training group as compared to the control group from T1 to T3. Cognitive gains were manifested in the exercise group's improved immediate and delayed memory performance from T1 to T3 which also showed a significant positive association with increases in both left and right hippocampal CBF identified earlier in the time course at T2. Additionally, the two cardiovascular parameters, VO2 max and rating of perceived exertion (RPE) showed gains, compared to the control group. These data suggest that even shorter term aerobic exercise can facilitate neuroplasticity to reduce both the biological and cognitive consequences of aging to benefit brain health in sedentary adults.
PMCID: PMC3825180  PMID: 24282403
aging; CBF; exercise; memory; MRI
24.  Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs 
PLoS Computational Biology  2013;9(2):e1002897.
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Author Summary
Our brain's ability to perform cognitive processes, such as object identification, problem solving, and decision making, comes from the specific connections between neurons. The neurons carry information as spikes that are transmitted to other neurons via connections with different strengths and propagation delays. Experimentally observed learning rules can modify the strengths of connections between neurons based on the timing of their spikes. The learning that occurs in neuronal networks due to these rules is thought to be vital to creating the structures necessary for different cognitive processes as well as for memory. The spiking rate of populations of neurons has been observed to oscillate at particular frequencies in various brain regions, and there is evidence that these oscillations play a role in cognition. Here, we use analytical and numerical methods to investigate the changes to the network structure caused by a specific learning rule during oscillatory neural activity. We find the conditions under which connections with propagation delays that resonate with the oscillations are strengthened relative to the other connections. We demonstrate that networks learn to oscillate more strongly to oscillations at the frequency they were presented with during learning. We discuss the possible application of these results to specific areas of the brain.
PMCID: PMC3567188  PMID: 23408878
25.  Cortical thickness as a contributor to abnormal oscillations in schizophrenia?☆ 
NeuroImage : Clinical  2013;4:122-129.
Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function–structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined.
Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time–frequency group differences and associations with STG structure and age were also examined.
Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls.
Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function–structure relationships observed in controls.
•Associations between brain oscillations and structure were investigated in SZ•The present study examined how superior temporal gyrus (STG) structure and agerelate to auditory STG low-frequency and 40 Hz steady-state activity•Decreased total power and inter-trial coherence in SZ were observed in the left STG for early low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms)•Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ•Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG function-structure relationships observed in controls.
PMCID: PMC3871288  PMID: 24371794
Schizophrenia; Auditory; Superior temporal gyrus; Theta; Alpha; Gamma; Magnetoencephalography

Results 1-25 (1468394)